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Abstract

Vector Field Based Shape Deformations (VFSD) have
been introduced as an efficient method to deform shapes in a
volume-preserving foldover-free manner. However, mainly
simple implicitly defined shapes like spheres or cylinders
have been explored as deformation tools by now. In con-
trast, boundary constraint modeling approaches enable the
user to exactly define the support of the deformation on the
surface. We present an approach to explicitly control VFSD:
a scalar function together with two thresholds is placed
directly on the shape to mark regions of full, zero, and
blended deformation. The resulting deformation is volume-
preserving and free of local self-intersections. In addition,
the full deformation is steered by a 3D parametric curve
and a parametric twisting function. This way our deforma-
tions appear to be a generalization of the boundary con-
straint modeling metaphor. We apply our approach in dif-
ferent scenarios. A parallelization of the computation on
the GPU allows for editing high-resolution meshes at inter-
active speed.

1 Introduction

Shape deformations are a well-studied and often-
addressed issue in Computer Graphics. A multitude of tech-
niques has been developed in order to assist the user in var-
ious tasks like shape modeling, industrial design, physical
simulation, animation and many more.

In the context of shape modeling, [23] introduced a space
deformation technique based on vector fields. The idea of
this approach, called Vector Field Based Shape Deforma-
tions (VFSD), is to construct a time-dependent divergence-
free vector field v which defines the deformation. Meshes

Figure 1. Using implicitly defined tools, it is
difficult to exactly control the influence of the
deformation (images from [23]).

can be deformed by performing a path line integration of
each vertex in v over a certain time. Due to the zero diver-
gence of v, the volume of the shape does not change dur-
ing the deformation. Furthermore, the deformation will not
produce self-intersections of the deformed shape, because
path lines never intersect in space-time domain. These are
desirable properties: volume-preserving deformations tend
to look more plausible, whereas self-intersections are phys-
ically impossible and are not reversible using space defor-
mation techniques.

However, the approach presented in [23] has a severe
drawback: unlike in most modern shape editing frame-
works, it is not possible to define exactly which parts of the
shape surface are to be deformed. Instead, [23] use trivari-
ate scalar functions which implicitly define simple tools like
spheres or cylinders which can be used to deform the shape.
Figure 1 illustrates this. In many situations, it is difficult or
even impossible to achieve the desired deformation using
such tools.

In this paper, we present an approach based on VFSD
which eliminates the above-mentioned drawback by defin-
ing the regions of deformations directly on the shape and to



define the full deformation by a 3D parametric curve and a
scalar twisting function. This approach is mainly motivated
by boundary constraint modeling approaches. They are
widely used in recent shape editing frameworks: by plac-
ing boundary constraints directly on the surface, the user
can exactly define which parts of the surface are deformed
by what amount. In fact, from the user’s point of view our
approach can be considered as a generalization of boundary
constraint modeling: by choosing appropriate parameters,
our method gives a similar look-and-feel as boundary con-
straint modeling approaches. However, we also show that
our method can handle deformations which are impossible
to obtain by boundary constraint modeling.

The rest of the paper is organized as follows: Sec-
tion 2 gives an overview of previous shape deformation
approaches and reviews the VFSD method. Section 3 de-
scribes our approach from the user’s point of view. Sec-
tion 4 shows the underlying vector field construction. Sec-
tion 5 gives details about our GPU-based implementation.
Section 6 describes different applications, among them a
scenario which - from the users’s point of view - is similar
to boundary constraint modeling. Section 7 evaluates our
method, while conclusions are drawn in section 8.

2 Related Work

Out of the large pool of existing shape deformation ap-
proaches, we want to give an overview of the most rele-
vant ones, with respect to our work. These include bound-
ary constraint modeling, handle-controlled deformations,
volume-preserving deformations and foldover-free defor-
mations. Finally, we review the VFSD method.

