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Figure 1: The original caustic (left) is blended smoothly to a user-de�ned target irradiance distribution (right). The depicted two intermediate
frames of the animation (center) were rendered progressively and show that sharp features of the caustic are maintained.

Abstract
In recent years, much work was devoted to the design of light editing methods such as relighting and light path editing. So far, little
work addressed the target-based manipulation and animation of caustics, for instance to a differently-shaped caustic, text or an
image. The aim of this work is the animation of caustics by blending towards a given target irradiance distribution. This enables
an artist to coherently change appearance and style of caustics, e.g., for marketing applications and visual effects. Generating
a smooth animation is nontrivial, as photon density and caustic structure may change signi�cantly. Our method is based on
the ef�cient solution of a discrete assignment problem that incorporates constraints appropriate to make intermediate blends
plausibly resemble caustics. The algorithm generates temporally coherent results that are rendered with stochastic progressive
photon mapping. We demonstrate our system in a number of scenes and show blends as well as a key frame animation.

This is the authors preprint. The de�nitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

1. Introduction

Caustics are undoubtedly among the most intriguing and vibrant
lighting phenomena. Produced by numerous interre�ections and
refractions of light within re�ective and refractive material, they
form strikingly beautiful and complex shapes. In consequence, a
signi�cant amount of research was devoted to the ef�cient simula-
tion of caustics, see, e.g., the survey by Davidovi�c et al. [DKHS14].
Recent advances in light editing made it possible to manually redi-
rect light paths [SNM� 13,SMVP15] and to deform radiance signals
on surfaces [RTD� 10]. Yet, there is little work that automatically
generates smooth and coherent animations that “blend” a caustic
to an arbitrary, detailed target irradiance distribution. Ultimately,
we seek to create animations of light that not only resemble natural
caustics but can tell stories and subconsciously place visual cues,
which are valuable tools for marketing applications and are even
more vital to visual effects artists. The problem of caustic animation
is challenging, since caustics usually exhibit rich structural vari-
ety and extreme density gradients. We want to see such features

evolve coherently so that intermediate blends look like plausible
caustics. Further, caustics are typically computed from discrete sets
of photons, i.e., fairly large point sets are processed progressively.

In this paper, we propose a method that constructs a bijective map
of photons from the source caustic to the target shape. This map
de�nes for each photon a path such that its position and �ux can
be evaluated at different time steps of the transition between source
and target to produce blends of caustics. This makes it possible
to create videos of light, subtle blends between caustic structures
and other �ne features such as text, and caustic replacement in
the spirit ofcaustics by example. The generated map satis�es two
properties: First, paths should be short, i.e., unnecessary movement
of photons should be penalized, and temporal evaluation should be
coherent. Second, in contrast to previous work, it should preserve
structures and sharp features (caustics) in intermediate blends. We
model these properties by an assignment problem. Its solution leads
to the minimization of a discrete energy, and we show how this can
be solved ef�ciently. Fig.1 demonstrates the effect.
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2. Related Work

Simulation of Light Transport
The simulation of caustics is a vital problem in photo-realistic com-
puter graphics. First applications of caustics in graphics were pi-
oneered by Arvo [Arv86], and Mitchell and Hanrahan [MH92].
A series of real-time techniques have been proposed based on
caustic mapping [Wym05,WN09] and the rasterization of photon
paths [KBW06]. Consistent light transport simulations, including
caustics, strive for an exact radiance computation. Famous examples
are the unbiased bi-directional path tracing [LW93] and Metropolis
light transport algorithms [VG97]. Stochastic progressive photon
mapping (SPPM) [HJ09] alternately traces photons and eye rays,
progressively reduces the query radius of the photon density estima-
tion, and maintains pixel statistics that eventually converge to the
desired radiance, for which Knaus and Zwicker [KZ11] suggested
a probabilistic reformulation. A thorough overview of GPU-based
light transport was compiled by Davidovi�c et al. [DKHS14].

Light Editing
Recently, Schmidt et al. [SPN� 15] compiled a comprehensive
overview of artistic editing of appearance, lighting and material.
Several hardware-accelerated relighting engines have been suc-
cessfully deployed, including Lpics by Pellacini et al. [PVL� 05],
the linear wavelet-compressed direct-to-indirect transfer by Hašan
et al. [HPB06], and the lightspeed system by Ragan-Kelley et
al. [RKKS� 07]. A tool for artistic control over indirect cinematic
lighting was introduced by Obert et al. [OKP� 08]. Pellacini et
al. [PBMF07] built a global illumination interface in which an
artist paints the illumination in the scene, for which matching ren-
dering parameters are optimized. The editing of natural environ-
ment illumination was addressed with the envyLight system of
Pellacini [Pel10]. Numerous techniques allow a (possibly) non-
physical manipulation of light, which can be controlled directly as
in the BendyLights method by Kerr et al. [KPD10] or indirectly as
in Nowrouzezahrai et al. [NJS� 11] for artistic volumetric lighting.
Ritschel et al. [RTD� 10] directly manipulate the appearance of arbi-
trary signals on surfaces by manual placement of handles, in�uence
regions for deformations and sketching of B-splines. Deformations
to topologically completely different distributions (e.g., caustic to
text) require huge manual effort. Schmidt et al. [SNM� 13] com-
bined direct and indirect interactions, which enabled general but
completely manual manipulation and retargeting of paths according
to edits in the scene. They use a gizmo to interactively describe an
af�ne transformation for the whole caustic, which makes it dif�cult
to match given detailed target distributions. Splitting the caustic and
redirecting individual path bundles toward different target patterns
requires large manual effort. Subileau et al. [SMVP15] further ex-
tended the work of [SNM� 13] by introducing hand-placed portals as
a path-space manipulation tool. In this paper, we determine smooth
movements automatically and provide more �ne-grained control.

