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Figure 1: Segment of the Paci ¢ Ocean: volume renderinghefparticle distributions visualize attracting (blue) amgelling (red) struc-

tures. There are two attracting and two repelling closeshstrlines.

Abstract

We present a method for the detection and visualization axfec
stream lines topologically acting as sources or sinks irettam 2D
and 3D vector elds. For their detection, we apply a MontelGar
simulation which generates particle distribution funotorepre-
senting sinks and sources. We show that in the uncertairticase
is no structural difference between critical points andsetb or-
bits. This allows the application of critical point extracs to closed
stream lines as well. We show applications for some syrtlzetd
real world examples.
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1 Introduction

The representation of uncertainty is one of the most chgilten
topics in visualization [Johnson 2004]. A lot of approachese
been published for a variety of different data classes. Flata is
a special case, because uncertainty is transported wihinotv.

Therefore it has to be analyzed globally. To the best of oomin
edge, there are only a few publication that treat this tolpidOtto
et al. 2010] a topological analysis of 2D uncertain vectddsis
presented that describes the computation and visualizafisink,
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source and saddle distributions. In [Otto et al. 2011] this-c
cept was extended for uncertain 3D vector elds. In this wawe
consider closed stream lines. In vector elds without uteiaty,

closed stream lines are topological features that are nggsimost
topological visualizations of vector eld topology, becauof their
non-local properties. For uncertain vector elds there basn no
solution described yet.

In this paper we show that closed stream lines can be found as
global features, in particular as sink and source distidimst For

this we extend the approaches presented in [Otto et al. 20d]
[Otto et al. 2011] for the detection of closed stream linekisTe-
sults in scalar elds, which represent the probability disitions

of sinks and sources, respectively. The nal visualizatisone

by volume renderings of these scalar elds. The aim of thisqra

is the detection of closed orbits, we do not investigaterdéegtures

like saddles, boundary switches and vortices.

2 Related work

The articles [Griethe and Schumann 2006; Johnson and Samder
2003; Pang et al. 1997] give an overview of existing uncetyai
based visualization approaches. Uncertainty has beendeved

in different elds of visualization, like isosurface [Djailov et al.
2002; Grigoryan and Rheingans 2002; Rhodes et al. 2003; iBrow
2004] and information visualization [Streit et al. 2008Mdddah
etal. 2007; Schultz et al. 2007] proposes probabilistia toacking

in DT-MRI visualization. This work relates to our approactt b
considers different data classes.

Some solutions exist for visualizing local uncertaintyaiwples for
this kind of visualization are glyphs [Lodha et al. 1996; Wfitbrink
et al. 1995], the reaction diffusion model [Sanderson e2@d4],
cross advection and error diffusion [Botchen et al. 20054 addi-
tional color schemes [Botchen et al. 2006]. All of these teghes
show the effect of the uncertainty locally or for a very shate-
gration time. They do not show the effect on the global feztuof
the vector eld.



An approach for a global analysis of uncertain vector elslpie-
sented in [Otto et al. 2010]. It is an integration based apghdhat
results in particle density distributions, which represie proba-
bility distributions of sinks and sources. An extension latap-
proach for uncertain 3D vector elds is presented in [Ottcakt
2011]. The main contribution of this paper is the applicatd the
saddle and boundary switch connectors approaches [Tletisgl
2003; Weinkauf et al. 2004] to uncertain 3D vector elds. hist
paper we will show that based on these two approaches arsaaly
of attracting and repelling closed orbits in uncertain gecelds
can be done.

Closed stream lines in vector elds without considering emainty
have been considered in [Wischgoll and Scheuermann 20013. T

approach works on 2D vector elds. This approach has been ex-

tended to 2D time dependent vector elds [Wischgoll et al0Z0
and to 3D vector elds [Wischgoll and Scheuermann 2002]. Skhe
approaches are based on a tracking of streamlines. Thekedset
work on the cells of the data grid by nding cell cycles and ana
lyzing stream lines of their boundary vertices. [TheisedleR004]
present a grid-independent approach to 2D closed streanekn
traction.

