
Implicit Boundary Con trol of Vector Field Based
Shape Deformations

Wolfram von Funck1, Holger Theisel2, and Hans-Peter Seidel

1 MPI Informatik, D-66123 Saarbr•ucken, Germany,
wfunck@mpi-inf.mpg.de ,

WWW home page: http://www.mpi-inf.mpg.de/ ~wfunck
2 Bielefeld Univ ersity, Computer Graphics Group, D-33501 Bielefeld, Germany

Abstract. We present a shape deformation approach which preserves
volume, prevents self-intersections and allows for exact control of the de-
formation impact. Volume preservation and prevention of self-intersections
are achieved by utilizing the method of Vector Field Based Shape De-
formations. This method producesphysically plausible deformations e�-
ciently by integrating formally constructed divergence-freevector �elds,
where the region of in
uence is described by implicitly de�ned shapes.We
intro ducean implicit representation of deformation boundaries, which al-
lows for an exact control of the deformation: By placing the boundaries
directly on the shape surface, the user can specify precisely where the
shape should be deformed and where not. The simple polygonal repre-
sentation of the boundaries allows for a GPU implementation, which is
able to deform high-resolution meshesin real-time.

1 In tro duction

Deforming shapesunder a number of constraints is a standard problem in Com-
puter Graphics. For instance, animation of characters can be achieved by de-
forming the shape of the character according to its underlying skeleton, elastic
bodies are deformedby performing simulations basedon physical laws, or in in-
dustrial design, fair surfacedeformations are obtained by minimizing curvature
energy.

When deforming solid objects, the constraint of volumepreservation is an im-
portant and often-addressedissue:Under the assumptionthat the object consists
of an incompressiblematerial, its volume remains constant under deformation.
While physical simulations or constrainedoptimization techniquescanbeusedto
achieve this goal, they are usuallycomputationally expensive and require special
data structures like grids or embedding meshes.In contrast to this, the method
of Vector Field Based Shape Deformations (VFSD) [1] constructs and integrates
divergence-freevector �elds on-the-
y without any simulation, optimization or
special data structures and producesrealistic looking volume-preservingdefor-
mations without self-intersections.

Boundary constraints, often usedin the context of shape editing, are another
useful aspect of shape deformations. The user often wants to specify precisely



2

which parts of the shape should be deformed and which parts should not be
deformed at all. This is usually done by placing boundary constraints on the
surface,i.e. the userdraws two curveson the surface.The region enclosedby the
�rst curve undergoesa full deformation, e.g.a translation or rotation. The region
enclosedby the secondcurve is not deformedat all. In the region betweenboth
curves,the deformation is smoothly blended betweenfull and zero deformation.

In this paper, we present a method which brings both approaches together.
The user can de�ne the deformation impact by drawing two boundaries onto
the surfaceof the shape and can deform the shape in a volume-preservingand
foldover-free manner with respect to these boundaries. While in most existing
approachesboundariesare constraints of an optimization, we intro duce implicit
boundaries,which are de�ned by closedpolygonsand give a direct mathematical
solution of a smooth blending function which de�nes the amount of deformation
for every point in space.

The paper is organized as follows: Section 2 reviews relevant shape defor-
mation approaches.Section3 describeshow implicit boundariesare de�ned and
how they can be used together with Vector Field Based Shape Deformations
to deform triangle meshes.Section4 demonstratesseveral application scenarios,
while Section5 goesinto the details of the implementation and analyzesthe per-
formance.Finally, Section 6 discussesthe presented method and possiblefuture
research.

2 Related Work

We would like to give the reader an overview of related work. We review both
surface-basedapproachesand spacedeformations, sinceour approach is a space
deformation which is constructed by de�ning boundariesand the surfaceof the
shape.

