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Abstract

Vortices are important features in vector fields that show a swirling behavior around a common core. The concept of a vortex
core line describes the center of this swirling behavior. In this work, we examine the extension of this concept to 3D second-order
tensor fields. Here, a behavior similar to vortices in vector fields can be observed for trajectories of the eigenvectors. Vortex core
lines in vector fields were defined by Sujudi and Haimes to be the locations where stream lines are parallel to an eigenvector of
the Jacobian. We show that a similar criterion applied to the eigenvector trajectories of a tensor field yields structurally stable
lines that we call tensor core lines. We provide a formal definition of these structures and examine their mathematical properties.
We also present a numerical algorithm for extracting tensor core lines in piecewise linear tensor fields. We find all intersections
of tensor core lines with the faces of a dataset using a simple and robust root finding algorithm. Applying this algorithm to tensor
fields obtained from structural mechanics simulations shows that it is able to effectively detect and visualize regions of rotational

or hyperbolic behavior of eigenvector trajectories.

CCS Concepts
*Human-centered computing — Scientific visualization;

1. Introduction

Feature extraction is one of the most successful standard approaches
in Scientific Visualization. Features describe important and relevant
properties of a field. Their extraction and representation promises
an effective visualization of even complex data sets. For scalar and
vector fields, a variety of features have been proposed. The most
prominent ones for vector fields are topological features and vortices.
For the extraction of vortex core lines, a standard approach is the one
by Sujudi and Haimes [SH95]. It finds all locations in a piecewise
linear vector field where the Jacobian has complex eigenvalues and
the streamlines are parallel to its single real eigenvector. It is known
that these lines can be characterized in terms of the parallel vectors
(PV) operator [PR99], which has also been used to extract ridge and
valley lines, and separation and attachment lines. Locations where
the flow is parallel to an eigenvector of a Jacobian with three real
eigenvalues also form stable lines. These hyperbolic trajectories
are the centers of simultaneous converging and diverging behavior
of the vector field and can be used to extract Lagrangian coherent
structures [MSE13,MBES16]. Roth and Peikert [RP98] showed that
vortex core lines can equivalently be described as locations where
the curvature of streamlines locally vanishes.

In this work, we examine three-dimensional, second-order tensor
fields, i.e., functions that map a matrix in R3*3 to each location in a
three-dimensional domain. Tensor fields arise from a variety of ap-
plications in physics. Examples are stress and strain-, deformation-,
and diffusion tensors. In second-order tensor fields, the analog of
stream lines are eigenvector trajectories. These are lines that are
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Figure 1: Eigenvector trajectories in a stress tensor field induced
by applying a torque to a cylindrical shaft. Trajectories of both
major (blue) and minor (red) eigenvectors show a swirling behavior
around a common core line (yellow).

tangential to an eigenvector of the tensor field everywhere along
their path. Eigenvector trajectories can show a behavior similar to
vortices in vector fields. For example, solid objects subject to a
torque show swirling eigenvector trajectories of the stress tensor
field (see Figure 1). A number of topological visualization methods
have been proposed for second-order tensor fields. However, there
are no approaches to extract core lines of tensor fields similar to
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Sujudi/Haimes and the PV operator for vector fields. Such an ap-
proach would be a valuable tool for quickly identifying regions with
swirling behavior of eigenvector trajectories, such as induced by
torque, that would otherwise be tedious to find. In this paper, we
introduce the concept of tensor core lines as all locations in the 3D
domain of a tensor field where at least one eigenvector trajectory has
a vanishing curvature. Considering the observation made by Roth
and Peikert [RP98], this is the direct extension of Sujudi/Haimes to
tensor fields. In particular, we make the following contributions:

e We give a rigorous definition of tensor core lines and show that
the definition gives indeed structurally stable line structures.

e We provide a numerical algorithm for the extraction of tensor
core lines in piecewise linear tensor fields.

e We introduce a filter criterion based on numerical stability to
separate significant and insignificant tensor core lines.

e We show tensor core lines in mechanical stress tensor fields,
interpret them and compare them with degenerate lines where
two eigenvalues are equal.

Relation of Tensor Core Lines to the Parallel Vectors Operator

At first glance, tensor core lines seem to be a straightforward exten-
sion of the classical PV operator: given a tensor field, we consider
all eigenvector fields as vector fields and apply the PV operator to
them. Such a naive approach cannot give well-defined and stable
results for the following reasons:

e Undefined length and orientation of eigenvectors:
An eigenvector of a matrix is in fact not a vector but a linear
subspace. To express the field of eigenvectors as a vector field,
heuristic assumptions about the length and orientation of the
vectors are necessary. Applying such assumptions globally can
not always give results that are free of discontinuities.

e Existence of multiple eigenvectors:
Regions with three real eigenvectors require a decision on which
of them to use for the PV operator — a decision that is particularly
non-unique in near-isotropic regions (i.e., where the difference
between two real eigenvalues is small).

e Discontinuities in eigenvectors:
A small change of a tensor does not necessarily result in a small
change of the eigenvectors. In fact, in near-isotropic regions, a
small change of the tensor may result in a very large change
of the eigenvector. Moreover, in regions of transition between
real and imaginary eigenvalues (i.e., in neighborhoods containing
both tensors with all real eigenvalues and tensors with complex
eigenvalues), a small change of the tensor can result in a sudden
appearance or disappearance of real eigenvectors.