Spencer and Jones [SJ09,SJ13] moved photons to reduce noise.
Gutierrez et al. [GSLM� 08] heuristically recover depth from real-
world photographs, establish likely caustic patterns by symmetry
analysis and �nally adjust luminance according to projected caustic
patterns. They do not aim for smooth blendings of caustics and are
not operating on a 3D scene. Klehm et al. [KISE14] optimized ren-
dering parameters for art-directed stylization of volumetric lighting.

Caustic Fabrication

Instead of modifying caustics directly, Papas et al. [PJJ� 11] and
Schwartzburg et al. [STTP14] solve the inverse problem: Create
a mesh that casts the desired caustic, which was considered for
certain geometry templates only, e.g., planar surface on one side and
directional lights. The mesh is then fabricated, i.e., caustics are static
and meshes have to respect fabrication constraints. Contrary, we aim
for animations and model the photon behavior during blending. Yue
et al. [YIC� 14] solve a correspondence problem between photons by
construction of a �ow. They require that correspondence maps are
differentiable. Thus, blended caustics cannot overlap or fold (similar
for [KP12] who state this explicitly). While this suites fabrication
(single time step), this is not desirable for animated blendings.

Artistic Control and Mass Transport

Artistic control over animations of physical phenomena was suc-
cessfully obtained in smoke and �uid simulations. Treuille et
al. [TMPS03] pioneered the generation of target-driven smoke
animations by computing guidance vector �elds. Later, other ap-
proaches added local forces to the �uid motion [FL04] or applied
patch-based regenerative morphing and image melding [BBRF14].

Our method establishes a map between point clouds that mini-
mizes certain cost functions. Related to this are thelinear assign-
ment problemand minimization of theEarth Mover's Distance
(EMD) in mass transport. Bonneel et al. [BvdPPH11] applied mass
transport to blend continuous distributions, and showed results on
blending discrete point sets by falling back to an assignment prob-
lem. Their method is discussed in Section8.1. In shape correspon-
dence, assignments are frequently formulated by an energy that
preserves local structures. Mesh morphing, however, needs to con-
sider application-speci�c requirements, such as changing topology
and self-intersections. In contrast to methods for morphing or
warping of images (which require a discretization and enforce no
overlaps), the focus of caustic blending isnot on preserving geo-
metric properties, e.g., establishing conformal, as-rigid-as-possible,
or near isometric maps. Instead, we are mainly interested in the
preservation or coherent evolution of caustic-like structures such as
sharp line features.

3. Motivation and Overview

The input to our method is a 3D scene, one or multiple caustics and
a target irradiance distribution for each caustic to be manipulated.
We apply standard progressive photon mapping, i.e., we trace and
blend a new set of photons in each frame. In our method, we only
consider caustic photons and displace their positions in three steps:

Projection to 2D. The core of our method processes caustic sam-
ples in a 2D domain. In a �rst step, we apply a perspective projection
to map caustic photons from 3D onto a supporting plane and hence
to 2D coordinates. Section4 describes this step.

Blending Photon Positions. After importance sampling of the tar-
get irradiance distribution, our method establishes correspondence
between source and target automatically by solving an assignment
problem via minimization of a discrete energy. The energy is de-
signed to preserve point cloud structure such that sharp line features
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Figure 2:Projectionandback projection. Photonsxi (� ) are pro-
jected onto the supporting plane along the direction to the mean
origin ō of the photon rays. This yields 2D positionsai , which are
displaced toa0

i by blending. The photons are projected back into the
scene along the orange lines, yielding 3D photon locationsx0

i (� ).

of caustics are preserved and plausibly evolve during temporal blend-
ing. Section5.1 describes the energy and its naïve minimization,
which is feasible only for small point sets. In Section5.2we show
how larger source point sets can be ef�ciently assigned to target
points by incorporating an interpolation and a re�nement step. After
assignment, we blend photon positions along cubic B-splines.

Back Projection and Rendering. Finally, we project the blended
photon distribution back into the 3D scene. The procedure repeats,
while the query radius of the photon density estimation progressively
decreases according to [KZ11]. Section6 gives details on the pro-
gressive rendering, and Section7 elaborates on the implementation.