Surfacebasedmethods de�ne the deformation on the surfaceof the shape. A
common approach, basedon triangle meshes,is to specify a number of original
and target vertices and compute the remaining vertex positions by a variational
approach [2,3]. Boundary constraint-modeling has established itself as a stan-
dard method for deforming surfacesrepresented by triangle meshes.The main
idea is that the userspeci�es boundary constraints asdisplacements of a number
of vertices. Usually this meansthat two bands of vertices, the boundaries, are
marked on the surface, where on one band the displacements are zero and on
the other band the displacements describe a simple deformation like translation,
rotation or scaling. Using variational calculus, a deformation �eld which is op-
timal with respect to curvature energy is found for the free vertices [4{10]. This
involves solving a sparselinear Laplacian system during each modi�cation by
the user.

Spacedeformations are de�ned for all points in space, i.e. a shape is de-
formed by deforming the spacewhere it is placed in. The �rst spacedeformation
methods appeared in the form of free-form deformations (FFD) [11]. The idea
of FFD is to de�ne deformations by modifying coarsecontrol structures like lat-



3

tices [11{13], curves[14,15], or points [16,17]. Using radial basis functions, it is
possible to extend the boundary constraint modeling method from the surface
setting to the spacesetting [18]. In order to give the user the impressionof real
incompressiblematerial, many spacedeformation approaches have been devel-
oped which preserve the volume of the shape under deformation. [16,19{22,1].
Since self-intersections are irreversible using spacedeformations, a number of
approacheshave beendeveloped to addressthis problem [23{25].

Another representativ eof spacedeformations,addressingthe issuesof volume-
preservation and prevention of self-intersections, is the method of Vector Field
Based Shape Deformations[1]. This method relies on a formal construction of
time-dependent divergence-freevector �elds on which path line integrations are
carried out to deform the vertices of a triangle mesh.Due to the C1 continuit y
of the vector �elds, the resulting deformation is smooth. Due to the path line in-
tegration, self-intersectionsare prevented. Sincethe vector �elds are divergence-
free, the volume of the shape remains constant under deformation. Thanks to
the direct mathematical formulation of the vector �elds, the deformation if inde-
pend of the shape representation, requiresneither special control structures nor
precomputations. In the following, we review the method. To simplify matters,
we formulate the construction in a time-independent context { the extension to
the time-dependent caseis straightforward.

Given two C2 continuous scalar �elds p;q : IR3 ! IR, a C1 continuous
divergence-freevector �eld v can be constructed from the gradients of p and
q as

v(x; y; z) = r p(x; y; z) � r q(x; y; z): (1)

Simple deformations can be constructed with this method using linear or
quadratic scalar �elds. In particular, a translation can be achieved by using two
linear �elds

e(x) = u(x � c)T ; f (x) = w(x � c)T ; (2)

where u and w are orthogonal normalized vectors and c is an arbitrary center
point. Sinceu and w are the gradients of e and f , respectively, u � w de�nes the
translation direction. A rotational vector �eld can be constructed from a linear
and a quadratic �eld:

e(x) = a(x � c)T ; f (x) = (a � (x � c)T )2 (3)

The rotation axis is de�ned by the normalized vector a, while c describes the
rotation center.

By performing a stream line integration (or path line integration for the time-
dependent case)of each meshvertex in the resulting vector �elds, it is possible
to rotate and translate a mesharbitrarily . Obviously, such transformations can
be achieved more easily and e�cien tly by other means.However, we can create
morecomplexand local deformationsby blending the scalarfunctions e, f usinga
third function b, the blendingfunction. In [1], the blending is donein a piecewise
manner, where b is the function of a distance �eld. Here, we de�ne b more



4

generally as a C2 continuous �eld b : IR3 ! [0; 1]. Given b, we can de�ne the
blended �elds

p(x) = b(x) � e(x) (4)

q(x) = b(x) � f (x): (5)

Using (2) for translations or (3) for rotations, we can insert (4) and (5) into (1)
to obtain a divergence-freevector �eld, which describes

{ a full translation/rotation at points where b(x) = 1,
{ a zero-deformationwhere b(x) = 0,
{ a smoothly blended deformation for points where 0 < b(x) < 1.