Some of the problems mentioned above could be tackled by local
heuristics (for instance, the orientations of the eigenvectors in a local
neighborhood could be chosen as consistent as possible). However,
especially the last point shows that eigenvectors show a fundamen-
tally different behavior than normal vector fields for which the PV
operator is designed. New algorithms for the extraction of tensor
core lines are therefore necessary.

2. Related Work

The basis of this work is the extractor for centers of swirling flow in
vector fields first described by Sujudi and Haimes [SH95]. In their
original paper, they examine the Jacobian Vv of a vector field v.
They search for vortex core lines only in areas where Vv has two
complex eigenvalues, i.e., where the flow shows locally swirling
behavior. The location of a vortex core line is then defined as the set
of points where the velocity is parallel to the single real eigenvector.
These are the locations where the swirling in the orthogonal plane
vanishes and only a motion along the eigenvector direction remains.
Note that vortex core lines defined in this manner are generally not
stream lines of the vector field. When applying this method to a
piecewise linear vector field, the result is a set of straight line seg-
ments. Since the derivative Vv is constant within each cell, these
segments do not generally form closed lines. Single line segments
may appear due to noise, but if multiple line segments form a visu-
ally coherent line, it is a strong indicator for vortical behavior in the
flow. The advantage of this vortex core line extractor is its inherent
locality, which makes it well-suited for parallelization and avoids
expensive line integration.

Parallel Vectors

Peikert and Roth [PR99] showed that the vortex core lines described
by Sujudi and Haimes are locations where the acceleration Vv - v is
parallel to the vector field, and identified this as one application of a
concept they called the parallel vectors operator. This concept had
been applied in a lot of other contexts before, such as ridge detection
in scalar fields [Har83] and extraction of attachment/separation lines
in flows [KHL99].

An overview of a number of algorithms for computing parallel
vectors can be found in Martin Roth’s PhD thesis [Rot00]. A com-
mon approach is to first determine intersection points of the PV
lines with the cell faces of a data set. The resulting points are then
connected to lines. If there are exactly two intersections with the
faces of a cell, they can be trivially connected with a line. In case
of a higher number of intersections, different heuristics have been
employed, the simplest one being to subdivide the cell until there
are again only two intersections.

Another class of algorithms employs some form of line tracing
to follow a parallel vector line starting from a seed point that has
been found by one of the aforementioned face intersection methods.
Banks and Singer [BS95] and Miura and Kida [MK97] employed
a predictor-corrector scheme, following the lines in small steps
and minimizing the angle between the vector fields in an orthogo-
nal plane after each step. Sukharev et al. [SZP06] presented a mix
between both approaches by first finding intersection points on a (po-
tentially coarser) grid, and then following the analytical tangent of
the PV line to connect them. A similar approach is taken by Theisel
et al. [TS03], where the PV line is reformulated as a stream line
in a feature flow field that is derived from the original vector fields.
Given a starting point on the PV line, it can be traced like a stream
line with any standard ODE solver. The PVsolve framework intro-
duced by van Gelder and Pang [vGP09] is a generalized approach
for finding PV lines in vector fields of different dimensionality. Their
approach views the tracing of PV lines as a root-finding problem
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and presents an algorithm that does not suffer from accumulating
errors. Weinkauf et al. [WTvGP10] presented stable feature flow
fields as an extension to feature flow fields that similarly eliminates
accumulating errors.

Most PV algorithms assume they operate on piecewise linear
or piecewise bi-/trilinear data in two- or three-dimensional space.
However, there have been a number of publications dealing with
higher-order data or using higher-order methods in some form. Roth
and Peikert [RP98] introduced a method for finding strongly curved
vortex core lines by using higher-order derivatives of the flow field.
Bauer and Peikert [BP02] used a scale-space technique to filter out
small-scale structures and irrelevant large-scale ones when com-
puting vortex cores. Pagot et al. [POS™11] presented an algorithm
for extracting PV lines from data represented by higher-order ba-
sis functions. Due to its generality, the already mentioned PVsolve
framework [vGP09] allows for extracting parallel vector surfaces
in time-dependent vector fields. Similarly, Theisel at al. [TSW*05]
extracted PV surfaces in unsteady flows and applied it to vortex core
line tracking. All these methods work on vector fields, while our
approach deals with second-order tensor fields.

Tensor Field Visualization

Tensor fields (of second order) occur in a variety of different sci-
entific contexts. Some examples are stress and strain tensors in
mechanical engineering applications, and diffusion tensors occuring
in diffusion tensor imaging (DTI), a special magnetic resonance
imaging (MRI) modality used to visualize fiber tracts, e.g., in the
human brain. Tensor field visualization methods can be roughly
classified into three different categories: glyph-based, line-/surface-
based and topology-based.