4. Projection and Back Projection

For the projection of caustic photons fromIR3 into the supporting
plane, we employ a perspective projection, as illustrated in Fig.2.
The plane is progressively computed as the average of the planes
spanned by the two principal components of the progressively gen-
erated photon point sets. Alternatively moving on geodesic curves
is affected by local curvature distribution (e.g., bumps), which we
think is undesirable. Still, it is possible to use geodesic distances in
our energy, though with the inherent problems, e.g., restriction to
movement in a single manifold, problems with holes, etc.

In addition to �ux and position, each caustic photon stores the
origin of its last traced ray. For the center of projection we use the
mean of ray origins̄o. The estimate of the mean ray origin progres-
sively improves as we average origins from all iterations. This has a
favorable property: If projected photons are not altered in the plane
(e.g., by a blending operation) and are “visible” from the center of
projection, the projection is reversible, i.e., it results in the original
caustic. Even further, the back projection of unaltered photons is
independent of the choice of the supporting plane. If photons were
altered or if the original 3D photons werenot located on a planar
surface, the location of the plane affects the back projected caustic.
Then, we wish to minimize perspective distortion. For this, the PCA
basis is a suitable choice, because if the original 3D point set was
planar, the two principal components yield no distortion at all.

Given the supporting plane, the projection ofxi 2 IR3 into 2D
is the ray-plane intersection with the ray from the mean originō
throughxi . Representing this intersection in planar coordinates,
i.e., in the basis of the supporting plane, yieldsai 2 IR2. The back
projection reverses this process by mapping a displaced pointa0

i ,

which is the result of blendingai (Section5), back into the 3D scene
by casting a ray from̄o. We write the projection and back projection
asai = P(xi) andP� 1(a0

i ) = x0
i , respectively.

Target distributions are generally not aligned with the projected
point set. We provide an initial alignment by mean shifting and
rotating the target in the supporting plane to be upright in the scene.
The target is scaled such that its three-sigma interval matches that
of the source. Optionally, the user can prescribe a suitable af�ne
transformation for adjustment. We apply a translation and scaling
so that the con�guration �ts into the unit box[� 1;1]2 to ensure that
regularizationb (see below) is comparable for different data sets.

5. Blending Photon Sets

The projection ofm photon positions into the supporting plane
gives a set of pointsA � IR2 that we denote assource. Thetarget
setB � IR2 is obtained as a discrete importance sampling of the
target irradiance with an equal number of points, i.e.,m= jAj = jBj .
Our goal is to achieve a blend between the two point sets: we
have to construct a function that evaluates the positiona0

i of ai
at time t such thatai = a0

i at t = 0 and a0
i = b j at t = 1. This

holds for all i = 1; : : : ;m, and j = s(i) assigns each point inA a
counterpart inB. The maps should be bijective, i.e., a permutation
of indicesi = 1; : : : ;m. This property will be useful for accelerating
the computation of the assignment in Section5.2.

5.1. Global Assignment Problem

In total, there arem! possible mapss. We are interested in maps that
satisfy two properties. The �rst is to avoid unnecessary movement
and to prefer short paths, i.e.,s should ideally minimize

�
�
�
�ai � b j

�
�
�
� .

Using only this property leads to a standard linear assignment prob-
lem (LAP). As second requirement, we demand the preservation of
point structure: We want to preserve local neighborhoods in a sense
that points that are close to each other inA should also be close inB.
This means that intra-set distances

�
�
�
�ai � a j

�
�
�
� should be preserved.

We precompute the full distance matrices once to ef�ciently lookup
individual point distances during optimization of permutations. Let
DA ;DB ;DAB denote the distance matrices with entries

dA
i j =

�
�
�
�ai � a j

�
�
�
� ; dB

i j =
�
�
�
�bi � b j

�
�
�
� ; dAB

i j =
�
�
�
�ai � b j

�
�
�
� :

Then, we formulate the assignment problem as

argmin
s

E with E =
1
m

(1� b) jjDA � DB jj F + b TrDAB

wherejj�jj F is the Frobenius norm,TrDAB = å i

�
�
�
�
�
�ai � bs(i)

�
�
�
�
�
� is the

trace, andb 2 [0;1] balances preservation of relative structure versus
absolute distance. (The scale1=maccounts for the fact that the two
terms are sums ofm2 andm values, respectively.) We are mainly
interested in preserving local neighborhoods; indeed, penalization
of undesired absolute movement acts mainly as a “regularizer” to
prevent “�ips” due to symmetries in the solution. We elaborate on
the choice ofb in Section8.4.

Finding the optimal assignments by minimizing the objective
function above yields a combinatorial optimization problem. We use
a greedy algorithm to �nd a local minimum. Alg.1 repeatedly ap-
plies swaps of two indices ins. A swap is accepted if it decreases the
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Figure 3: Ef�cient assignment of point setsA andB. First, a subset ofA is bijectively mapped to a subset ofB by combinatorial optimization
that strives for structure preservation and short distances. Second, radial basis interpolation with constraints on the subsets transforms all
points of the source causticA to positionsI close to their counterparts in the targetB. Third, the transformed points iteratively match target
points by farthest closest point assignment. This re�nement establishes the bijective assignmentg : A ! B .

total energyE. Each swap( j;k) can be seen as swapping rows and
columnsj andk in matricesDA ;DB ;DAB if j 6= k. The algorithm
is straightforward to implement using an incremental update of the
current energye: for both terms inE, �rst subtract contributions
of rows and columnsj;k and then add contributions after the swap.
This way there is no need to modify the distance matrices, instead
the permutation of row and column indices are modi�ed. In this case
all but the initial evaluations ofE require onlyO(m) operations.

