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Fig. 10: A 3D example in the ABC flow. The ridges of inertial backward FTLE (left, our method) and the preferential particle settling (center)
correlate, whereas backward FTLE on tracer particles (right) has less sharp structures that remain partially unconnected. Here, using Eq. (1) for
dp = 250 µm, start time t0 = 0 and integration duration τ = 1.5.
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Fig. 11: Inertial backward FTLE (left, our method) and the preferential particle settling (center) are in agreement, whereas backward FTLE on
tracer particles (right) differs visibly. Here, shown in the FORCED-DAMPED DUFFING, using Eq. (3) for density ratio R = 0.1 (aerosol), Stokes
number St = 0.01, start time t0 = 0 and integration duration τ = 5.

Since the tracer phase space in Eq. (16) is independent of the current
velocity state v, the flow map derivative with respect to the velocity
state is φv = 0n×n. Hence, Eq. (17) simplifies to

h(x, t) =− φx
−1

φt − ũ(x, t0) . (18)

That is, the acceleration ã(x, t) must not be evaluated as it vanishes.
Fig. 12 gives an example of streaklines obtained with Eq. (18). Here,

streaklines were released in the SQUARE CYLINDER flow. The top
halve of the image shows streaklines computed as tangent curves of the
influence curve vector field h(x, t) in Eq. (18), based on the tracer phase
space in Eq. (16). The bottom halve shows ground truth streaklines
computed from a fine temporally-resolved release of tracer particles
from the seed points.

A few years ago, Weinkauf and Theisel [72] have shown that streak-
lines can be computed as tangent curves of a derived vector field w. In-
stead of defining a negated vector field ũ they used backward-integrated
flow maps in u, which we denote as φ̃ :

w = φ̃
−1
x · φ̃t +u(x, t0) . (19)

Note that backward integration (rather than reversing the flow) flips
the sign of the temporal derivative of the flow map φ̃t = −φt and
that u(x, t0) = −ũ(x, t0). Hence, Eq. (18) can be directly turned into
Eq. (19). In retrospect, the fact that streakline vector fields [72] and

ground truth

influence curves

Fig. 12: Streaklines as tangent curves of the influence curve vector field,
defined on a tracer phase space (top), and as a ground truth computed
by traditional particle advection (bottom), with t0 = 75 and τ = 40.

influence curve vector fields [28] turn out to relate to each other is not
surprising, since their respective construction followed a similar path.

5.3 Experiments with Other Lagrangian Measures
In the following, we demonstrate that influence curves are even more
versatile and can also be used to compute other inertial Lagrangian
measures in backward time. We will focus on the two Lagrangian
measures: finite-time mass separation (FTMS) [26] and accumulated
curvature. For both, we use influence curves in h(x, t) from Eq. (11).

5.3.1 Finite-Time Mass Separation
Finite-time mass separation is a scalar field that was proposed by
Günther and Theisel [26] in forward time. It is used to study the
separation of inertial particles that were released from the same location,
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Fig. 13: Other Lagrangian measures in backward time: finite-time mass
separation (FTMS) [26] (left) and accumulated curvature (right) in the
SQUARE CYLINDER flow with dp = 500 µm, t0 = 100 and τ = 5.

but with slightly different mass. The measure computes the response
time partial of the inertial flow map and normalizes it in the spirit of
FTLE (accounting for logarithmic growth and integration duration):

FTMS(x, v0, t, τ, r) =
1
|τ|

ln
∥∥∥∥dφ(x, v0, t, τ, r)

dr

∥∥∥∥ . (20)

While in the previous inertial flow map definition of Section 2.1.2, the
response time r was neglected for brevity, we explicitly write it here
as a parameter of the inertial flow map in order to formally define its
derivative. An example of the FTMS field is shown in Fig. 13 (left).
Forward FTMS calculates the rate at which differently-sized inertial
particles separate. Backward FTMS on the other hand characterizes
how fast differently-sized inertial particles are attracted toward the
same structure. This is interesting, since attractors of inertial particles
are usually dependent on the response time, yet we can see that in some
areas attractors correlate. We believe that studying the reasons for these
correlations could be an interesting topic for future work.

