On Geometric Continuity of Isophotes
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Abstract. 1Itisa 1Well known fact that we can deduce G™ continuous
isophotes from a G™ ! continuous surface. This paper gives answer to the

reverse problem: we deduce a G"*! continuous surface from G™ continu-
ous isophotes on the surface. We show how many families of isophotes we
have to consider and what constraints apply. Furthermore we apply the
geodesic curvature and the ”thickness” of isophotes as a surface interro-
gation tool.

§1. Introduction

Isophotes are a widely used interrogation tool in the design of various sur-
faces. First introduced in [4], they provide both an impression of global shape
features and information about the continuity of the surface.

A family of isophotes on a surface x(u,v) is defined by a light direction
vector r (|[r|| = 1). Then the isophotes are the equipotential lines of the scalar
field

s(u,v) =r1-n(u,v) (1)

X, XX,
[1Xo XXy ||

isophote on the surface contains all surface points which have the same angle
between the light direction and the surface normal. Silhouette lines are a
special case of isophotes.

In this paper we use the following usual definition of geometric contin-
unity: Two curves are G™ continuous at a common point x iff there exists a
regular parametrization with respect to which they are C™ at x. Two surfaces
are G™ along a common line I iff there exists a regular parametrization with
respect to which they are C™ along .

It is a well known fact that a G"*! continuous surface implies G™ con-
tinuous isophotes (see [4] and [2]) . Section 3 of this paper gives answers to
the reverse questions:

where n = denotes the normalized normals of x. This means, an

1) Is it possible to deduce G™*! continuity of the surface from the G™ con-
tinuity of isophotes 7
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2) If so, how many families of isophotes do we have to consider, and what
constraints apply ?
The answers to the questions 1) and 2) are quite important for using isophotes
to analyze the continuity of surfaces. It shows how many families of isophotes
have to be considered in order to get reliable statements about the continuity
of the surface.

Isophotes can not generally be computed in a closed form but only as the
numerical solution of partial differential equations. Nevertheless we want to
compute local properties of isophotes, such as geodesic curvature and a new
property called ”thickness” in a closed form. In section 4, these properties
are applied as surface interrogation methods.

Notation and abbreviations: x[l(¢) denotes the i-th derivative vector
of a parametrized curve x(¢). x71(u, v) denotes the partial derivative (i times
in u-direction, j times in v-direction) of the parametrized surface x(u, v). For
instance, x12'1 denotes X,,,. The partials n»J! of the surface normals can
be obtained by applying basic differentiation rules to n. Furthermore, we use
the classical abbreviations ¥ = x, -x,, F =%, -%x,, G =%, -%X,, L =
n-Xuy, M =n-X,, N =n-x,,. From these scalar fields we can also
compute the partial derivatives.

In this paper we only consider regularly parametrized curves and surfaces.
This means for curves that ||x(t)|| # 0 for every ¢ of the domain. For surfaces

we assume that ||x, X x| = VE -G — F? #0.

§2.Theoretical Background

We will be analyzing isophotes on a parametric surface by interpreting them
as tangent curves of vector fields. Before we discuss the surface case, we briefly
describe the case of 2D vector fields.

Given is a 2D vector field V : R* — IR?. V assigns a vector V(u,v) =
(va(u,v), vy(u,v))T to any point (u,v) of the domain. A curve t C IR? is
called tangent curve (stream line, flow line, characteristic curve) of the vector
field V' if the following condition is satisfied: For all points (u,v) € t , the
tangent vector of the curve in the point (u,v) has the same direction as the
vector V(u,v).

Tangent curves do dot depend on the magnitudes of the vectors in V' but
only on their directions. A point (u,v) € IR? is called critical point of V if
V(u,v) = 0 is the zero vector.

We consider a non-critical point (ug,vp) in the domain of V. Then we
know that one and only one tangent curve t(t) = (u(t),v(t)) passes through
(ug,vp). We assume t(t9) = (ug,v9). From the definition of tangent curves
we know about the tangent vector of t in (ug,vp):

§(ty) = (".‘(“)) — V(t(to) = (x(“)) . @)

'U(tO) 'Uy(uov UO)
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Applying the chain rule to (2), we can compute the second derivative vector
of t in (Uo, ’Uo)Z .

t(to) = (v - Vi + vy - Vi) (uo, vo)- (3)
If we consider the domain of the vector field V' as the domain of a surface x
as well, the tangent curves of V' are curves in the domain of x and therefore
mapped onto surface curves on x. Let y(t) = x(t(¢)) be the map of the tangent
curve t(t) onto x. Applying the chain rule to x(t(¢)), we obtain for the tangent

vectors of y:

¥(to) =y (t0) = xu(t(to)) - @lto) + % (t(t0)) - 9 (to)
= (v - Xy + vy - Xy) (U0, Vo).

(4)

Defining
X0 = X
X41 =02 - (%), +vy- (%), for r=0,1,2,..