By de�ning an appropriate blending function b, it is possible to specify which
points in spaceshould be deformedby what amount. Figure 1 demonstratesthis
in the 2D setting. Since the blending is done before the cross product of the
gradients is computed (Equation 1), the resulting vector �eld is still divergence-
free.Sincep and q areC2 continuous,the resulting vector �eld v is C1 continuous
[1].

Fig. 1. Blending the deformation. A linear �eld (left), describing a translation along its
isolines, is multiplied with a blending function (center left). The result is a blended �eld
(center right) from which a divergence-freedeformation �eld (righ t) can be computed.

3 Deformation Blending

In the following sections,we will show a method to construct a blending function
which can be usedfor boundary constraint modeling basedon VFSD.

3.1 Implicit Boundaries

From a technical point of view, wedon't usethe term boundary constraints in the
senseof an optimization problem, but useboundary constraints as user de�ned
positions in spacewhere the surfaceshould be deformedin a prescribed manner.
From the user'spoint of view, our approach resemblesother boundary constraint
modeling approaches: the user draws two boundarieson the surface,where the



5

Fig. 2. By drawing boundaries onto the
surface, the user can de�ne a support re-
gion (here the body) and a handle region
(head).

Fig. 3. Left: an implicit boundary de�ned
by a few points. Right: the corresponding
vertices marked.

outer boundary de�nes the support of the deformation, while the inner boundary
de�nes the control handle of the deformation. Figure 2 illustrates this.

Since VFSD is not a surface-basedtechnique but describes spacedeforma-
tions, the boundaries have to be de�ned in spaceand not only on the surface.
Therefore, we formulate them implicitly . We do so by constructing a smooth
implicit function for both the inner and the outer boundary. More precisely, we
de�ne for each boundary a closedpiecewiselinear curve, i.e. a ring of connected
line segments. Then we usean approximate smooth distance �eld to each curve
as implicit function. Given n points b j , 1 < = j < = n with bn +1 := b1, de�ning
such a polygonal curve, we can compute an approximate distance �eld using the
technique from [26] as follows: given the Euclidian distance �elds l j (x) of each
line segment de�ned by the endpoints b j , b j +1 , we get

d(x) =
1

k

vu
u
t

nX

i =1

1
(l i (x)) k

(6)

This corresponds to the R-equivalence l1(x) � ::: � ln (x) described in [26],
which joins the distance�elds l j (x) to a smooth approximate one.k is a positive
integer, which basically controls the \exactness" of the distance�eld: the greater
k, the more the approximation approachesthe real distance�eld of the polygonal
curve, which, in general, contains discontinuities. The smaller we choosek, the
smoother the approximation becomes.In our implementation, we use k = 2 in
order to obtain smooth deformations even for coarsepolygons.

Given such a scalar �eld for both the inner and the outer boundary, i.e. di (x)
and do(x), we want to constrain the deformation as follows:

{ if di (x) = t i , we want full deformation,



6

{ if do(x) = to, we want no deformation,
{ else,we want a smooth blending betweenfull and zero deformation.

t i and to are user-adjustablethresholds which de�ne the thicknessof the innner
and outer boundary, respectively. Visually, an implicit boundary can be seenas
a closedtube with adjustable thicknessrunning over the surface,as depicted in
Figure 3. Besidesthe necessaryimplicit formulation, this hasthe advantage that
the number of polygon vertices is independent of the mesh resolution, and the
user can de�ne smooth boundaries with only a few points, which is especially
useful for parallel computation on the GPU. In order to avoid discontinuities
in the deformation, the user has to avoid intersectionsbetweeninner and outer
boundary. For instance,when deforming the Dragon's mouth as in Figure 4, the
boundary thicknesshas to be chosensuch that the boundariesdon't touch each
other betweenupper and lower jaw. The points b j and t i , to have to be chosen
such that the boundary areaon the surfaceis connected,i.e., it divides the shape
into two parts. For given t i , to, this can always be achieved by increasing the
density of the control points b j and by placing them closeto sharp features.