5.2. Ef�cient Assignment

Optimizing assignments by Alg.1 is costly for moderately large
numbers of pointsm, since the algorithm requiresO(m3) operations.

Subset assignment. For this reason, we apply the algorithm only
on two random subsets̄A andB̄ of A andB, respectively. Both
subsets haven � m points. In all examples we usen = 300, which
proved suf�cient (see experiment in Section8.6) and has a typical
run time in the order of few seconds (< 2 seconds for all examples).
This yields apartial assignment̄s. Fig.3 (left) illustrates the setting.

Interpolation. In the second step, we use this partial map as inter-
polation constraints to de�ne a displacement function that moves
all source points inA close to their counterparts inB. Note that the
partial map should be bijective to avoid contradicting constraints.
Let y : IR2 ! IR2 denote a map of points with the interpolation
propertyy(āi) = b j for all i = 1; : : : ;n in the partial assignment
j = s̄ (i). Further, we require that the mapy is smooth with minimal

Input : point setsA , B with m points
Output : assignments given as permutation vector
s = ( 1; : : : ;m) ; // initial assignment: identity
e= E(s) ; // minimize this
do

for j = 1:::mdo
for k = 1:::mdo

snew  s � swap( j;k) ; // tentative swap
enew  E(snew) ; // energy after swap
if enew< e then

e= enew; s  snew ; // accept swap
end

end
end

while there were swaps accepted;
Algorithm 1: Greedy assignment. The basic operation is aswap
of indices ins. The current energyecan be updated incrementally.

distance distortion such that points that are close remain close after
mapping. This interpolation problem can be solved easily using thin-
plate splines, which minimize a linearized bending energy (see, e.g.,
Bookstein [Boo89]), which in turn penalizes distortion. Formally,
we use radial basis functions (RBF) with kernely (r) = r2 ln r for
radii jj x � āi jj w.r.t. centers̄ai . The interpolating function is

y(x) =
n

å
i= 1

wi y i(x) + Q(x) ;

wherey i(x) = y (jj x � āi jj ) andQ is a quadratic bivariate polyno-
mial. The weightswi and the coef�cients ofQ are determined by
solving a linear system ofm+ 6 rows and columns. We refer to
Botsch and Kobbelt [BK05] for details on setting up the system;
they use RBF similarly for shape deformation.

Re�nement. Interpolation byy maps all source pointsai 2 A
to positions on (forai 2 Ā due to interpolation) or close to (due
to minimal “bending” ofy) positions of points inB. This means
the imageI = y(A ) is a point set that does not matchB exactly
but is fairly “close”. Fig.3 (center) illustrates the situation. More
importantly, due to the comparatively small subset size, imageI still
contains many high-frequency details (caustics) of the source, which
we can make use of later. We construct a bijective maph : I ! B by
“re�ning” y. Fig. 4 visualizes the error in the approximate matching
without re�nement. We use a farthest point sampling variant that
�rst �nds for every point in I the closest pointin B. We then
iteratively select the pair withlargest distance, remove the points
from the sets, update the closest distances of the remaining points,
and repeat the procedure until all points inI have a match. Alg.2
describes this formally. We retrieve the point that is closest toi 2 I
asclosest(B; i) 2 B , which is implemented as search in a balanced
kd-tree ofB. The candidate matches and their distances are stored
in a heap for fast access of the match with largest distance. Once a
match is found, the selected point inB is removed from the kd-tree
(rebalancing does not pay off), and the heap of candidate matches is
updated. Fig.3 (right) depicts the effect of re�nement.

n = 300, no re�ne n = 1000, no re�ne with re�nement

Figure 4: Impact of re�nement on target positionsB. The images
show blends fort = 1, i.e., reproduction of target. The left and center
images show RBF-interpolated locationsI withoutre�nement. In
the right image re�nement was used to reach the target exactly.
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Input : point setsI , B
Output : bijective assignmenth : I ! B
while I 6= ; do

i0  argmaxi2I ki � closest(B; i)k2 ; // source
b  closest(B; i0) ; // target
h  h[ (i0;b) ; // store pair
I  I n

�
i0

	
; B  B n f bg ; // remove points

end
Algorithm 2: Farthest closest point assignment.