5.3.2 Accumulated Curvature of Influence Curves
In the following, we depict the accumulated curvature of the influence
curves c(x, t). We consider only the 2D case for which the signed
curvature of the influence curve is defined as

κ(x, t) =
det
[

h(c(x, t), t0 + t), dh(c(x, t), t0+t)
dt

]
‖h(c(x, t), t0 + t)‖3 . (21)

The numerator computes the determinant of a 2×2 matrix containing
in the columns the first and second order time partials of the curve,
i.e., the influence curve vector field h itself and its temporal derivative.
In 3D, curvature can be defined similarly, though without sign. The
accumulated curvature K(x, t) becomes:

K(x, t) =
∫ t

0
κ(x,s) ds (22)

Fig. 13 (right) gives an example. In the SQUARE CYLINDER flow,
streaklines work very well in the massless case to reveal the von Kármán
vortex street (see Fig. 12), as the curves themselves and their geometric
properties align with the vortex structures. In the inertial case, we
use the equivalent to streaklines, i.e., we visualize the accumulated
curvature of an influence curve at its seed point. The vortices are
revealed and the bending direction of the influence curves (left or right)
becomes apparent by the sign.

5.4 Implementation and Performance
For all measurements throughout the paper, we used an Intel Core
i7-2600K CPU with 3.4 GHz. Table 1 reports the computation time,
image resolutions and average residual errors for the data sets shown
throughout the paper. The FORCED-DAMPED DUFFING in Fig. 11 was
computed faster than in Fig. 4 due to shorter integration time τ .

Günther and Theisel [28] have shown that the influence curve vector
field might exhibit strong variations in its magnitude and that thus an
adaptive numerical integration is mandatory. Similar to them, we used
the Runge-Kutta-Fehlberg (RK45) method. Since inertial particles that
were released from an influence curve should reach the observation

Data set Figure Resolution Time Residual
DOUBLE GYRE Fig. 1 800×400 5.3 2.1 ×10−7

FORCED DUFFING Fig. 4 250×250 4.2 5.0 ×10−8

SQUARE CYLINDER Fig. 7 300×200 1.4 1.7 ×10−7

BOUSSINESQ Fig. 8 300×900 1.2 2.0 ×10−10

HELICOPTER Fig. 9 150×180 0.2 1.0 ×10−10

ABC Fig. 10 200×200×200 7.8 3.0 ×10−10

FORCED DUFFING Fig. 11 250×250 1.2 1.5 ×10−8

Table 1: Total extraction time (in hours) of influence curves in the
shown figures, the used grid resolutions and the average residual error.

Residual (/w Newton)

0 10−5

Residual (/wo Newton)

Fig. 14: Error plots for the influence curve computation with and with-
out subsequent Newton iterations for refinement in the DOUBLE GYRE
with dp = 200 µm, t0 = 0 and τ = 9. Visually, both corresponding
IFTLE visualizations look similar to Fig. 1.

exactly, Newton iterations can be applied to further minimize the devia-
tion [28]. Adaptive integrators require a user-specified error tolerance
to be set, which guides the adjustment of the step size. Thereby, a
trade-off is made between accuracy and speed.

Since integration in h(x, t) becomes numerically more difficult with
increasing integration duration τ [28], the setting of the error tolerance
is dependent on τ . To determine the error tolerance automatically,
we use an iterative adjustment. We start with a high error tolerance,
meaning that the adaptive RK45 integrator does not decrease step
sizes too strongly. If the total accumulated error cannot be removed
by subsequent Newton iterations, we restart the experiment with a
lower error tolerance (reduced by factor 1/10), until the residual error
is sufficiently small (< 10−7) or a maximum number of attempts is
reached. Table 2 lists performance statistics of this procedure in the
DOUBLE GYRE for varying τ . In particular, we list the average time
an influence curve integration takes dependent on the required number
of adjustment iterations (attempts). Further, we list the percentage of
influence curves that were computed with the respective number of
adjustment iterations. It can be seen that the computation time grows
quickly with increasing τ . More importantly, for higher τ the number of
adjustment iterations increases. Evidently, the numerical computation
becomes more involved. In fact, the residual error cannot be reduced
below the threshold for all influence curves when using only 4 attempts,
which can be seen by the increasing number of curves reaching the
last attempt, and by the growing average residual, which exceeds the
desired threshold of 10−7. Nevertheless, in this experiment, the residual
errors stayed for all integration durations below 10−5.

The adaptive adjustment of the error tolerance generates an overhead.
If the optimal error tolerance is known a-priori and used instead, the
computation time in the DOUBLE GYRE can be reduced to about 76%.
In the other data sets, the overhead was much smaller, since the majority
of the curves could be computed in earlier attempts.

Fig. 14 depicts the impact of the subsequent Newton iterations. Not
only does the refinement reduce the residual error, it also accelerates
the computation since early attempts with a too coarse error tolerance
might be correctable, hence avoiding a restart of the influence curve
integration with a lower error tolerance. In the DOUBLE GYRE example
with a resolution of 200× 100, the computation time is reduced by
Newton iterations from 83min to 34min.