Glyph-based methods for tensor field visualization place small ge-
ometric objects in space to represent certain characteristics of the lo-
cal tensor. Diffusion tensors, which are symmetric and positive defi-
nite, have been visualized by Kindlmann [Kin04] using superquadric
glyphs aligned with the eigenvector directions. By explicitly encod-
ing eigenvalue signs in geometry, Schultz and Kindlmann [SK10]
extended this to indefinite tensors. Gerrits et al. [GRT17] addition-
ally incorporated complex eigenvalue information into the glyph
design to visualize general second-order tensors in 2D and 3D. A
specialized glyph for stress and strain tensors was introduced by
Hashash et al. [HYW*03]. Kindlmann and Westin [KW06] ad-
dressed the problem of clutter by optimizing glyph placement to
increase information density while minimizing occlusion. Glyphs
for comparative visualization of two different diffusion tensors were
used on medical data by Zhang et al. [ZSL*16].

A simple extension of streamlines for visualizing symmetric ten-
sor fields in 3D are hyperstreamlines, first introduced by Delmarcelle
and Hesselink [DH93]. These hyperstreamlines follow one of the
eigenvectors of the tensor field, while their cross-section is a cross
shape or ellipse aligned with the other two eigenvectors and scaled
by the corresponding eigenvalues. The problem of undefined inte-
gration direction in near-isotropic areas was adressed by Weinstein
et al. with a new concept called tensorlines [WKL99]. These lines
behave like hyperstreamlines, but try to preserve direction in areas
of equal eigenvalues by incorporating local context information. As
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an extension to this concept, Jeremic et al. introduced hyperstream-
surfaces [JSF*02], which are formed analogous to hyperstreamlines
by using a line instead of a point as the seed structure.

The topology of symmetric 2D and 3D tensor fields was studied
by Delmarcelle [DH94] and Hesselink [HLL97]. They characterized
the topology of a tensor field by degenerate structures where two or
more eigenvalues are equal. Zheng and Pang [ZP04] build on top
of this work and provide numerical algorithms for extracting the
topological skeleton in practice. Similar to the approach we take
for extracting tensor core lines, their initial algorithm is based on
finding the roots of a number of discriminant functions on the cell
faces of a dataset using a bisection algorithm, and then connecting
them to lines. Zheng et al. later introduced alternative approaches
that are based on solving a system of equations on each face, and on
tracing the degenerate lines using their analytical tangent [ZPPOS].
As Schulz et al. [STSO07] showed, these features are very sensitive to
noise. A more stable approach suitable to noisy data such as obtained
from DTI scans was therefore proposed by Tricoche et al. [TKWOS].
The notion of tensor topology was recently extended to surfaces
of neutral and traceless tensors by Palacios et al. [PYW*16], who
also propose an improved algorithm for extracting degenerate lines.
Assymetric tensors were studied in 2D by Zheng and Pang [ZP05]
and in the context of flow visualization by Zhang et al. [ZYLLO09].

3. Notation

Throughout the paper, we use the following notation:

T Matrix in R3*3

v Column vector in R3

Vi Components of a vector

(a b ¢) Block matrix of multiple matrices/vectors

Ty, Vi oo Partial derivatives of a Matrix/vector in x1,x7, ...
v Nabla operator (%,a%,a%,...)T

Vi F Directional derivative of F along a vector r
viu The PV operator applied to v and u

4. Tensor Core Lines

‘We define tensor core lines as the locations where eigenvector tra-
jectories have a locally vanishing curvature. The intuition for this
is similar to the intuition for the vortex core line extractor by Su-
judi and Haimes: In a region where eigenvector trajectories show a
swirling behavior, there must be a center of rotation, where the swirl
vanishes. Similarly, an equivalent to hyperbolic trajectories [MSE13]
for eigenvectors can be imagined. Note that like vortex core lines,
tensor core lines are generally not eigenvector trajectories of the
tensor field. In this section, we provide a formal definition of tensor
core lines and examine their mathematical properties.

Let T : R? — R3*3 be a 3D second-order tensor field that may
or may not be symmetric. We want to find locations where the direc-
tion of a real eigenvector of T does not change when moving along
the eigenvector direction, i.e., where the curvature of an eigenvec-
tor trajectory vanishes. A vector r € R3 is an eigenvector of T if
Tr = Ar for eigenvalue A € R and r # 0. To observe the change of
eigenvector direction when moving along r, we need to consider the
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Figure 2: Example of seven distinct core lines in a random linear
tensor field.

derivative of T in this direction. The directional derivative of T along
r is the linear combination of three component-wise derivatives

ViT(x) = VT(x)r = Ty, (X) 7] + Tx, (X) 12 + To; (X) 13

for x = (x; ,xz,X3)T and r = (r| ,r27r3)T. Given VT we can ap-
proximate the behavior of T along r as

T(x+hr) = T(x) + hVeT(x), o))

with / € R. For our zero-curvature requirement to be fulfilled, the
eigenvector direction must not change when moving along r, i.e.,

T(x+hr)r=TX)r+hVT(x)r =yur, 2)

for u € R. This means that r is only scaled by a factor u. If we
substitute T(x) r = Ar, we get

Ar+hViT(x)r = pr

—-A
ViT(x)r = Y
h
i.e., ris also an eigenvector of VT (x). With this, a tensor core line
is an isolated line of positions x where

AT(x)r =uV,T(x)r=r,

for r # 0 and A, u € R. In terms of the PV operator, this equation
has the form

r| Tr| V,Tr. 3)

We now examine the mathematical properties of tensor core lines.

Lemma 1 In a C'-continuous tensor field, tensor core lines are
structurally stable line structures.