5.3. Summary: Blending

The partial assignments̄ speci�es constraints on the interpolation
I = y(A ). This interpolation function is computedonceand is
reused for all further progressively generated photon sets. Thus,
in each iteration, photons are traced, projected and interpolated,
followed by the farthest point assignmentB = h(I ) to a new set of
target samples, which provides the �nal mapg(A ) = B and likewise
the global assignmentj = s(i) such thatai = b j . Fig.3 summarizes
the different stages. We use theglobal bijective map

g : A ! B with g = y� h ;

to �nd photon paths fromai to g(ai). Thereby, we also consider
the intermediate pointsy(ai), which are close to the target, but still
contain the high-frequency structures (caustics) of the source. Let
pai (t) be the linear blend between source and target:

pai (t) = ( 1� t) ai + t g(ai) for all i = 1; : : : ;m ; (1)

with time t 2 [0;1], and letqai (t) denote the cubic B-spline that
interpolatesai ;y(ai);g(ai) with chordal parametrization and natural
boundary conditions. We de�ne the blending operation as

a0
i = ( 1� w) pai (t) + wqai (t) for all i = 1; : : : ;m (2)

and thereby introduce a control parameterw 2 [0;1] that balances
between the linear, i.e., shortest, paths (w = 0) and preservation
of original caustic patterns (w = 1). From the experiments, we
recommendw = 1=2. Different choices are shown in Section8.4.

6. Progressive Caustics

In this section, we explain the progressive caustic image synthesis.
In each iteration, we trace photons from the light sources and regard
only those as caustic photons that have either hit glass or (curved)
mirror surfaces. These caustic photons have positionxi and �ux
f A

i . We project 3D photon positionsxi to 2D coordinatesai = P(xi)
in the support plane (see Section4). Then, we bijectively map
photons to their sample of the target distribution and apply linear
interpolation(2) between the linear and the B-spline path. This gives

x0
i = P� 1

�
(1� w) pP(xi )(t) + wqP(xi )(t)

�
(3)

f i = ( 1� t) f A
i + t f B

s(i) (4)

for the displacement of a photon positionxi to its �nal back projected
destinationx0

i . The �ux f i of the photon is a blend between �ux in
sourceA and target distributionB.

In each iteration, we compute the approximate radianceL̂ at
locationx in directionw by the radiance estimate [Jen01]:

L̂(x;w) = å
i

f i k(

 x0

i � x

 ) fr (x;w;wi) : (5)

Thereby, fr (x;w;wi) is the BRDF, characterizing the amount of
light re�ected from a photon with incoming directionwi at position
x toward the viewer in directionw. Further,k(s) is a density falloff
function with unit integral that weights the contribution of a photon
in a certain query radius. For a simple unit disk with radiusr, we
setk(s) = 1

pr2 if s � r and zero otherwise.

Using stochastic progressive photon mapping [HJ09], we let the
estimates converge to the consistent solution:

L(x;w) = lim
K!1

1
K

K

å
k= 1

L̂(x;w) (6)

Thereby, the query radiusr of the kernelk(s) decreases over time. In
the present work, we used a global radius and shrinked it by the fac-
tor

p
(k+ a)=(k+ 1) as suggested by Knaus and Zwicker [KZ11]

for thek-th iteration with reduction ratea = 2=3.

Note thatt = 0 in Eqs.(3) and(4) yields the original caustic, i.e.,
a = P� 1(P(a)) , if all caustic photons are “visible” from the center
of projection. Settingt = 1 yields a direct sampling of the target
distribution, i.e., the target is reached exactly.

7. Details and Implementation

Caustic Photon Generation and Rendering

We implemented the caustic photon tracing on the GPU using
Nvidia's raytracing API OptiX [PBD� 10]. The irradiance estimates
are implemented by splatting with a progressively decreasing kernel
radius [KZ11]. Direct illumination is obtained by ray casting.

We distinguish between light paths based on their recent scene
interaction events in the spirit Schmidt et al. [SNM� 13]. We asso-
ciate each deposited caustic photon with a source ID that uniquely
encodes which light source the photon originated from and which
object it hit last. This ID segments photons into subsets, each rep-
resenting an individual caustic. Fig.5 for example, shows a glass
sphere and two lights. The lights create two caustics that can be
treated separately. If source-based segmentation does not prove suf-
�cient, point sets could optionally be further merged or subdivided.

Selection of Target Distribution

The target distribution essentially speci�es the resulting irradiance,
and it is thus typically given as a gray-scale image or by luminance.
It may contain, e.g., text, other caustics, drawings or photographs.
For the sampling of positionsB in static target images, we use
the inverse CDF method [PH10]. It samples a certain probability
distribution by inverting its cumulative distribution function (CDF),
which maps a uniform random variable to the target distribution.

We also experimented with animated target irradiance distribu-
tions. Here, care must be taken to ensure that in each frame of the

t = 0 t = 0:67 t = 1

Figure 5: A glass sphere is illuminated by two light sources, which
cast two separate caustics. As we distinguish between photon origins,
they can be processed individually.

c 2016 The Author(s)
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t = 0 t = 0:25 t = 0:5 t = 0:75 t = 1

frame 0 frame 3 frame 6 frame 9 frame 12

Figure 6: Top row: A caustic is blended into an elephant. Bottom row: The target irradiance is chosen from a key frame animation. Each frame
is shown att = 0:9, i.e., the caustic has not yet reached the target shape. See the accompanyingvideo for further examples.

original

Figure 7: Large scene with two caustics replaced on the ground.