3.2 Smo oth Blending

Having the implicit boundariesde�ned, we needto construct a function that can
be used to blend smoothly from full deformation to zero deformation between
inner and outer boundary. This can be accomplishedin a straightforward way
by interpolation with inverse distance weighting [27]. We de�ne the blending
function as

b(x) =
1

(di (x ) � t i )) 3 � 1 + 1
(do (x ) � t o )) 3 � 0

1
(di (x ) � t i )) 3 + 1

(do (x ) � t o )) 3

(7)

In the limit, the following holds: b(x) = 1 for di (x) = t i and b(x) = 0 for
do(x) = to. Becauseof the cubic weights, b(x) has two vanishing derivatives at
points with di (x) = t i or do(x) = to. As we will seelater, this is an important
property which is neededto perform the deformation of the meshin a piecewise
manner. A further degreeof freedomcan be achieved by multiplying the weights
with user-de�ned factors. This is especially useful to control bend deformations.

So far, we have a C2 continuous blending function b which can be used to-
gether with Equations (4), (5) to construct blended scalar �elds with (2) for
translations or with (3) for rotations. Using (1), we can construct a divergence-
free vector �eld, which deforms the mesh (nearly) according to the boundary
constraints. Vertices on the inner boundary, i.e. with di (x) = t i , are fully de-
formed becausefor them b(x) = 1 holds. Vertices on the outer boundary, i.e.
with do(x) = to, are not deformedbecausefor them b(x) = 0 holds. For all other
vertices,the deformation is smoothly blendedbetweenfull and zerodeformation.

3.3 Piecewise Deformation

By simply applying such a deformation to the wholemesh,verticesoutside of the
support region will be deformedas well and vertices in the handle region won't



7

undergo a constant deformation, in general. We therefore need to perform the
deformation in a piecewisefashion, which is quite simple. Vertices belonging to
the handle region and the inner boundary are deformedin full, i.e. they undergo
a constant translation or rotation (e.g. the head and the boundary on the neck
in Figure 2). Vertices in the support region (body between the boundaries in
Figure 2), not belonging to any boundary, are deformedusing the blended �elds
(4), (5). All other vertices are not deformedat all. Thanks to the two vanishing
derivesof the blending function at the boundaries,this piecewisedeformation is
C1 continuous. Furthermore, the property of volume preservation still holds as
long as no self-intersectionsoccur. Self-intersectionscan only occur betweenthe
deforming parts of the meshand the non-deforming parts.

Mathematically, we alsocould instead de�ne the blending function in a piece-
wise fashion, such that the resulting deformation would be exactly the same.
Technically, deforming the mesh in the piecewisemanner described above is
more e�cen t becausethe handle region can be deformed directly using a rigid
transformation and the zero-deformationvertices are not consideredat all.

3.4 In tegration in Space Time

The description of the blending function is basedon a time-independent context.
However, since the inner boundary is actually moving over time, the blending
function hasto be updated within each integration step. This is straightforward:
at the beginning of the integration, the inner boundary polygon is at its original
position. Then, with each integration step, the position is updated by the amount
corresponding to the step size. For instance, for a rotation, the polygon points
are rotated step by step until the full rotation is reached. In [1], a more detailed
description of the integration processcan be found.

4 Applications

In principle, every deformation that is constructable as the crossproduct of two
gradients canbeusedwith the describedapproach. However, wecon�ne ourselves
to two simple, yet e�ectiv e transformations: rotation and translation. Obviously,
a scaling transformation wouldn't make sense,since we want to preserve the
shape volume. As we will seein this section, this toolset allows for a variety of
useful deformations.

In order to control translation and rotation, the user can placea knob some-
whereon the meshsurface,and a joint somewherein space.In most of the �gures
in this paper, the knob is depicted as a yellow stick, e.g. on top of the bust in
Figure 2. The joint is a small white sphere, usually placed somewherein the
support region. The knob resembles typical Gizmo objects found in many shape
modeling systems, which can be used to control transformations by grabbing
and dragging it at di�eren t points. The knob is a simpli�ed versionbecauseonly
translation and rotation are supported.