Most boundary constraint modeling techniques are
surface-based and compute the deformation as the solution
of a curvature energy minimization problem with respect
to given boundary constraints. By modifying the boundary
constraints, the user can precisely control the deformation.
Multiresolution methods [14, 7] allow for fast computations
and preservation of small-scale features. Recent approaches
solve the Laplace/Poisson equations [1, 15, 22, 24, 16, 25]
and emphasize correct deformation of local detail. These
methods are based on the solution of large sparse linear sys-
tems and require a certain sampling quality of the deformed
mesh. In order to increase efficiency and robustness, [8] in-
troduced a boundary constraint modeling technique based
on space deformations. Besides the ability to deform non-
polygonal surfaces like point-based models, the approach
allows for interactive deformations of highly complex ge-
ometry by shifting the computation to the GPU.

Many techniques use the concept of a control handle: the
user selects some part of the surface and deforms it in order
to control the deformation of the complete shape. Promi-
nent representatives of this approach are Wires [21], im-

plictly defined occluders [5], shape modeling with point-
sampled geometry [19] and Twister [17]. These meth-
ods are efficient because they don’t rely on linear system
solvers. However, the deformed surface is not optimized
with respect to curvature energy.

In order to produce natural, physically plausible defor-
mations, several techniques have been designed that pre-
serve the volume of a shape under deformation. While [26]
uses a volumetric graph Laplacian to preserve volumetric
details, other approaches explicitly try to keep the volume
constant, either globally [11, 9, 20, 4, 13] or locally [6]. The
Swirling Sweepers method [2] preserves volume implicitly
by utilizing basic volume-preserving space deformations.

Self-intersecting surfaces are undesirable because of two
reasons: they are physically impossible and the cannot be
reversed by space deformations. A number of approaches
dealing with this issue exist [18, 10, 6, 3, 2].

Being based on scalar and vector fields, the shape de-
formation technique in [12] is also related to our work, but
takes a totally different approach.

Vector Field Based Shape Deformations

In [23], C1 continuous time-dependent 3D divergence-
free vector fields v(x, t) are constructed in order to de-
form the meshes via pathline integration of their vertices.
The resulting space deformation is volume-preserving,
selfintersection-free, independent of the shape representa-
tion and requires no precomputation. For the sake of com-
pleteness, we review the method here.

The vector field v is computed as

v(x, t) = ∇p(x, t) ×∇q(x, t) (1)

where p, q are piecewise C2 continuous time-dependent
scalar fields and ∇ describes the (spatial) gradient. The re-
gions of deformation are defined by a time-dependent scalar
field r(x, t) and two constant thresholds ri < ro: if a point
x is in the inner region at the time t (i.e., if r(x, t) < ri),
x undergoes a full deformation at the time t; if x is in the
outer region (i.e. ro ≤ r(x, t)), x remains undeformed, and
for x in the intermediate region (i.e. ri ≤ r(x, t) < ro), the
deformation of x is obtained by a blending process. This
way we get

p(x, t) =




e(x, t) if r(x, t) < ri

(1 − b(x, t)) · e(x, t) + b(x, t) · 0
if ri ≤ r(x, t) < ro

0 if ro ≤ r(x, t)

(2)

q(x, t) =




f(x, t) if r(x, t) < ri

(1 − b(x, t)) · f(x, t) + b(x, t) · 0
if ri ≤ r(x, t) < ro

0 if ro ≤ r(x, t)

(3)



where e, f are simple time-dependent analytic (e.g., linear
or quadratic) scalar fields, and the blending function b is
defined as

b(x, t) =
4∑

i=0

wi B4
i

(
r(x, t) − ri

ro − ri

)
(4)

where B4
i describe the well-known Bernstein polynomials

and (w0, ..., w4) = (0, 0, 0, 1, 1). Then, different choices of
e, f, r give different modeling metaphors. For instance, a
translation of the inner region along a (normalized) vector
t can be obtained by e, f as linear fields with ∇e · ∇f =
∇e · t = ∇f · t = 0 and (∇e)2 = (∇f)2 = 1. To get a
rotation around an axis defined by a point z and a vector t,
we choose

e(x, t) = t · (x − z) , f(x, t) = (t × (x − z))2. (5)

In [23], r has been chosen only implicitly to define simple
regions (e.g., spheres, cylinders) as regions of deformation.