video, samplesB are generated frame-coherently, e.g., in the spirit
of [WMWL11]. That is, caustic photonsA (which were traced deter-
ministically), should be mapped to a semantically similar location in
B, so that the caustic will blend toward the same object part through-
out the video. To obtain this coherence requires the identi�cation
of corresponding feature points. The animation in Fig.6 shows a
rendered video of a key frame animated elephant with already estab-
lished vertex correspondence, i.e., the elephant can be animated by
blending its vertices. That is, every vertex keeps its semantic over
the course of the animation. In the �rst frame of the animation, we
selected400vertices by geodesic farthest point sampling and kept
those as feature points throughout the animation. Frame coherence
is achieved fairly well already, though the crossing of the legs during
the walk cycle leads to con�icting conditions in the interpolation.

8. Results and Discussion

We tested our method in a number of scenes using different target
distributions. The blending to text and logos was shown in the
WHISKEY scene in Fig.1 and Fig.4. In Fig. 14, we rotate the
target distribution prior to the assignment such that orange photons
move to the top of the text. Further, we used drawings as target, for
instance, for the caustics of a SPHERE in Fig. 5 and in the more
complex LAB scene in Fig.7. We also demonstrated an animation
of the target distribution to animate the walk cycle of an elephant in
a GLASS caustic, see Fig.6. (See the accompanying video.)

8.1. Comparison with Other Assignments

We compare our assignment algorithm (Section5.1) to two alterna-
tive strategies: solving thelinear assignment problem(LAP) and
minimizing theEarth Mover's Distance(EMD). The LAP estab-
lishes a bijective map that minimizes the traveled distance. It is
the special case of our algorithm forb = 1, i.e.,withoutenforcing
preservation of structure. The LAP can be solved by the Hungarian
method, also known as the Kuhn-Munkres algorithm. Mass trans-
port minimizes the EMD, which allows points to split up their mass
(�ux) while traveling. Bonneel et al. [BvdPPH11] propose a gen-
eral, multi-scale method for blending continuous distributions by
representing them as a sum of radial basis functions (with Gaussian
kernel), and moving them via mass transport. For the re�nement in
the ef�cient assignment (Section5.2) we require a bijective map to
formulate interpolation conditions for displacement by thin-plate
splines (RBF with harmonic kernel). Generally, mass transport does
not give a bijective map, as mass (�ux) is split among samples.

Both LAP and EMD minimize a distance measure between source
and target. In contrast to our method, they do not explicitly enforce
structure preservation. We demonstrate this effect for blending (with
w = 0) in Fig. 8, which shows the transition of a C-shaped caustic
to the letter S, and vice versa. While EMD allows particles to split
and merge (not bijective), both LAP and EMD minimize travelled
distance, and thus they deliver comparable results: Parts of the letters
break out. Our algorithm penalizes this behavior forb > 0.

Moreover, matching large photon sets by LAP or EMD in each
light transport iteration is not feasible in practice, since each iter-
ation may take minutes to compute. Fast approximations to EMD
by thresholded ground distances [PW09,LML � 14] yield arbitrary
assignments for distant particles [BvdPPH11] and thus appear blurry
in a progressive renderer. Another acceleration of EMD is regular-
ized transport [Cut13], which, for instance, increases the number of
non-zero couplings. Still, for progressively generated photon sets,
the resulting blur depends on the photon density in the scene. Since
minimizing EMD does not generally yield a bijective map, mass
transport cannot be used on a subset with our subsequent RBF in-
terpolation for ef�cient assignment, which would generate another
path control point. Thus, EMD only uses linear paths. Forw > 0,
our method blends along nonlinear paths, which makes use of high-
frequency details contained inI (see Section5.2). This signi�cantly
improves the intermediate caustic patterns, as shown later in Fig.11.
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Figure 8: Comparison between linear assignment (�rst row), Earth
Mover's Distance (second row) and our method (third row) forw= 0.
In this scene, we blend a C-shaped caustic to an S, and vice versa.
Our method explicitly enforces structure preservation, thus parts of
the letters are not breaking out, see highlighted areas.

8.2. Comparison with Other Re�nement Strategies

In this section, we compare ourre�nementalgorithm (Section5.2)
with three alternative strategies. The goal is to map the caustic pho-
tons after assignment and interpolationI = f i ig to the importance-
sampled target positionsB = f big to establish a global assignment.

Random Permutation Assignment. The most trivial matching
of I with B is a random assignment. Since both sets are of equal
cardinality and both are obtained by random sampling, a random
permutation is obtained byh(i i) = bi . Unfortunately, the random
assignment leads to very blurry results that quickly lose caustic-like
appearance, see the �rst column of Fig.9.