8

4.1 Rotation

In order to rotate the handle region, the user drags the knob, where the knob
movement is constrainedto a �xed radius about the joint position. From the dis-
placement of the knob position, the rotation axis and angle can be determined
with respect to the joint position. Using the joint position as rotation center c
in (3), a deformation that bends the shape can be accomplishedby integrating
the mesh vertices until the rotation angle is reached. In contrast to [1], where
the shape is continually updated, the integration restarts from the original mesh
every time the knob position changes.Figure 4, as well as Figure 2, shows this

Fig. 4. Popular application scenariosfor boundary constraint modeling.

approach applied in various scenariosknown from the Literature. The deforma-
tion looks rather realistic thanks to the volume-preservation and avoidance of
self-intersectionsand even high resolution modelscan be deformedinteractively.

Figure 5 demonstrates how local details are deformed: the \teeth" of the
comb-like shape don't touch each other during deformation and their distortion
seemsappropriate with respect to the global deformation.

Fig. 5. Local details are slightly distorted
in strongly deformed areas(left) and never
intersect with each other (righ t).

Fig. 6. By translating the horse head, the
neck deforms in a natural manner.

Also twisting is possibleby simply using the vector between joint and knob
as rotation axis. A more uniform twisting deformation can be achieved with two
quadratic scalar �elds [1].



9

4.2 Translation

When the userwants to translate the handle region, he or shecan drag the knob
freely in space.The joint is ignored for this deformation type. However, also the
translation (2) requires a center point c. In this casewe use the barycenter of
the control points of the inner boundary.

In Figure 6, the user drags the headof a horsemodel. The shape of the neck
automatically adapts to the new position. Due to the constant volume, the neck
becomesthinner when the head is pulled.

Interesting e�ects can be achieved by carefully selectingboundariesand mov-
ing the handle parallel to the surface:asshown in Figure 7, the deformation au-
tomatically produces\wrinkles" on the cheekof the face,which is a result of the
volume preservation and the prevention of foldovers. Although the \wrinkles"
appear to be rather strong, no self-intersectionsof the surfaceoccur.

Fig. 7. \W rinkles" can be produced by
translating the handle accrossthe surface.
Although they appear to be rather strong,
no self-intersections of the surface occur.

Fig. 8. When the boundaries move close
to each other, the shape is distorted.

5 Implemen tation and Performance

As shown in [1], the performanceof the integration can be increasedby a large
amount by shifting the computation to the GPU, where multiple path lines
can be integrated in parallel. This is also possiblewith our approach: since the
number of boundary control points is usually low, these points can be passed
to the shader as a simple array. We implemented two vertex programs, one for
translation and one for rotation, which can be controlled by passingtranslation
vector, rotation axis, angle etc. to them. During the integration, the polygon
points of the inner boundary are updated internally with respect to the transla-
tion/rotation, asdescribed in section3.4. Except for the extraction of the handle
and support region (Section3.3), no further preprocessingis required. After inte-
gration, vertex positions are readback from video memory and the meshnormals
are computed. An alternativ e approach would be to compute normals directly
on the GPU using the Jacobian of the vector �eld, similar to [18]. This would



10

decreasethe integration performance becauseof the necassarycomputation of
Jacobians in each integration step, but would clear the CPU from doing this
task and redundatize the readback of vertex positions. However, we have not
tested this alternativ e yet. As we will seein the following performanceanalysis,
the normal computation on the CPU makes only a small fraction of the total
deformation time.

The performanceof the approach strongly depends on the \amount" of de-
formation, i.e. how far the handle is translated or rotated. This is becausethe
numerical path line integration adapts its step sizeaccording to the complexity
of the vector �eld and the duration of the integration. In order to present a
meaningful statement about performance,we measuredthe times of usual \real-
world" deformations, namely the ones depicted in Figure 4. Table 1 lists the
deformedshapes(from left to right in Figure 4) and the benchmark results. v/s

shape vertices boundary points v/s (in tegration) v/s (in tegration + normals)
box 47,296 8 788,267 647,890

dragon 86,814 23 413,400 369,421
leg 1 31,014 17 449,478 382,889
leg 2 31,014 17 443,057 364,871

�nger 2725 14 454,167 454,167
Table 1. Performance benchmark: complex meshescan be deformed interactiv ely.