5.5 Limitations
Influence curves are described as tangent curves, and thus they are
subject to accumulating numerical errors. We approached this prob-
lem with an adaptive integrator and an iterative reduction of its error
tolerance. Decreasing the error tolerance and step sizes increases the
computation time significantly and thus becomes quickly infeasible for
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duration 1 iteration 2 iterations 3 iterations 4 iterations total residual
τ avg. time done (%) avg. time done (%) avg. time done (%) avg. time done (%) time avg. error
1 3.46 88.8 9.01 9.2 15.38 1.3 25.12 0.7 3.2 sec 0.94×10−7

2 10.26 80.6 20.99 12.9 49.1 2.6 105.99 3.9 10.8 sec 0.95×10−7

4 33.41 68.8 119.98 16.2 189.81 5.6 289.09 9.4 50.8 sec 1.08×10−7

6 81.04 59.4 184.36 21.9 366.53 9.2 737.28 9.5 2.00 min 1.06×10−7

8 185.79 59.2 372.85 15.5 632.25 8.5 1,164.96 16.8 4.36 min 1.33×10−7

10 304.03 46.1 575.35 24.9 1,079.38 11.1 2,016.48 17.9 7.96 min 1.32×10−7

12 411.38 36.5 1,111.53 24.1 1,960.18 11.1 5,812.99 28.3 24.07 min 2.41×10−7

Table 2: Timings of the numerical influence curve integration for varying durations τ in the DOUBLE GYRE at 100×50 pixels with dp = 200 µm
and t0 = 0. Our method iteratively decreases the error tolerance until a solution with sufficiently small error is found. Here, the average influence
curve computation time (in msec) is listed for the respective number of iterations they required, along with the number of influence curves in each
category (in %). The last two columns list the total time required to compute an influence curve for every pixel as well as average residual errors.

0.0 0.45

IFTLE

0 10−3

Residual Error

Fig. 15: For τ = 14 with insufficiently small step size, the residual error
of the influence curves is quite high. For several pixels the residual
cannot be removed with subsequent Newton iterations, thus the IFTLE
image contains visible artifacts. Here, with dp = 200 µm and t0 = 0.

higher integration durations τ . Due to numerical limits, it might not
even be possible to reduce the residual error below a desired threshold
for high τ , which is a general limitation of influence curves. Hence, we
focused on moderate integration durations. Increasing integration dura-
tions further, or experimenting in Eq. 12 with higher density ratios R or
Stokes numbers St led to numerical issues that could not be eliminated
in feasible computation time. Fig. 15 demonstrates a failure case.

Further, influence curve integration stops at domain boundaries,
even though curves might reenter the domain. We inherit this limitation
from [28], who suggested a search for reentry points for future work.

Due to numerical errors, the extracted influence curves might jitter.
The variation is in the order of the residual, which we set by default to
10−7. Only in Fig. 13, the residual was set to 10−5 to trade quality for
shorter computation time, though this results in visible noise artifacts.
The theoretically more elegant solution is to recompute with higher
accuracy, though a practical (and most likely faster) solution might be
to remove these artifacts in a post-process, e.g., by enforcing spatial
smoothness on the recovered sources. We would like to investigate
such post-processing in the future.

6 CONCLUSION

In this paper, we generalized the influence curve concept of [28] to
general equations of motion in the spatio-velocity-time domain. Based
on this, we computed the sources of dispersed pollutants that were
advected by the models described in Crowe et al. [17] and Haller and
Sapsis [31]. We applied the concept to extend the recent work of
Sudharsan et al. [66], who studied the relation between preferential
particle settling of inertial particles and backward FTLE on tracer
particles. We have demonstrated that the usage of the (generalized)
influence curve concept to compute inertial backward FTLE (IFTLE)
is in better agreement with preferential particle settling. Further, we
have shown that an influence curve vector field based on a tracer phase
space emits streaklines as tangent curves, which connects to the work
of Weinkauf and Theisel [72]. Our results have revealed that inertial
backward FTLE is the right measure, but that influence curves tend to
numerical difficulties when integrating far backward in time.

In the future, we would like to investigate how this could be stabi-
lized and whether other constructions are possible. In this work, we
have shown the potential of influence curves, including applications to
other Lagrangian measures, such as FTMS and accumulated curvature.
We would like to apply the idea to other backward integration related
approaches that have previously been unavailable for inertial particles.
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[69] M. Üffinger, F. Sadlo, and T. Ertl. A time-dependent vector field topology
based on streak surfaces. IEEE TVCG, 19(3):379–392, 2013.
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