Here, structural stability refers to the property that adding noise
slightly perturbs the structures but does not destroy them. To show
Lemma 1, we consider a local approximation of a real eigenvector
field in the neighborhood of a point as a normalized vector field.
Then the fact that PV lines give line structures [PR99] shows the
lemma. Note that although such a consideration of an eigenvector
field as a normalized vector field is locally possible, it does not
apply globally in a consistent way, and therefore does not provide
a strategy to extract tensor core lines. We also mention that in real
datasets, tensor cores may build surfaces or even parts of spatial
structures. This is due to shape symmetries often observed in arti-
ficial data produced by humans. Even though these structures are

unstable (adding noise destroys the surfaces to many lines), our
extraction algorithm has to deal with them.

Lemma 2 For a linear tensor field, tensor core lines are straight
lines.

This follows from the fact that for linear tensor fields, the linear
approximation in equation (1) describes the whole data set exactly:
if equation (2) holds for a small 4, it holds for all % (i.e., on a whole
straight line) as well. Figure 2 shows an example of a random linear
tensor field containing 7 isolated tensor core lines.

5. Extracting Tensor Core Lines from Piecewise Linear Data

We assume tetrahedral partition of the three-dimensional domain.
Each tetrahedron supports a linear piece if the given tensor field has
a constant tensor for each vertex. The gradient field VT consists of
constant pieces per tetrahedron.

In general, tensor core structures are line features (see section 4).
We extract them by first bounding the search space to individual
tetrahedral cells and then to the cell boundary. The two-dimensional
search on triangles reduces the extraction generally to finding point
features: the intersection of core lines with the cell boundary. We
will apply a root finding algorithm for feature extraction.

This discretization of the field and also the restriction to a local
two-dimensional search space is applied similarly by other methods,
e.g., the Sujudi and Haimes extractor [SH95] or the extractor for
degenerate lines in tensor fields by Zheng and Pang [ZP04].

5.1. General Algorithm

A tensor core line consists of all locations x where T(x)r || r and
ViT(x)r || r, see equation (3). This can be expressed as solutions
to

(T(x)r) xr=20

(VrT(x)r) xr=0. @

This system consists of six polynomial equations in the unknown
variables x and r # 0.

The polynomials are of maximum degree 1 in X and 3 in r. Note
that for a linear tensor field, V¢ T(x) = VT is constant and thus
independent of x. We parameterize directions r such that they can be
defined w.r.t. triangles. With the restriction of the local search space
to triangles that bound tetrahedra, the solution of the polynomial
system is equivalent to finding isolated (real) roots, i.e., points where
all six polynomials simultaneously become zero.

We construct a bisection algorithm that uses the Bernstein-Bézier
form (subsection 5.2) of the polynomials to exclude the presence of
roots within subtriangles. Within the search space (subsection 5.3) a
recursive subdivision (subsection 5.4) approximates the locations of
roots in Xx-r-space with an arbitrary user-defined precision. The local
feature extraction is followed by a stage that clusters solutions and
then connects feature points to lines within cells (subsection 5.5)
Finally, we use a filtering criterion for removing unstable solutions
(subsection 5.6).
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5.2. Polynomial System in Bernstein-Bézier Form

‘We consider bivariate polynomials p : R? — R of degree n, which
are evaluated in a triangular domain A C R?. Let indices i ],k >0.
We write p(u) in Bernstein-Bézier form as
o 7 7 . n i Jj ok

plu) = Z Bij(W)bij, Bijx(a) = ATTTRARCRE
i+j+k=n s
with the bivariate Bernstein polynomials B} as basis and coef-
ficients (or Bézier control points) b; . The basis is defined w.r.t.
the barycentric coordinates a, := ay(u), the linear polynomials that
satisfy

aju+aup+asuz=u and a;+ar+az=1

w.r.t. triangle A spanned by vertices uy,uy,u3 [HL93].

The Bernstein-Bézier representation has a number of remarkable
properties. Important to our setting is the convex hull property:
For any u € A — or equivalently all barycentric coordinates are
nonnegative — the value p(u) is bounded by the convex hull of the
control points b; ;.. For scalar coefficients b;; € R this means that
if either all b;j; > 0 or all b;jx < 0 for i+ j+k = n then p cannot
have a zero crossing (or real root) on A. We use this criterion for an
iterative subdivision of a triangle A into smaller and smaller triangles
that either may contain or cannot contain a root.

5.3. Parameterization of the Search Space

The equations in the system (4) are polynomials in x and r. This
means the search space consists of two independent domains: posi-
tion and direction.

As pointed out before, positions x are restricted to points on tri-
angles bounding tetrahedral cells. For each triangle of a tetrahedron
we represent positions X in barycentric coordinates w.r.t. this trian-
gle. Barycentric coordinates are defined in local coordinates of the
triangle and therefore have two degrees of freedom. After switching
to barycentric coordinates the further steps, polynomial evaluation
and subdivision, are independent of the supporting triangle.

We represent a direction vector r as a point on a hemisphere. As
not only its orientation (and thus sign) is irrelevant for the system (4)
but also its scale (as long as r # 0), we approximate the hemisphere
by a triangulation. This way, we use the same parameterization and
the same representation for x and r. We remark that there is no need
for an “accurate” approximation of the hemisphere. We simply use
a four-sided open pyramid (see Figure 3).