(integration) is the number of vertices per secondfor integration only and v/s
(integration + normals) the number of vertices per secondfor integration plus
normal computation. The measurements weremadeon a 2.6 GHz Opteron CPU
and a GeForce 6800GT graphics card. They show that complex meshescan be
deformed interactively.

6 Conclusion

We presented a shape deformation technique basedon vector �eld integration
which incorporates implicit boundariesto steer the impact of the deformation.

By using the VFSD technique [1], our deformations are volume-preserving
and foldover-free, giving the user the impression of working with real, incom-
pressible material. While the original VFSD approach de�ned the regions of
in
uence by simple implicit objects, our method constructs a smooth blending
function basedon implicit boundaries.That way, the usercanspeci�y the impact
of the deformation directly on the surfaceof the shape.

Thanks to the polygonal representation of the implicit boundaries, they are
independent of the resolution of the deformed mesh. In most cases,a small
number of control points su�ces to de�ne the boundaries.

Since the description of boundaries is simple (a small set of points), the
numerical path line integration can be computed on the GPU and even complex
models can be deformed interactively.



11

There are some restrictions of our approach which should be addressedin
future research.

Self-in tersections. Self-intersectionsare only avoided for the deforming re-
gions of the shape surfacebecausethe deformation is carried out in a piecewise
fashion. It is e.g. possibleto bend the �nger in Figure 4 such that the �nger tip
intersectsthe thumb or other parts of the hand. An additional collision detection
would solve the problem, but would also drop performance.

Close boundaries. When inner and outer boundary are closeto each other,
the gradient of the resulting blending function is high in theseregions.This can
result in unpleasingdeformations. E.g., when an extreme bending is performed
(Figure 8), the boundaries approach each other, and the box is distorted more
and more at its center (but nerverthelesspreservesits volume). A possiblesolu-
tion would be to perform such deformations (even more) piecewise,by using for
example a third boundary between inner and outer boundary and constructing
two blending functions: the �rst blendsbetweeninner and central boundary, the
other betweencentral and outer boundary.

References

1. von Funck, W., Theisel, H., Seidel, H.P.: Vector �eld based shape deformations.
ACM Trans. Graph. 25(3) (2006) 1118{1125

2. Welch, W., Witkin, A.: Variational surface modeling. In: SIGGRAPH '92: Pro-
ceedingsof the 19th annual conferenceon Computer graphics and interactiv e tech-
niques, New York, NY, USA, ACM Press (1992) 157{166

3. Taubin, G.: A signal processingapproach to fair surface design. In: SIGGRAPH
'95: Proceedingsof the 22nd annual conferenceon Computer graphics and inter-
active techniques, New York, NY, USA, ACM Press (1995) 351{358

4. Kobb elt, L., Campagna, S., Vorsatz, J., Seidel, H.P.: Interactiv e multi-resolution
modeling on arbitrary meshes.In: SIGGRAPH '98: Proceedingsof the 25th annual
conferenceon Computer graphics and interactiv e techniques, New York, NY, USA,
ACM Press (1998) 105{114

5. Botsch, M., Kobb elt, L.: An intuitiv e framework for real-time freeform modeling.
ACM Trans. Graph. 23(3) (2004) 630{634

6. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., R•ossl, C., Seidel, H.P.: Di�er-
ential coordinates for interactiv e mesh editing. In: Proceedingsof Shape Modeling
International, IEEE Computer Society Press (2004) 181{190

7. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., R•ossl, C., Seidel, H.P.: Lapla-
cian surface editing. In: Proceedingsof the Eurographics/A CM SIGGRAPH sym-
posium on Geometry processing,Eurographics Association (2004) 179{188

8. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing
with poisson-basedgradient �eld manipulation. ACM Trans. Graph. 23(3) (2004)
644{651

9. Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-in variant coor-
dinates for meshes.ACM Trans. Graph. 24(3) (2005) 479{487