3 Our approach from the user’s point of view

In this section we give a user’s oriented view to our ap-
proach. The main difference to [23] is that we define the
regions of deformation directly on the shape instead of im-
plicitly by a scalar field. Given a shape (here defined as tri-
angular mesh), the user defines a continuous scalar function
s(x) on the shape. Together with two thresholds si < so,
s defines three regions of deformation on the shape: a ver-
tex x in the inner region (i.e., s(x) ≤ si) undergoes a full
deformation, a vertex x in the outer region (i.e., so ≤ s(x))
remains undeformed, whereas the deformation in the inter-
mediate region (i.e. si < s(x) < so) is obtained by a blend-
ing approach. Without loss of generality, we use si = 0 and
so = 1 throughout this paper.

Furthermore we note that in the inner and the outer re-
gion, s does not contribute to the computation of the de-
formation. Therefore we can safely set s = 0 in the inner
region and s = 1 in the outer region. We achieve a contin-
uous scalar function s ∈ [0, 1] on the shape which defines
for every vertex x:

s = 0 → full deformation

0 < s < 1 → blended deformation

s = 1 → no deformation.

Figure 2 illustrates the scalar field s on a shape by color
coding: blue means s = 0, red means s = 1, while the in-
termediate color values are smoothly color interpolated. In
addition to this color coding, the separation curves between
the different regions are highlighted. Also, in this and the
following images, as well as the accompanying video, the

Figure 2. (a) The deformation is defined by
two closed polygons on the shape and a
parametric curve c(t); (b) path line integra-
tion at t = 1/2; (c) path line integration at t = 1
is the desired deformation.

small white sphere on the curve visualizes the current in-
tegration time, while the dark sphere represents the target
time for the integration. The target time can be interactively
moved by the user.

During the deformation (i.e., the path line integration of
the vertices), the location of the vertices change. During this
process we keep s(x) constant to the originally assigned
values unless s is recomputed on the user’s request at a cer-
tain stage of the deformation.

To define the full deformation (i.e., the deformation
which vertices undergo in the inner region) itself, most
modern approaches define a handle which is interactively
placed at its destination point and orientation. Due to its
nature, our approach is able to consider not only the end
point of the deformation but also the way it takes. There-
fore, we define the deformation by a parametric curve c(t),
t ∈ [0, 1], where c(0) lies on the inner region of the shape.
Note that c can be constructed in two ways: either by ex-
plicitly defining the curve (e.g., as B-spline curve), or by
interactively moving c(0). Figure 2 explains an example.

In addition, a twisting effect during the deformation can
be defined by defining a continuous scalar function α(t),
t ∈ [0, 1]. It describes the twisting angle during the defor-
mation along c(t): during the complete deformation (i.e.,
the path line integration from t = 0 to 1), a twisting by the
angle α(1)−α(0) is carried out. If α(t) =const, no twisting
is involved into the deformation.

4 Constructing the vector field

In this section we describe how to use VFSD with a con-
trol of the deformation as described in section 3. It turns out
that we can rely on the vector field construction described
in (1)–(4). In fact, we only have to modify the definition of
e, f and r to get the desired control of the deformation. The
choice of r is responsible to control the regions of deforma-
tion on the surface, while e, f describe the deformation in
the inner region.



4.1 Constructing r

The function r(x, t) together with ri, ro define the re-
gion of the deformation. Conceptually, r has to be defined
as a time-dependent volumetric function, since both r and
∇r contribute to the definition of v by (1)–(4). However, r
and ∇r are only evaluated at the surface of the shape, i.e.
at the shape vertices. We use this fact to estimate r and
∇r at each vertex x out of the scalar field s which is only
defined on the shape. In fact, we set r(x, t) = s(x) for
each vertex. To estimate ∇r(x, t), we consider s at x an all
adjacent vertices in the 1-ring of x. To do so, we apply a
least-square fitting approach of the linear approximation of
r in the neighborhood of x: we solve[

r(x, t) = s(x) , ∇r(x, t) · n(x, t) = 0∑
y∈R1(x)(r(y, t) − s(y))2 → min

]
(6)

where R1(x) is the 1-ring of x and n(x, t) is the estimated
shape normal at the vertex x. This means that we assume a
zero direction derivative of r in normal direction. Assuming
r to be linearly approximated, (6) has a unique solution for r
and ∇r. Finally we set ri = 0 and ro = 1 to get a complete
estimation of r, ri, ro from the explicitly defined s.