For a given triangle, we have to consider a tensor field T that
is linear in x and a direction vector r that is linearly interpolated
on a triangle of the “hemisphere”. Then the left-hand-sides of the
system (4) give three polynomials that are linear in x and quadratic
in r and three polynomials that are cubic in r as they don’t depend
on x because VT is constant.

Each of these six polynomials can be written in the form

‘ Z Biljk(x) B?x[&“{(r) bijk(XBY ) 5)
i+j+k=1
o-+B+y=3

p(X,I’) =

This is the tensor product of the interpolation in x and r. It gives
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Ar

Ax

Figure 3: The search space is parameterized on triangles Ax in
position space and Ay on the hemisphere of possible eigenvector
directions. The figure shows a pair of triangles after several subdivi-
sion steps.

3 X 10 = 30 coefficients b; ; opy- (All indices are nonnegative. Latin
indices indicate position space, Greek indices denote direction
space.) This form has degree 4 and can represent all polynomi-
als in system (4). We use this unified representation for didactic
purposes. Using the real number of degrees in x and r for each
polynomial gives a smaller number of coefficients (18 or 10). Note
that position and direction are expressed in local coordinates (or
barycentric coordinates) of the triangles, such that p depends on
only four coordinates in total. For the sake of a concise notation we

write p(X,r), Biljk(x) and BzBY(r)'

5.4. Root Finding by Subdivision

Algorithms for finding roots of Bézier curves and surfaces are typi-
cally based on the convex hull property and use a recursive bisec-
tion [RHD89, HL93]. We adopt this technique. The main differ-
ences in our setting are the fact that all six equations in (4) must
be satisfied simultaneously and that this is checked in two different
two-dimensional domains: position and space.

Roots of One Single Polynomial

The system (4) defines six polynomials. For the initialization of the
algorithm, we need to determine the Bernstein-Bézier form, i.e., the
coefficients b; . oy in equation (5), for each of these polynomials.
This can be done easily by sampling and interpolation: There are
3 x 10 coefficients and two triangular parameter domains. As equa-
tion (5) lives in a tensor-product space, interpolation of position
and direction can be separated. Chose 3 or 10 distinct sampling
positions in Ay or Ay, respectively, and evaluate the values for the
given polynomial. Then interpolate these values using the Bernstein-
Bézier basis. The interpolation conditions define a linear system
that has a unique solution. We remark that the choice of sampling
positions can be arbitrary as long as they are distinct. For polyno-
mial degree n, we use the domain points %(i,j,k) withi+j+k=n
in barycentric coordinates. This ensures a well-conditioned system
matrix. As the sampling positions are fixed, the system matrix is
constant, i.e., interpolation requires only inversion or factoring. So
after sampling, the conversion to Bernstein-Bézier form reduces to
a linear transform than can be expressed as a matrix-multiplication.

The outline of the subdivision algorithm is as follows. We are
given a pair (Ax,Ar) of position-direction parameter triangles and
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a polynomial in Bernstein-Bézier form. The coefficients b;j; opy
indicate the absence of zero crossing if they are either all positive or
all negative. In this case, no root is found and processing of (Ax, Ar)
stops. If there is any sign change or zeros in the coefficients, there
may exist roots within the parameter space (Ax,Ar). In this case
we subdivide one of the parameter triangles. We alternate between
subdividing Ay in position-space and Ay in direction-space. For
both, we use a regular 1:4-split (see Figure 3). Each of the four new
subtriangles is processed recursively in the same way.

System of Polynomials

We explained the basic algorithm for a single polynomial. Solving
system (4) means finding solutions x,r where all six polynomials
become zero simultaneously. We test each polynomial individually.
Only if there is a sign change in the coefficients for all polynomials,
a simultaneous root can exist.

Every level of subdivision restricts the parameter domain and thus
puts tighter bounds on the region that (potentially) contains a root.
The subdivision stops either if there cannot be any root in (Ax, Ar) or
when the magnitude of all polynomials drops below a threshold (see
below). In the latter case, we have found a root, and the barycenters
of the triangles define its location in parameter space.

Similar to the initial interpolation, the Bernstein-Bézier form of
the subdivided polynomial can be evaluated by a linear transforma-
tion: Evaluate the polynomial at domain points in the new, smaller
triangle and apply interpolation. Evaluation and interpolation can be
combined to one transformation for each of the four new triangles.

Solution and Stopping Criterion

All computations involving Bernstein-Bézier polynomials are done
in barycentric coordinates, which yields a concise implementation
of the algorithm. However, the barycentric coordinates are relative
to the current triangle, and we still need to keep track of the absolute
positions of its vertices in parameter space for bounding the regions
of roots. This can be done with a small amount of bookkeeping
by tracking the subdivision steps such that any “child” triangle can
be reconstructed from its “parent” and ultimately from the initial
parameter triangle.

We stop the subdivision when we are close enough to a root. We
require the magnitude of all polynomials to drop below a threshold
simultaneously. For each polynomial its magnitude is bounded in
(Ax, Ar), and we test

Ipl < &[Tl ,

where |p| := max{|b;xqpy| } is an upper bound for the magnitude
of p in (Ax, Ar). The magnitude of the tensor field in Ay is given as

IT[loo = sup {[IT(x)||} = max{||Ti[ } ,
XEAx !
where T; denote the constant tensors at the triangle vertices i =
1,2,3, and ||T;|| denotes their spectral norm.