10. Zayer, R., R•ossl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface defor-
mation. In: Computer Graphics Forum, Proceedingsof Eurographics 2005. Vol-
ume 24., Dublin, Ireland, Eurographics, Blackwell (2005) 601{609



12

11. Sederberg, T., Parry, S.: Free-form deformation of solid geometric models. In:
SIGGRAPH '86: Proceedingsof the 13th annual conferenceon Computer graphics
and interactiv e techniques, New York, NY, USA, ACM Press (1986) 151{160

12. Coquillart, S.: Extended free-form deformation: a sculpturing tool for 3d geomet-
ric modeling. In: SIGGRAPH '90: Proceedingsof the 17th annual conferenceon
Computer graphics and interactiv e techniques, New York, NY, USA, ACM Press
(1990) 187{196

13. MacCracken, R., Joy, K.: Free-form deformations with lattices of arbitrary topol-
ogy. In: SIGGRAPH '96: Proceedingsof the 23rd annual conferenceon Computer
graphics and interactiv e techniques, New York, NY, USA, ACM Press(1996) 181{
188

14. Barr, A.: Global and local deformations of solid primitiv es. In: SIGGRAPH '84:
Proceedingsof the 11th annual conferenceon Computer graphics and interactiv e
techniques, New York, NY, USA, ACM Press (1984) 21{30

15. Singh, K., Fiume, E.: Wires: a geometric deformation technique. In: SIGGRAPH
'98: Proceedingsof the 25th annual conferenceon Computer graphics and interac-
tiv e techniques, New York, NY, USA, ACM Press (1998) 405{414

16. Hirota, G., Maheshwari, R., Lin, M.: Fast volume-preserving free form deformation
using multi-lev el optimization. In: ProceedingsSolid Modeling and applications.
(1992) 234{245

17. Hsu, W., Hughes,J., Kaufman, H.: Direct manipulation of free-form deformations.
In: SIGGRAPH '92: Proceedingsof the 19th annual conferenceon Computer graph-
ics and interactiv e techniques, New York, NY, USA, ACM Press (1992) 177{184

18. Botsch, M., Kobb elt, L.: Real-time shape editing using radial basis functions.
Computer Graphics Forum 24(3) (2005) 611{621 (Pro ceedingsEurographics 2005).

19. Desbrun, M., Gascuel, M.P.: Animating soft substanceswith implicit surfaces. In:
SIGGRAPH '95: Proceedingsof the 22nd annual conferenceon Computer graphics
and interactiv e techniques, New York, NY, USA, ACM Press (1995) 287{290

20. Rappoport, A., She�er, A., Bercovier, M.: Volume-preserving free-form solids.
IEEE Transactions on Visualization and Computer Graphics 2(1) (1996) 19{27

21. Aub ert, F., Bechmann, D.: Volume-preserving spacedeformation. Comput. and
Graphics 21(5) (1997) 6125{639

22. Angelidis, A., Cani, M.P., Wyvill, G., King, S.: Swirling-sweepers: Constant-
volume modeling. In: Computer Graphics and Applications, 12th Paci�c Con-
ferenceon (PG'04). (2004) 10{15

23. Mason, D., Wyvill, G.: Blendeforming: Ray traceable localized foldover-free space
deformation. In: CGI '01: Proceedingsof the International Conference on Com-
puter Graphics, Washington, DC, USA, IEEE Computer Society (2001) 183

24. Gain, J.E., Dodgson, N.A.: Preventing self-intersection under free-form deforma-
tion. IEEE Transactions on Visualization and Computer Graphics 7(4) (2001)
289{298

25. Angelidis, A., Wyvill, G., Cani, M.P.: Sweepers: Swept user-de�ned tools for mod-
eling by deformation. In: Proceedingsof Shape Modeling and Applications, IEEE
(June 2004) 63{73

26. Biswas, A., Shapiro, V.: Approximate distance �elds with non-vanishing gradients.
Graphical Models 66(3) (2004) 133{159

27. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data.
In: Proceedingsof the 1968 23rd ACM national conference,New York, NY, USA,
ACM Press (1968) 517{524