4.2 Constructing e, f

The scalar fields e, f are responsible for the definition
of the deformation in the inner region. They have to be
chosen such that the deformation in the inner region follows
the curve c(t), and no distortions in the inner region are
introduced during the deformation. To do so, we can choose
e, f to define a rotation or a translation, and

v(c(t), t) = ċ(t). (7)

Since c(0) is in the inner region of the deformation, this is
equivalent to

∇e(c(t), t) ×∇f(c(t), t) = ċ(t). (8)

In order to define a translation in the inner region, we define
v(x, t) = v(t) as a time-dependent constant field in the
inner region. To do so, e, f are time-dependent linear scalar
fields with

∇e(x, t) · ċ(t) = ∇f(x, t) · ċ(t) =
∇e(x, t) · ∇f(x, t) = 0, (9)

‖∇e(x, t)‖ = ‖∇f(x, t)‖ =
√
‖ċ(t)‖, (10)

e(c(t), t) = f(c(t), t) = 0.

Note that (10) gives a unique definition of e, f except for
one degree of freedom: the direction of ∇e (or ∇f respec-
tively) can be chosen arbitrary but perpendicular to ċ(t).

Figure 3. Local translation along the curve
c(t) for t = 0, 1/2, 1: the inner region follows
the curve but does not change its orientation.

Figure 4. Local rotation along the curve c(t)
for t = 0, 1/2, 1: the inner region follows the
curve both in location and orientation.

However, it turns out that this degree of freedom does not
have any influence on the definition of v. Figure 3 illus-
trates a local translation of the inner region along the curve
c(t). As we can see there, the inner region follows the curve
c(t) but does not change its orientation.

In order to enable both the location and the orientation
to follow c(t), we define the inner deformation as a rota-
tion around a rotational axis perpendicular to the osculating
plane of c and passing through the curvature center of c. In
fact, we compute the curvature center as

z(t) = c +
c̈(ċ · ċ)2 − ċ(ċ · ċ)(ċ · c̈)
(ċ · ċ)(c̈ · c̈) − (ċ · c̈)2

(11)

and the direction of the rotation axis as

t(t) = (ċ × c̈). (12)

Then e(x, t), f(x, t) are defined as

e = t · (x− z) , f = (t× (x− z))2 − (c− z)2. (13)

It is straightforward exercise in algebra to show that (11),
(12) and (13) give (8). Figure 4 illustrates a local rotation of
the inner region: both its location and its orientation move
along c(t).

In order to incorporate an additional twisting along the
tangent of c, we define an additional divergence-free vector
field ṽ out of the scalar fields ẽ, f̃ , r̃ similar to (1)–(4) by
setting r̃ = r and ẽ, f̃ defining a rotation around the axis
c(t) + λ ċ(t). In fact, we set

ẽ(x, t) =
α̇(t)
2π

(x−c(t))·ċ(t), f̃(x, t) = ((x−c(t))×ċ(t))2.
(14)

Then ẽ, f̃ define a new vector field ṽ which is simply added
to v(x, t) for the path line integration. Figure 5 illustrates a
twisting effect.



Figure 5. Local rotation and twisting along
the curve c(t) for t = 0, 1/2, 1.