The parameter €& defines a relative threshold, which is indepen-
dent of the local magnitude ||T|| of the tensor field within Ax.

Breadth-First Search Modification

As we hinted at in section 4, the symmetries and regular shapes
inherent to data such as stress simulations of mechanical parts often
lead to (3) being fulfilled or almost fulfilled on surface- or volume-
type structures. Also there may be tensor core lines which do not
intersect but which are part of the domain triangle. In these cases
the roots are no longer isolated points but algebraic structures. As a
consequence, the presented algorithm would not be efficient, as it
would do an exhaustive search for all “points” on the structure. In
cases where the higher-order structures are disturbed by noise and
break down to lines, the algorithm still has to do a large number of
subdivisions before reaching a termination criterion.

A simple modification of the algorithm enables detecting such
cases: we apply a breadth-first search when looking for roots. In
the implementation, we use a queue of pairs (Ax,Ar) of parameter
regions with potential roots. If the number of elements in the queue
exceeds a threshold M, we assume that the solution to (4) forms
an algebraic structure and terminate the local search. If the search
is terminated for one of the initial triangles Ay that tessellate the
hemisphere, we still need to consider the other triangles, because
they may still contain isolated solutions.

5.5. Clustering and Line Connection

The root finding returns a list of small parameter regions (Ax,Ar),
which are assumed to contain a solution to (4). The size of these tri-
angles is steered by the threshold &;. Typically, the algorithm returns
multiple regions that all refer to the same solution due to numerical
noise. For this reason, we apply a post-process that clusters such
regions and selects a unique representative (x,r) for each solution.

Given two representatives, we define the distance as the maximum
of their distances in position- and in direction space. We employ
a simple single-linkage hierachical clustering algorithm: We start
with each parameter region as a single cluster. Two clusters are
merged if the distance between any two elements from both clusters
is smaller than a clustering threshold &.. We repeat this process until
the number of clusters no longer changes. For each cluster, we select
the triangle pair as a representative where max{|p;|} is smallest
for all polynomials i = 1,...,6. We select the center points of both
triangles in this pair as the solution represented by this cluster.

This algorithm has a complexity of O(n3) in the number of solu-
tion candidates. Typically » is small: less than 200 candidates are
found in the vast majority of cases. At this scale, the performance
impact of the clustering algorithm is negligible.

For each tetrahedral cell of the dataset, we now connect the root
points found on its faces by a line segment. Since in piecewise linear
fields, tensor lines are always straight within a cell (see section 4),
we greedily connect the two points with the smallest difference in
eigenvector direction until no more pairs are left. Similar to the
vortex core lines by Sujudi and Haimes [SH95], this gives a set of
discontinuous line segments.

5.6. Filtering

If the dataset contains not only lines, but also surface- or volume-
type structures where eigenvector trajectories are locally straight,
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our algorithm might still find isolated solutions on these structures.
These occur if the unstable structures are disturbed by noise. To
filter these spurious points, we measure the numeric stability of a
solution given its representative (x,r) with

V. T(X)r
T oo r)

YV, T(x)r
IT(x) oo

where r,r{,r; are orthonormal.

s(x,r) = ‘det <

>

The stability s(x,r) measures the directional change that the
eigenvector r of the tensor T(x) experiences when moving orthogo-
nal to the tensor core line. If this change is small, the magnitude of
the determinant in s will be small. This is an indicator that the line is
numerically unstable. The normalization by || T(x)||cc ensures the
independence from the scale of the tensor field.

Filtering out lines with small numeric stability s is a post-process
that must be done by a user. In practice, the distribution of s over all
found solutions shows an exponential behavior. In order to facilitate
choosing a threshold, we visualize s on a logarithmic scale.

6. Results

We applied our algorithm to stress tensor fields obtained from struc-
tural mechanics simulations of varying complexity. The Cauchy
stress tensor (often referred to as ¢ in mechanics literature) is a
symmetric tensor that desribes the local stress state of an object
experiencing small elastic deformations. Its eigenvectors point in
the directions of the principal stresses. The sign of the eigenvalues
indicate if the stress is compressive or tensile. Swirling structures
in stress tensor fields can result from torque induced in part of a
structure. As we will show, it is not always intuitive where this
will happen in a complex structure subject to a load or deformation.
Computing tensor core lines allows an easy identification of these
phenomena. In this section, we present the results of our algorithm
on several datasets, we analyze its performance and parameter sensi-
tivity, and we compare our results to the toplogical skeleton formed
by degenerate lines.

Cylinder In Figure 1 we show the eigenvector trajectories resulting
from applying a torque around the long axis of a cylinder. The
yellow line visible in the center is the result of our algorithm applied
to this case after filtering out numerically unstable solutions. These
solutions occur because the third eigenvector, which is orthogonal
to the other two, points outwards from the center line everywhere
in the domain. This means that the trajectories of this eigenvector
are straight lines everywhere inside the cylinder. Situations like this
are common in stress tensor fields, and are handled in our algorithm
by the threshold M. Nevertheless, single line segments with low
numeric stability s may occur due to noise (see Figure 9). After
filtering them out, the clear central line visible in Figure 1 remains.