Inverse CDF-based Assignment. A different approach is an as-
signment based on the inverse CDF method. The user already pro-
vides a target distribution function. The idea is to additionally gen-
erate a distribution function of the transformed photonsI . Such a
distribution function is essentially obtained by progressive radiance
estimates on a discretized grid in the 2D plane. Given the two distri-
butions, CDFs are computed for both. Then using the inverse CDF
method, samples are not only generated for the target distribution
to obtainB = f big, but also for the estimated source distribution
using the same uniform random variablesx to obtain a setI 0=

�
i0i

	
,

which has the same distribution asI . Then, the bijection for blend-
ing becomesh(i0i ) = bi . A disadvantage of this method is that it
requires to (progressively) estimate adiscretizedsource distribution
function of the transformed point setI to obtain its CDF. (We used
a2k� 2k grid.) Furthermore, it tends to produce visual artifacts by
tearing structures apart, and the inherent grid structure of the CDF
remains visible during blending, as noticeable in Fig.9.

Bidirectional Closest Point Assignment. In contrast to the other
approaches, the third approach does not strive for a bijective map.

First, every pointi 2 I searches for its closest point inB, i.e.,h  
h[ (i; closest(B; i)) . In B a number of points remain that have not
been assigned yet:b0 2 B n f closest(B; i)g. Each of these points
searches for its closest point inI , i.e.,h  h[ (closest(I ;b0); b0).
The result forms a graph with possibly multiple outgoing edges
from I and possibly multiple incoming edges inB. To preserve
energy, the �ux of transformed photonsI is divided by the number
of outgoing edges. The incoming �ux inB is normalized to match
the target �ux. Since this map is not bijective, it cannot preserve the
color of photons: consider, for instance, �ve orange photons mapped
to the same target position; then only one orange photon remains
visible in the resulting image. Moreover, this algorithm also tends to
tear structures apart, which is a quite noticeable artifact, see Fig.9.

In comparison to the methods above, the farthest closest point
method described in Section5.2behaves more naturally and does
not tear apart visible sharp edges, see the accompanying video.

8.3. Comparison with Mesh Morphing

In the video, we compare our method with “real” caustics obtained
by morphing two spheres with different Perlin noise displacement
maps. Our method produces coherent and smooth blends, though
near the end of the transition caustics lose details and fade into
each other, since a small subset cannot capture all �ne structures.
Instead, mesh morphing results in many small caustics moving
uncontrollably, though with more apparent details. While in some
cases the properties of our approach are desirable, “real” caustics
may look more natural. Thus, if the user hopes for very realistic
motion/caustics our approach may not be most appropriate.

8.4. Choice of Parameters

Our algorithm (Section5) uses a parameterb 2 [0;1], which bal-
ances in�uence of relative structure versus absolute distance. Large
values ofb generally do not make sense because a primarily distance-
based assignment is often not meaningful and disregards structure.
If, however,b is too small or even zero, then one may get undesired
assignments. This happens if there exists a multitude of solutions
with minimal or similarly low energy, a situation which becomes
likely if there exist symmetries (in the solution) or the subset size
is too small. In this case the solution may “�ip”, and higherb pe-
nalizes such undesired �ips. Fig.10 gives an example. Values of
4� 10� 4 < b < 1� 10� 2 work well and give comparable results (see
additional material). If not mentioned otherwise, we setb = 4�10� 4;
and there is usually not much need to change this value.

Eq.(2) describes the path from source to target as a blend between
a linear path and a cubic B-spline. Different choices of its weightw
are shown in Fig.11for b = 1� 10� 3. In our experience, linear paths
(w = 0) appear slightly blurred. The interpolating B-spline (w = 1)
through the RBF-interpolated pointy(ai) on the other hand, retains
the sharp features of the source caustic longer. We recommend the
half-way blendw = 0:5 as default value to obtain a compromise
between short paths and preservation of high-frequency features.

In contrast to progressive photon mapping, the number of photons
that are traced in an iterationdoesin�uence the converged solution
of our method. This is because, the more caustic photons are used
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Figure 9: Comparison with other re�nement strategies forw = 0. Rows depict different techniques at the same time with �rst and last frame
as insets in the �rst column. Here, photons are cast onto a non-planar surface. The back projection does not induce visible artifacts from
perspective distortion. From left to right: The random permutation yields a blurry result. The inverse CDF-based method shows locally high
frequency distortion (e.g., arms). Bidirectional closest point assignment tears the frog shape. Our farthest closest point method blends smoothly.

Figure 10: Parameterb trades preservation of point structure for
absolute distance, which is important for symmetric data. Left: car-
dioid (heart) caustic in a copper ring, which we blend into an actual
heart shape, fort = 0:8. Center:b = 1� 10� 4, which could not pre-
vent a �ip. Right: �ip is prevented, for which we setb = 2� 10� 4.

the less they need to move to reach their target position during
the re�nement stepy. As each iteration is operating on a different
photon set, this movement will act as a low-pass �lter, with a kernel
size in the order of the average distance to the target position.

8.5. Remaining Error

Obtaining a ground truth matching between arbitrary point sets has
factorial complexity, which cannot be computed for our problem
sizes (n = 300gives3� 10614 candidates). We can, however, give
evidence for the quality of our minimizer by constructing a bench-
mark with known ground truth. For this, we draw samples from a
caustic image (source) and randomly permute these samples (target).
A perfect assignment would undo this permutation (error= 0). If a
random assignment is assumed as lower error bound, our method
reaches> 95%of the ground truth (forn = 300, b = 4� 10� 3). This
percentage further increases for highern, as shown in Fig.12.

w = 0 (linear path) w = 0:5 w = 1

Figure 11: Different choices ofw for the blending path att = 0:5.
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Figure 12: Plot of the relative residual between ground truth and
random assignment. For higherb the energy is better minimized.