3 Uncertain vector eld topology

This section reviews the theory of the topology of uncergdvec-
tor elds that was presented in [Otto et al. 2010]. For the&otion

of closed stream lines we give a de nition of uncertain vecétds
and concentrate on the extraction of sink and source disimifs.
Our approach considers only closed stream lines with a gk a
source like character. The concepts of the extraction dfssamd
sources are directly applicable for 3D uncertain vectods]Otto
et al. 2011].

3.1 Uncertain vector eld

An uncertain vector eld is generated by multiple measuretee
or simulations of one ow phenomenon. Instead of assigning a
single vector to a point in the domain, a nite number of diéfat
vectors characterizes the probabilistic local behavia ofv. This

is interpreted as a probability distribution, which is regented by

a 4D scalar eld.

De nition 1 An uncertain 2D vector eld in the domaid is a 4D
scalar eld ry(x;y; u;v) with

(xy) 2 Dand(u;V) 2 R2

rv(xy;uv) 0
Ry Ry
vy y rv(xy,uv)dudv= 1.
The valuer (x;y; u;v)dudvdenotes the probability that at the loca-
tion (x;y) the vector eld has some value in the rafgeu+ du]
[vv+dv.

3.2 Integration of particle distributions

In contrast to certain vector elds we cannot integrateatndines
in uncertain vector elds. Instead, a particle seeded irhsuceld
will not move to a unique location, because the particle fiféardnt
probabilities to move to various locations. Therefore, \agehto
integrate particle distribution functions. For this we de a 2D
scalar eld p(x;y; t) that represents the particle distribution, which

will be integrated in an uncertain vector eld. This scalald has
to ful Il the following properties:

p(x;y;t) Oforall(xy) 2 Dandt 0

RR

p P(xy;t) dxdy 1forallt O.
(We use instead of= because particles may leave the do-
main during integration.)

The valuep(x; y; t)dxdydenotes the ratio of particles|ix x+ dx]
[y;y+ dy] in relation to the initial number of particles D att = 0.

To consider the transport of particles in an uncertain veet
rv, we use the in nite domaid = R2 to avoid boundary effects.
The patrticle distributions are represented by virtualipkes with-
out inertia. The particles are transported within a timerivel dt
that is short enough to assume they are moving on a straight li
At time t + Dt the number of particles in an in nitesimal volume
dxdyat some locatioifx;y) is the sum of the numbers of particles
in cellsdrdsat all locations(r; s) times the probabilities that they
are transported frorfr; s) to (x;y) intime ¥, i.e., they experience a
velocity (x r)=Dt;(y s)=Dt)T. These probabilities are given by
rv(ns; %5 i) d(350) d(Y) . After division by the cell volumes
we havedxdy= drds This yields the following expression for the
transport of particle densities:

xy;t+ Dt
p(xy ) - ity s
= Dp(l’;S;t)rv(l';S;ﬁ;?

ZZ

1 X
= — rst) ry(r;s ;=—)drds
o2 Dlo(s)v(sDt Dt)
This expression de nes a unique integration starting frogiven
initial particle distribution function.

ry s

3.3 Sink and source distributions

For the extraction of sinks and sources we have to start arstre
line integration from every poirtr; s) 2 D represented by an initial
particle distribution functiorp(x;y; to) = d(x r;y s). Inuncer-
tain vector elds, stream lines, sinks, sources and cilippoénts are
represented by particle distribution functions. Nevdasg, we still
use the terms stream line, sink, source and critical poingfer to
these concepts.

De nition 2 The particle density functiongfx;y) is a critical
point distributionof ry if for a stream line integration starting at

p(x; y;to) it holds % =0

Note that every linear combination of a given number of caiti

landail,a;
1. The sum of alla; can be less than one, because particles might
leave the domain.

This leads to a continuum of critical points. For the topadag
analysis we need a set of linearly independent critical {goiliVe
call these sets spanning source and sink sequence.