Handle This case shows a handle-like structure with a right angle
being deformed in two different ways. One end is fixed, while the
other end experiences different displacements. The first is a rotation
around the shaft, which applies a torque to it. The second includes
an additional downward shift. Figure 4 shows a tensor core line in
the center of the shaft for both cases. Interestingly, a line is also
visible in the “handle”-part of the structure, even though no direct

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

torque was applied here. The line in the handle shifts away from the
plane of symmetry in the second deformation case. A look at the
tensor field around the core lines confirms that they are indeed the
center of a swirling behavior of the tensor field.

Truck Bumper This case shows a load applied to the extreme end
of the bumper of a cargo truck. Applying our algorithm to the dataset
results in a large number of lines being found all over the domain.
This may in part be explained by the low resolution of the simulation.
After applying a filter on the numeric stability s, two lines with high
stability stand out. Somewhat counterintuitively, these are found on
the side opposite to the end experiencing the load. In Figure 5, we
can clearly see the radial behavior of the tensor field around both
lines. Finding these locations by manually inspecting the tensor field
in detail would be a tedious task. Using the tensor core line extractor,
they can be identified at a glance.

Crane In this dataset, the arm of a crane is exposed to a downward
pull applied to the lower side of a cube at the end (see Figure 6).
Similar to the truck bumper, it is not intuitively clear in which parts
of the structure a swirling behavior of the tensors will occur, just
from looking at the setup of the case. Almost all stable solutions
we find are located in the diagonal rods on the lower side. Again,
looking closely at the tensors around the core lines, we can see the
radial behavior.

Spring A simulation of a coil spring being compressed and slightly
bent between two plates is shown in Figure 7. Apart from numerical
noise in the poorly resolved plates, we find significant tensor core
lines at the center of the coil’s cross-section. A look at the tensor
field visualized by glyphs reveals that in this case, we do not have
a simple swirling behavior of the tensors. Instead, the tensor field
shows something similar to a hyperbolic behavior in vector fields.
In the rightmost picture in Figure 7, we can see that eigenvector
trajectories start at the wall on both sides and curve into the same
direction. This direction is reversed on the top and bottom side of the
spring. In the middle, there is a surface where these curves become
straight lines along the diameter of the cross-section. This is exactly
where we find a tensor core line.

6.1. Performance and Parameter Study

The performance of our algorithm is dependent on the dataset. If we
find a large number of tensor core lines in the dataset, computation
will be slower as fewer cells can be discarded early. We tested our
algorithm using a consumer PC with a 4-core Intel Core i7 CPU
at 3.4 GHz. Our implementation is parallelized over the faces of
the dataset using OpenMP [Ope13]. Performance numbers for the
different datasets shown in this paper are presented in Table 1. To
examine the dependence of the performance and results of our al-
gorithm on the parameters M, & and €, we conducted a parameter
study. We selected baseline parameters M = 10%, &, =1x107°
and & = 1 x 1073, We then varied each parameter separately and
applied our algorithm to the cylinder dataset. The results can be seen
in Figure 8. We can see that the performance is controlled by the
threshold M, which controls at which point we assume we are not
converging onto an isolated solution. Increasing M also increases
the number of solutions we find. However, if we look at the number
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Figure 4: Tensor core lines for two different deformations induced in a handle-like object by applying a displacement to an end surface. On
the left side, we show the resulting deformations. The von Mises stress Gy is color-coded on the surface. We represent the tensor core line as
tubes in the undeformed coordinate system. Their color indicates the numerical stability s. The tensor field is shown for context using elliptical
glyphs.

Figure 5: Tensor core lines in a truck bumper with a load applied to one end. The deformation shown on the left is scaled 500 times for
illustrative purposes. The right shows detail views of two interesting lines.

e e

Figure 6: Tensor core lines in a crane arm with a load applied to the end. The resulting deformation on the left is scaled 1500 times. Significant
tensor core lines are only found in the lower diagonal rods. The detail image on the right shows the tensors are indeed aligned around a
common core.
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Figure 7: A coil spring being compressed and slightly bent between two plates. We visualize the tensors near the core line with box glyphs in
this case. They make it easier to see the hyperbolic behavior of the eigenvectors that occurs in the coil’s cross-section.

Dataset #of cells time[s] avg. time/face [ms]
Cylinder 65k 8.4 0.034
Handle 235k 36 0.038
Bumper 97k 32 0.081
Crane 108 k 63 0.146
Spring 181k 82 0.114

Table 1: Performance of the algorithm for the datasets presented in
this paper.

of solutions that remain after filtering based on numeric stability, it
becomes clear that these solutions are only caused by noise. Increas-
ing M did not result in any additional numerically stable lines. The
parameters & and €c have almost no noticeable impact on runtime
or solutions, unless we choose unreasonable numbers. In case of
€, choosing a value that is larger than 1 x 103 causes an explo-
sion of the number of found solutions, as the tolerance is not tight
enough. Choosing €. smaller than & means that candidate solutions
belonging to the same cluster often can not be clustered, because
the search radius is smaller than the distance between the triangle
centers. Otherwise, € is very stable. This is because for solutions
which are isolated points and belong to different eigenvectors, the
separation between clusters in direction space is rather large. This
means the choice of € is not critical as long as it is not chosen
extremely small, or so large that solutions which belong to different
eigenvectors are clustered together.