8.6. Performance

Our test system is equipped with an Intel Core i7-2600K CPU with
3.4 GHz and 24 GB RAM and an Nvidia Quadro K5000 GPU with
4 GB VRAM. The runtime of the individual steps of an iteration is
listed in Table1. The tracing of caustic photons and their eventual
back projection are easily parallelizable and implemented on the
GPU. Compared to the other steps, the computation of the subset
assignment (Alg.1) for the chosen subset size ofn = 300 typically
takes the longest time (< 1:5 seconds). However, this is only a
preprocessing step that is executed once. Among the progressive
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WHISKEY SPHERE BUNNY

Fig. 1 Fig. 5 Fig. 9
Photon Tracing 10.69 9.67 10.10
ProjectionP 3.38 5.80 3.25
Subset Assignment? 1,203.51 1,228.54 1,285.23
Fit y? 9.37 7.26 8.65
Sample Target SetB 0.65 1.63 2.03
Evaluatey 29.87 101.51 124.97
Target Re�nement 24.48 274.16 494.38
Back ProjectionP� 1 4.12 4.27 4.38
Caustic Photons/Iter. 1,626 5,570 7,060

Table 1: Timings of algorithm steps in milliseconds forn = 300.
Preprocessing steps marked by? are executed only once.
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Figure 13: Runtime of subset assignment for varying subset sizes.
For up to 300–400 points the runtime stays in interactive ranges.

steps especially the re�nement to the target distribution is the bot-
tleneck. Depending on the number of caustic photons in the scene,
near-interactive updates can be achieved for the iterations.

The runtime of the subset assignment isO(n3) for subset size
n. We measured the duration of the assignment computation for
differentn in three different test scenes. As expected, the runtime
scales similarly in all scenes. During interactive manipulation of
scene geometry, lights or target distributions, the subset assignment
has to be recomputed. Fig.13 shows that the runtime starts to de-
grade at a subset size> 300–400photons, thus we setn = 300, if
not mentioned otherwise. As shown in Fig.14, the quality does not
improve signi�cantly if the subset size is further increased.

8.7. Limitations

During blending between caustics and their targets, the photon
density might vary over time, as particle trajectories might cross.
This becomes apparent, when blending a smooth distribution into
another, as here, the result is not necessarily likewise smooth, see
Fig.15for an example. This is not a big problem, since in those cases
simpler blending methods would suf�ce. For us, the appearance of
caustic-like structures in intermediate frames is acceptable.

Currently, our method does not support dynamic source caustics,
e.g., by moving caustic casting objects or lights. Depending on
the magnitude of the change in the caustic, the RBF interpolation
y might still be suitable, e.g., for a waving water surface. If the
caustic topology changes signi�cantly, correspondence between
source distributions must be prescribed or somehow enforced to
obtain temporally coherent RBF interpolations.

The projection onto the supporting plane might not be reversible
on complex shapes due to occlusions. Our main applications are
(near)-planar receivers, as they showcase resulting caustics best.

(a)n = 10, at 0:001sec. (b) n = 100, at 0:003sec.

(c) n = 300, at 1:105sec. (d) n = 1000, at 224:3sec.

Figure 14: Results for different subset sizen for the WHISKEY scene
at t = 0:65. The time in the captions refers to the computation time
of the subset assignment (Alg.1). The results are quite similar even
for very smalln, while the matching is orders of magnitude faster.

t = 0 t = 0:5 t = 1

Figure 15: Limitation: blending between two smooth distributions
does not necessarily result in a smooth intermediate distribution.

9. Conclusions and Future Work

We presented a method for the manipulation of caustics that blends
a given caustic smoothly to a user-de�ned target irradiance distribu-
tion, e.g., an image, text or a video. To the best of our knowledge, this
kind of manipulation and control of caustics is novel. Technically,
our method requires only a target image and provides a steering pa-
rameterw that allows to retain structures of the source caustic. The
core algorithm for caustic blending solves an assignment problem by
minimizing a discrete energy. This energy is carefully designed such
that blends evolve to structures that resemble caustics. Its minimiza-
tion is not straightforward, and we show how this can be achieved
ef�ciently using an additional interpolation and re�nement step.

Future work includes processing animated scene geometry, e.g.,
a moving water surface, improved frame coherence if target distribu-
tions are time-dependent, and accounting for additional quantities
such as photon �ux in the optimization. The method could also
be applied to temporal upsampling of caustics. We demonstrated
our method with SPPM. Other light transport techniques such as
bidirectional path tracing or vertex connection and merging would
work similarly: When tracing photon sub-paths, caustic photons can
be deformed by our method, and afterwards connected with eye
sub-path vertices. Also, deformed photons can continue to bounce
in the scene, adding full global illumination effects.
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