De nition 3 Given an uncertain vector eldy(x;y; u;Vv), a se-

sequenceif pq;:::;pn are linearly independent and every sink
p(x;y) of ry can be uniquely described as=p&jL,aip with
0 ayinan 1land éi":lai 1. Similarly, a sequence of

if P1;::1; Pm are linearly independent and every soufig;y) of ry
can be uniquely described #is= 40, b i with0  by;:i;bm 1
andal b 1



3.4 Implementation

To implement our approach we employ a Lagrangian MonteeCarl
method. The initial particle densitgg is represented by a high
number of virtual particles without inertia that are adeekcinside

the uncertain vector eld. This method is based on probsiidli
particle movements. Each particle is integrated by an “cag®
Euler method. For this a random vector is chosen based on the
probabilities that a particle moves from locatipgy) to any loca-
tion (u;v). These probabilities are stored in the uncertain vector
eld r(xy; u;v). In practice we assume Gaussian distributions to
model the uncertainty. Therefore, we have to store only anmea
vector eld vim(X;y) and a tensor eldr'(x;y) containing the covari-
ance matrices. In order to speed up the computation, we imple
mented the integration method in CUDA. In a rst step we tfans
the uncertain vector eld, the particle positions, and facle thread

a seed for its random generator into the video memory. Each pa
ticle is handled by its own thread. For each particle positize
uncertain vector eld is trilinearly interpolated resultj in an av-
erage vector and a covariance matrix. Than a normally Higed
random vector is generated by using a Box-Muller transfoiona
This random vector is modi ed by the covariance matrix. Hina
we update the particle position by adding the average vestdr
random vector.

The local rate of change of the particle density is obserwest o
time. For this we count the number of particles inside thisadla
uniform grid. The method terminates if this rate drops ursdgiven
threshold. The resulting particle density of the forwartgration
represents the whole spanning sink sequence and in backiivard
rection the spanning source sequence.

3.5 Visualization

Both spanning sink and source sequence are representeddny a p
ticle distribution function, that has to be visualized. Imler to do
that, we use height maps in the 2D case with an underlying K£IC o
the mean eld, as proposed in [Otto et al. 2010]. In the 3D case
we choose volume renderings for the visualization of 3Diglart
distribution functions. These volume renderings are geeerwith
linear transfer functions and specular lighting. In bothesaattract-
ing structures are visualized in blue and repelling stmgstin red.

4 Uncertain closed stream lines

In this section we show that the extraction of closed orlitsricer-

tain vector elds is conceptionally the same as extractingartain
critical points. To illustrate this, we use two analytic exaes for

the 2D and 3D case. Then we show that the spanning sink and
source sequences contain all closed orbits which act tgjually

as sink or source.

4.1 Synthetic examples

All of our examples assume Gaussian distribution functiomsder
to model the uncertainty. Each uncertain vector eld is essgnted
by a mean vector eld and a tensor eld containing the covaca
matrices.

Example 1 The rst example illustrates the 2D case. It de nes an
uncertain vector eld over the domaibd =[ 2;2] [ 2;2]. The

Figure 2: Example 1: attracting closed orbit with a sourcéhia
middle

mean vector eld is given as

2 P
y X X2+y2 1
vim(x;y) = 4 L
Xy x+y2 1
and the covariance matrix as
v _ 009 0
TEY= "0 009

Example 2 In the 3D case we use a similar uncertain vector eld
where the z-component is added. Itis de ned over the dofain

[ 221 [ 22] [ 2;2]withthe mean vector eld
2 p 3
y x  xX2+y2 1
wocyd= 8§« y Py 1 é
Z+ X
and the covariance matrix
2 3
016 O 0
T(xy,2=4 0 016 0 5:
0 0 0le

4.2 Detection

In section 3.3 we showed that sinks and sources of uncertaton
elds are detected by integration of particle distribussamtil they
converge. It turns out that attracting and repelling closedam
lines can be found with this scheme as well. In uncertainorect
elds, closed stream lines with attracting and repellingicttter are
also represented by unique critical distributions. Théstgidutions
act analogously to ordinary sink or source distributionsgduse
they attract and repell neighboring particles. The maifecéhce
is the cyclic movement of particles inside the critical disition.
However, this uctuation does not in uence the shape of tHeaal
distribution, because the particles converge to an asytromtyclic
distribution. In gure 2 such a particle distribution is skie based
on the synthetic example 1.