Stability tests on our other datasets all produced very similar
results. We recommend choosing M = 102, g=1x 1073 and € =
1x 1072 if performance is important. If accuracy is important, we
found that choosing stricter tolerances than M = 103, g =1x 1070
and g = 1 x 1073 does not produce noticeably better results.

6.2. Comparison with Degenerate Lines

Tensor core lines are mathematically distinct from degenerate lines
where two or more eigenvalues are equal. The criterion for finding
tensor core lines is completely independent of the eigenvalues of the
tensor field. However, when looking at our results in stress tensor
fields, one might wonder if tensor core lines coincide with degen-
erate lines in practice. To investigate this, we extracted degenerate
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Figure 8: Run times and number of found lines in the cylinder
dataset for various different parameters. We show the total number
of lines found ( ['0) and the number of lines remaining after filtering
out numerically unstable lines (| 0o

lines from our datasets using the method presented by Zheng and
Pang [ZP04]. In stress tensor fields, degenerate lines mark locations
where no unique principal directions of stress can be established.
We found that tensor core lines and degenerate lines sometimes
coincide, but neither is a subset of the other. In the Crane dataset,
degenerate lines are found near the center of the lower diagonal rods,
where we also find tensor core lines. However, a lot of degenerate
lines are also found in regions where no tensor core lines are located.
In the Truck Bumper dataset, a degenerate line coincides with one
of the two most significant tensor core lines we find, but not the
other one. Closeups of both datasets are shown in Figure 10. In
several datasets, such as the Cylinder and Handle, Zheng and Pang’s
method fails to locate any degenerate lines at all.

7. Discussion and Limitations

We introduced tensor core lines as a new feature of second-order
tensor fields. It enables the quick detection of swirling behavior in
eigenvector trajectories. Such behavior might not have a distinct
physical meaning in all applications. However, finding core lines
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Figure 9: Results of our algorithm on the Cylinder dataset for
different choices of M. Increasing M results in more numerically
unstable lines being found. If we filter them out, the result is virtually
identical.
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Figure 10: Comparison of unfiltered tensor core lines (red/yellow)
and degenerate tensor lines (blue) for the Truck Bumper (top) and
Crane dataset (bottom). The red box marks the coincidence of a
numerically stable tensor core line with a degenerate tensor line.

helps to understand the structure of the tensor field by breaking
down a complex feature into a simple line structure that can be
easily visualized. In this regard, our method fits in well with other
topological visualization methods.

Our method is a direct extension of the Sujudi/Haimes method
for the extraction of vortex core lines in vector fields. As such,

it shares many of its advantages and drawbacks. The criterion is
completely local and does not require integration. As such, it is well
parallelizeable and not vulnerable to accumulating numerical errors.
Still, we are hardly able to reach interactive run times, as we need to
perform an exhaustive search in a 5-D space. Like Sujudi/Haimes,
we perform a search on piecewise linear data, which results in
straight lines within cells and discontinuities of the tensor core lines
at cell boundaries. Using higher-order interpolation of the tensor
field would help finding continuous lines.

‘We have chosen to focus on piecewise linear tensor fields where
each tensor component is interpolated independently. While al-
ternative interpolation schemes have been proposed [KTWO7],
component-wise interpolation is still widely used as a standard
approach for both tensor- and vector fields.

Unlike Sujudi/Haimes, we have no way of explicitly ensuring our
solutions show only swirling behavior by restricting them to regions
where the derivative has complex eigenvalues. The derivative of the
tensor field VT is a third-order tensor, for which the definition of
eigenvalues and eigenvectors is non-trivial [ZPMO7]. This means
that we also find structures similar to hyperbolic trajectories in
vector fields [MSE13, MBES16]. Further research is necessary in
order to be able to distinguish these different features.

We introduced a measure for the numeric stability of tensor core
lines. Unfortunately, filtering out numerically unstable solutions
must be done as an interactive post-processing step, as the threshold
is different for each dataset. It is worth investigating if this process
can be automated. Nevertheless, the measure enables us to distin-
guish significant and insignificant solutions, which is a very useful
tool for asessing the result of our algorithm.

Our algorithm is numerically very stable. We have three free
parameters, two of which can be chosen in a wide range without sig-
nificant influence on the results. The parameter M, which influences
run time the most, can be chosen the same for most datasets and as
such does not require fine-tuning either.

Our algorithm is only designed for extracting structurally stable
line features, but surfaces or regions where the zero curvature cri-
terion is almost fulfilled seem to be common in real-world stress
tensor data. This might be due to the common occurrence of sym-
metries and regular shapes in human-made objects, which are most
frequently the focus of structural analysis. It would therefore be in-
teresting to investigate if these structures can explicitly be extracted.

Finally, it is worth noting that neither the formal definition of
tensor core lines nor the extraction algorithm poses any restrictions
on the tensor field, except that it be differentiable. As such, it might
also be used on indefinite tensor data, such as the Jacobian of a
vector field. Finding applications outside of stress tensor analysis is
a subject for further research.
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