5 Implementation

In order to get interactive deformations for complex
meshes, we shift the computation to the GPU. Here we use a
General Purpose GPU Computing (GPGPU) approach: All
necesseray data is stored in textures, and the computation is
performed in a fragment shader by rendering a quad. When
we want to deform a mesh, we first have to store the ini-
tial vertex positions together with the scalar field s in a tex-
ture, the vertex texture. Similarly, normals and gradients
are stored in the normal texture and the gradient texture,
respectively. Since the estimation of normals and gradients
depends on the mesh connectivity, we also need to represent
vertex connectivity as texture: We store up to eight indices
of the neighbor vertices for each vertex in the connectivity
texture (we only used meshes with a vertex valence smaller
than nine). While the connectivity stays fixed throughout
the deformation, vertex positions, normals and gradients are
updated in each integration step. This is realized by four
fragment shaders, which are called consecutively in each
integration step.

Normal shader. In this shader, the normal of a vertex
is computed as the normalized sum of the normals of the
adjacent triangles. The necessary input is the vertex texture
and the connectivity texture. The result is written to the
normal texture.

Gradient shader. This shader estimates the gradient ∇r
as described in Section 4.1. For this estimation, it uses the
the vertex texture, the normal texture and the connectivity
texture and renders the result to the gradient texture.

Smoothing shader. Due to small scale normal vari-
ations, the previously computed gradient is generally not
smooth enough to give smooth deformations. To solve
this problem, the smoothing shader performs a Laplacian
smoothing on the estimated gradient: For a fixed number of
steps, the gradient vector of each vertex is moved towards
the mean gradient of its 1-ring neighborhood. This shader
needs the normal texture, gradient texture and connectivity
as input and overwrites the gradient texture.

Deformation shader. This shader performs the actual
deformation after the gradient has been estimated. It com-
putes a divergence-free vector field as described in Section
4 and performs one integration step of this field. In order to
be robust, we use one fourth-order Runge Kutta step here.
The input of this shader is the vertex texture and the gradient

texture. The result is written to the vertex texture.
Using these shaders, the mesh can be deformed without

readback from graphics memory, which would be a bottle-
neck. Only when we need to access the data (usually after
the deformation), we read it from the respective textures.

6 Applications

In this section we introduce different choices of s, c, α
to obtain different application scenarios.

6.1 Geodesic level deformation

The main advantage of our approach over [23] is the fact
that we can define the influence of the deformation directly
on the surface, while [23] use implicitly defined scalar fields
like the Euclidean distance for this purpose. Using a smooth
approximation of the geodesic distance to a point on the sur-
face, we can define the influence of the deformation more
intuitively: The user simply selects a vertex on the shape,
and the geodesic distance field g(x) of this point is approx-
imated on the surface. For this, we use Dijkstra’s algorithm
and smooth the scalar values afterwards using a Kernel with
local support. That way, we make sure that the resulting de-
formation is smooth. Using two user-adjustable thresholds
gmin, gmax, we define s(x) as

s(x) =




1 − g(x)−gmin

gmax−gmin
if gmin < g(x) < gmax

1 if g(x) ≤ gmin

0 if gmax ≤ g(x)
(15)

In Figure 7 the user has selected the middle finger of a hand
shape by clicking on the tip of the finger. By adjusting the
thresholds gmin, gmax, the regions of full and zero defor-
mations have been set such that the deformation affects only
this finger.

6.2 Emulation of boundary constraint
modeling

In boundary constraint modeling, three regions of defor-
mation are painted onto the surface. They correspond to the
regions which are defined by the scalar field s. Note that
s actually contains more information than used for bound-
ary constrained modeling: in the intermediate region (i.e.,
at vertices x with 0 < s(x) < 1), the deformation depends
on s. Therefore, in order to emulate boundary constraint
modeling, the scalar field s in the intermediate region has
to be chosen automatically. To do so, we compute the ap-
proximate geodesic distance gi(x) of a vertex x to the in-
ner region on the shape, and we compute the approximate
geodesic distance go(x) of x to the outer region. Here we
use the same smooth approximation as in Section 6.1. In



Figure 6. The squirrel model is deformed from start to target handle.