In order to nd such a particle distribution, the integratibas to be
started at some location that is affected by the closedmtfize.
The shape of the initial particle distribution is not immort. Fig-
ure 3 illustrates an integration started from a Delta Dinaacfion

po = d(1;0;0). The integration uses the uncertain vector eld de-
ned in example 2. During the rst integration steps the pele
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Figure 3: Example 2: volume rendering of the particle derchitr-
ing the integration of one uncertain stream line starteaedtion
(1,0;0).

t=20 t=40

Figure 4: Example 2: volume rendering of the particle derchitr-
ing the integration of one uncertain stream line startechfeouni-
form particle distribution.

Figure 5: Topology of the uncertain 2D vector elds genedaby
the PIV measurement of a ow in a tube. Attracting features ar
visualized in blue, repelling features in red.

distribution moves along the path of the closed orbit. Wittreéas-
ing integration time the particle distribution convergeste distri-
bution of the closed orbit. A faster convergence is achidwea
uniform initial particle distribution as shown in gure 4.he rea-
son for the faster convergence is that the particle digiohudoes
not need to expand from a single point, and the closed orbét ac
attracting to all particles in this eld. Therefore, theylpmove to
the closed orbit and stay there.

5 Results

In this section we demonstrate the detection of closed iitin-
certain vector elds. We apply our method to some real word e
amples, like PIV measurements and simulations of oceaniss,o
and a synthetic example. All results were created with aal Int
Q6600 with 8GB RAM and an Nvidia Geforce 460 GTX with 1
GB VRAM.

5.1 Flow in a tube

The rst data set is a PIV measurements that consists of 24p-sn
shots of a slice of a ow in a tube. The measurements are taken
from a ow with constant velocity of #=s. The timing for the
measurements are 188 and the uptake rate, 3Hz. We used the
240 single 2D velocity elds to generate an uncertain 2D wect
eld. The uniform data grid has a resolution of 83%7.

Figure 5 shows the resulting uncertain topology. It corgaine
repelling closed stream line, two sinks and two sourcesurgi®
illustrates the topology of the mean vector eld of all 240asere-
ments, containing ve sinks, nine sources and eleven saddie
comparison the uncertain topology contains less criticattures.

For the computation of the particle distributions repréisenat-
tracting and repelling structures, we generate a unifoitraimlis-
tribution with 100 particles per grid cell, with a total of B0
particles. The computation time for this example is aboutr3-
utes.



Figure 6: Visualization of topology with underlying LIC ohe
mean vector eld of all PIV measurements. Sinks are bluerealp
sources red colored and saddles yellow colored.

5.2 Segment of the Paci ¢ Ocean

The second example is based on a ow simulation of the oceans.
Here we have got a data set of the global ocean system withgeer

Figure 8: Uncertain Lorenz attractor

5.3 Uncertain Lorenz attractor

The last example is derived from the well-known Lorenz attvg

velocity elds of each month over one year. The whole data set which has no closed stream line in the strict sense. Here va¢ wa

has a resolution of 360180 40. It contains hundreds of critical
structures, therefore we picked only a very small segmenhef

to show that our method also works for uncertain strangaaitr
tors. We set up an uncertain vector eld with the Lorenz ativa

Paci ¢ Ocean in order to show some examples of closed stream as mean eld:

lines. The region of interest has a resolution of 282 6.

Figure 1 shows some volume renderings of the sink and soisee d

tributions of this data set. There are two attracting andrepelling
closed stream lines. We adjusted the range of the lineasferan
functions to the density of particles on closed stream Jihesause
there the particles density is much smaller than in the regfaeal
sink and source distributions.