Figure 7. Using the geodesic distance field
of a point on the tip of the middle finger, we
can deform the finger without affecting other
parts of the shape.

fact, we compute and store the scalar fields gi and go for
every vertex in the inner region first by growing from the
boundary between inner and intermediate, and intermediate
and outer region respectively. Then we set

s(x) =
go(x)

gi(x) + go(x)
0 +

gi(x)
gi(x) + go(x)

1. (16)

Figure 8 gives an illustration. Figure 9, 10 and 11 show
examples how this approach can be used to deform different
shapes.

To steer the inner deformation, boundary constrained
modeling approaches use a handle which can freely be
placed. Since our approach is volume-preserving, we do
not consider scaling and therefore use a 6-DOF handle de-
fined by a 3D location h, a (normalized) normal vector m,
and a (normalized) binormal vector w with w · m = 0. In
order to move a handle (h,m,w) to (ĥ, m̂, ŵ), we con-
struct a cubic curve c(t) and a twisting function α(t) such
that the deformation realizes the moving of the handle. We

inner
region intermediate

region

outer
region

x

go( )x
gi( )x

Figure 8. Computing s(x) by approximating
the geodesic distance between a vertex x and
the inner/outer region.

Figure 9. By drawing boundaries (white) onto
the neck of the horse, the user can specify
the influence regions of the deformation.



Figure 10. Due to the chosen boundaries
(white), both the head and the front legs of
the cow model undergo a full deformation.

Figure 11. By choosing appropriate bound-
aries on Armadillo’s arm, realistic bending
deformations can be obtained.

construct c(t) as a cubic Bezier curve with the Bezier points

b0 = h , b1 = h +
1
3
(m · (ĥ − h)) · m (17)

b2 = ĥ − 1
3
(m̂ · (ĥ − h)) · m̂ , b3 = ĥ.

Figure 12a gives an illustration. Figure 13 shows a rather
strong bending deformation of the models.

In order to compute the twisting function α(t), we com-
pute α0 as the angle between b2p

− h and w where b2p
is

the projection of b2 onto the plane through h perpendicular

h b= 0

b1

b2

m

m

h b= 3

c( )t

h

b1

b2
b3

b2 p
�0

w

m

m

h

w

�1

b2

b1 b0

b1 p

(a)
(b) (c)

Figure 12. (a) constructing the cubic Bezier
curve c(t) to move (h,m,w) to (ĥ, m̂, ŵ); (b)-
(c) computing α0 and α1 for constructing α(t).

Figure 13. Our approach allows for rather
strong bending deformations. The deforma-
tion behavior can be controlled by adjusting
the radius of the curve.

to m. Figure 12b illustrates this. Furthermore, we com-
pute α1 as the angle between b1p

− ĥ and ŵ where b1p
is

the projection of b1 onto the plane through ĥ perpendicu-
lar to m̂. Figure 12c illustrates this. Then we can compute
α(t) = (1−t) α0+t α1 which defines the desired twisting.

In interactive applications, the deformation is not always
defined by start and target handle but by interactively mov-
ing the handle. Our vector field based approach can deal
with this as well: if the handle (h,m,w) is simply trans-
lated to (ĥ,m,w), we can emulate this by constructing
c(t) = (1 − t) h + t ĥ and α(t) =const. If on the other
hand the handle (h,m,w) is not moved but only rotated
along the axis h + λ t to the handle (h, m̂, ŵ), we can
construct a vector field realizing this rotation by choosing
z = h and (5).

6.3 Knots and extreme deformations

There are deformations which can hardly be achieved by
approaches based on a certain energy-minimization. Exam-
ples are ”knots” in a shape or an extreme twisting. Since
our approach steers the inner deformation not by a handle
but by a curve and a twisting function, we can handle such
deformations. Figure 14 shows an example of making a
”knot” into a cylinder model. Figure 15 shows a box which
is twisted and at the same time deformed along a curve.

7 Evaluation

In this section we evaluate our approach concern-
ing performance, volume preservation, and possible self-
intersections.

7.1 Performance and volume-preservation

In the following table, we see a performance benchmark
of our GPU implementation, performed on a GeForce 7800



Figure 14. Thanks to the surface-based def-
inition of r(x, t) and the curve-guided defor-
mation, extreme deformations like knots are
possible.

Figure 15. Also extreme twistings combined
with a deformation along the control curve
are possible.

Figure 16. Our deformations tend to prevent
local self-intersections, while global self-
intersections are possible.

GTX graphics card. In addition, we measured the change of
volume with respect to the undeformed shape.

model fig. vertices t/step [ms] vol. error
box 4 2,462 4 1.8%
bar 13 9,730 9 0.4%

squirrel 6 9,995 9 0.08%
horse 9 19,851 22 0.7%

cylinder 14 21,302 20 1.6%
hand 7 53,054 55 0.01%

Since the required number of steps depends on the amount
of deformation, we have measured the required time for one
integration step. For a complete deformation along a cu-
bic Bezier curve, we used 200 – 300 steps to get accurate
results. For the time-per-step measurement, we deformed
each model completely, i.e. all vertices were integrated. For
the volume measurement, we measured the error after the fi-
nal deformation depicted in the respective figure, in order to
give the reader an illustration.

7.2 Self-intersections

The method in [23] was guaranteed to prevent local and
global self-intersections because r, e, f were computed as a
global continuous scalar field. Since the method in this pa-
per computes r only as a local approximation of the shape,
global self-intersections cannot be excluded any more. For
example, our method does not check if parts of the inner re-
gion intersect parts of the outer region during the deforma-
tion. However, due to the fact that path lines do not intersect
in space-time domain, our method can still guarantee that no
local self-intersections occur. Figure 16 shows an example
of an extreme deformation where global self-intersections
occur but local self-intersections are excluded.

While our deformations do not prevent global self-
intersections, they are nevertheless volume-preserving with



Figure 17. While the original VFSD method
(left) prevents global self-intersections, it in-
troduces strong distortions under extreme
deformations. Our method (right) tolerates
global self-intersections, with the advantage
that extreme deformations are free of distor-
tions and the amount of deformation can be
exactly controlled.

respect to our definition of volume: Given the shape repre-
sented as a closed triangle mesh, we define its volume as the
sum of the signed volumes of the tetrahedrons formed by the
mesh triangles and the origin. It turns out that our method
preserves this volume even during self-intersections. The
toleration of global self-intersections has the advantage that
more extreme deformations are possible without introduc-
ing distortion artifacts. Figure 17 shows a comparison
of a strong bending deformation using the original VFSD
method and our method. Using the original method, it is
hard to control the deformation precisely and strong distor-
tions of the shape occur. Using our method, the volume is
preserved more uniformly while the amount of deformation
can be precisely controlled.

8 Conclusion

8.1 Contributions

We presented an approach to explicitly control VFSD. In
the following, we list the most relevant contributions:

Exact control: In contrast to the approach presented in
[23], where the region of influence was controlled by sim-
ple implicit objects like spheres or cylinders, our approach
permits an exact control of the deformation by defining the
deformed regions directly on the surface.

Extended steering of the deformation: Contrary to
boundary constraint modeling, the definition of the inner
deformation is steered by a curve and a function. This way,
deformations can be handled which can hardly be achieved
with energy-minimizing approaches.

Efficient deformations on the GPU: In order to make
the method suitable for interactive applications, we im-
plemented in on the GPU. The main difference to [23] is
that our implementation does not need any read-backs from
GPU to CPU during the deformation.

8.2 VFSD features

By utilizing the VFSD technique presented in [23], our
approach inherits the following features:

Intuitive editing: Thanks to the VFSD technique, the
shape’s volume remains constant under deformation. This
way, the deformations look natural and help the user to edit
shapes in an intuitive manner.

Avoidance of local self-intersections: Due to the nature
of path line integration, no local self-intersections can occur
during the deformation.

8.3 Limitations

Our deformation technique has some restrictions and
limitation which we list below.

Global self-intersections: Contrary to [23], our method
cannot guarantee to avoid global self-intersections.

Vertex dependencies: The method in [23] is able to in-
tegrate the vertices of the mesh independently of each other.
Contrary to this, our approach needs the connectivity infor-
mation of the mesh to estimate the volumetric field r out of
the surface field s.
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