Again, we used a uniform initial particle distribution witld0 par-
ticles per grid cell (a total of 369,600 particles). For ctm
particles in buckets we choose denser grid with a resolution
140 110 30. The computation time is about 40 minutes.

Furthermore, we use this example to analyze the stabilitjosed
orbits in uncertain vector elds. For this we arti cially apfify the
uncertainty by factors of 2 and 4. Figure 7 shows results fior d
ferent amplitudes of uncertainty. The left column showsdtitécal
structures and the right column shows volume renderingsoékar
eld swith

_ maximal Eigenvalue of covariance matrix
length of mean vector

This gives an impression of the impact of the uncertaintyhi t
movement of particles in the uncertain vector eld. For islwes
s> 1 the uncertainty dominates the particle motion. We illaistr
this case with an isosurface is shown where 1.

While increasing the uncertainty an attracting closedastrdine
and a sink distribution become weaker and nally disappéiany-
ever repelling structures hardly change, even if they éxistgions
where uncertainty dominates, like the the large repelliluged
streamline.

To consider the results the stability of critical strucgioé any type
are mainly effected by global uncertainty and not by the twll
uncertainty.

s(y X
Vm(Xy;2=4 rx y xz5:
xy bz
with
0:16 0 0 8
T(xy,2=4 0 016 0 5;s=28;r=10andb= _:
0O 0 o016 3

This eld is de ned over the domaid =[ 25,25 [ 25,25

[0;50]. Figure 8 shows the critical particle distribution which is
created by a forward integration of a uniform initial dibtrtion
with 30 particles per grid cell (a total of 3750000 partigle$he
algorithm converges after 250 integration steps, with p sitee of

Dt = 0:.02. The computation time is 42 seconds. Although the mean
eld includes a strange attractor instead of a closed strigaenour
method still nds this structure.

5.4 Computation times

The computation times of the three examples differ signitia

The last example with the highest number of particles and the
largest grid is the fastest. The main factor is the unceneator

eld itself. Regions with low velocity and high uncertaintyad to
slow convergence and a high number of needed integratigs.ste
Another reason for long run times are strong differencefénve-
locity eld, because the integration step size has to be @dhfo

the fastest regions in order to detect all features in thegiens.

6 Conclusion

To the best of our knowledge, this is the rst approach thaisiders
closed stream lines in the context of uncertain vector eldshis



1 uncertainty

2 uncertainty

4 uncertainty

Figure 7: Segment of the Paci ¢ Ocean with different amountrcertainty: (left column)Volume renderings of the particle distributions
visualize attracting (blue) and repelling (red) structui/hile the uncertainty increases, the big attractingadatream line becomes weaker
until it disappears(right column)Volume renderings of a scalar elland an isosurface wits= 1. For the region where> 1 the uncertainty
dominates the particle motion in the uncertain vector eld.



paper we have shown that the method proposed in [Otto et HD] 20
can be applied in order to detect closed orbits in uncert@inet:tor
elds. We also showed that this method can be extended t@dete
attracting and repelling closed stream lines in uncertdnvac-
tor elds. Such attracting and repelling features are thergsotic
result of an uncertain streamline integration represehtegarti-
cle distributions. We demonstrated the functionality @ thethod
based on several examples. We have also shown that thdtgtabil
of such features mainly depends on the global uncertainocal
uncertainty cannot be taken alone to make statements dimsiat-
bility of critical distributions. Furthermore, we have alshown
that other attracting and repelling structures like steaatjractors
can be detected with this method.

One limitation of our method is that closed stream lines wittidle-
like behavior cannot be detected, because these structteem-
stable under forward and backward integration. The extraaif
such structures will be a topic for future work. Other futgaals
are the detection of vortex structures of uncertain vecsdds, like
vortex cores and vortex regions, and the consideration oértain
unsteady vector elds.
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