()

we obtain for higher order derivatives of y in a similar way to (4):
y(to) = %, (8(t0)) = % (o, v9) for r=1,2,3, ... . (6)

A vector field defining the isophote directions in the domain of x is the per-
pendicular vector field to the gradient vector field of s defined in (1):

va(u, v —r-n,(u,v
Vi) = (W00 ) () )
vy (u,v) r-n,(u,v)
The tangent curves of V' are the isophotes in the domain, their maps onto x
are the actual isophotes on the surface. Since

F-M—-G-L F-L—-FE-M
nu:—'xu 'x’U
%0 X Xy |2 ||%u X Xy |2
F - N—-G-M F-M—FE-N
n, = o Xy 5 X
%0 X %, | 1%, X X, ||

we can write the isophotes vector field V' in the domain as
VL -r-(c-x, +d-%,

V = = ( ) (8)
vy r-(a-%,+b-x,)

a=F- M-G-L , b=F-L—FE-M

9
c=F-N-G-M , d=F-M—-FE-N. (9)

Critical points: occur where the isophotes vector field has a zero vector, i.e.
ve = 0 and vy = 0. We obtain a critical point in x(u, v) iff at least one of the
following conditions is satisfied:

where

- ris parallel to n(u,v),
- x(u,v) has a zero Gaussian curvature and r is in the plane defined by the
normal and the principal direction with the zero normal curvature,
- x(u,v) is a flat point.
A proof of this can be found in [7].
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63. The Continuity of Isophotes

In this section we show how to infer a G™*! surface from G™ isophotes. The
result is formulated in theorem 2. To prove this we need the following

Lemma 1. Given are two regularly parametrized curves x(t) and x(t) which
join C™ (n > 0) in the point xo = x(0) = %(0). Then the following statement
is valid: x and X are G™** in xo iff (X" TH(0) — x"+1(0)) is parallel to x*1(0).

Proof: see [6]. W

Now we can formulate the following

Theorem 2. Given are two regularly parametrized surfaces x and x which
join along a common line l. Then x and x are G™*! continuous (n > 1) along
l if there is one family of isophotes on x and x (defined by the direction vector
r) with the following properties:

1) In no point ofl do the isophotes on x and x have critical points.
2) In no point of l are the isophotes on x and x tangent to L.

3) In no point of l is the projection of r into the tangent plane of x and X
tangent to l.

4) All isophotes of the family are G™ continuous across l.

Proof: The direction vector r defines vax and vy with the values a, b, ¢, d on
x (see (8) and (9)). In a similar way, r defines vz and vy with the values
a,b, ¢, d on x. We assume that the junction line I is (0,v),0 <wv < 1. This can
be done by a linear reparametrization of x and x without loss of generality.
Assumption 2) of the theorem can then be written in the form vz(0,v) # 0.
We expressrasr = q; - X, + q2 ' X, + ¢3 - 0 where ¢1, g2 and g3 are bivariate
scalar functions over the domain of x. Then assumption 3) of the theorem
holds ¢1(0,v) # 0. Since g1+(F?—E-G) = (—G Xy +F %) (q1-Xu+q2 Xy +¢3°1)
we obtain

(-G -x, + F -x,)(0,v) -1 #0. (10)

The G™ continuity of the family of isophotes gives the G™ continuity of x and
x along [. To show this, we can imagine a reparametrization of x and x in such
a way that the isophotes defined by r are the isoparametric lines v = const
on X and x. We thus can assume that x and x are parametrized in such a
way that they are C™ along l. Since I is the isoparametric line u = 0, we can
deduce x[*1(0,v) = x»7H1(0, ) from xl-31(0, v) = x91(0, v). We obtain

xB71(0,0) = %47 (0,0) for 4, jeN,i+j<n+1,i#n+1. (11
(9) and (11) yield along :

altdl = glal o plial — plidl  for i j<n,i#En—1
(-G -n- (x["‘H’O] _ 5(["+1’0]))
(

F-n- (x[n+1,0] _ i["+1’0])).

’ 12
a[n_LO] _ a[n—l,o] ( )

b[n—l,O] o E[n—l,O] —



On Geometric Continuity of Isophotes 5

From (8) and (12) we obtain along I
vl = ylhdl for t+j3<n
vyl = vNy["’j] for i+j5<n,i#n-1
Uy[n—l,o] _ U~y[n—1,0] r- [(a[n—l,o] _ d[n—l,O]) X, + (b[n—LO] _ g[n—l,o]) - Xo]
(- (xIH10] _ g L0y L (r L (—G - x, + F - x,)).
(13)

Let y!*(u, v) and 1 (u, v) be the tangent vectors of the isophotes on x and
x. From (5), (6) and (13) we obtain

yi(0,0) =§7(0,0) for i<n-—1
(" = 57)(0,0) = (va" - (oL — g =100) ) (0, ).

(14) yields that the family of isophotes is C™~! across I. To achieve G™ of the
isophotes we must have (see lemma 1):

(14)

(y") —3"))(0,v) parallel to (vz - x, + vy - %,)(0, ). (15)

(14), vx(0,v) # 0 and the assumption that x and x are regularly parametrized
yield the necessary condition for G™ of the isophotes across I, i.e. for (15):

(oy" =10 — iyl =100 (0, v) = 0. (16)
Inserting (13) into (16) and keeping (10) in mind yields
n(0,v) - (x50 — gL 4) = 0. (17)
Because of (17), there exist two scalar functions p;(v) and ps(v) so that
x" L0 (0 v) = x"H10(0,0) 4 py(v) - %4 (0,0) 4+ pa(v) - %, (0,0).  (18)
We consider the reparametrization X of x which is defined as

x(u, v) =x(t(u,v), H(u,v))
untl A unt (19)
S pr(v) , 0(u,v) =v+ CES  pa(v).

Computing the wu-partials of X by applying the chain rule to (19) yields for
u=0:

w(u,v) =u+

f([i’o](O, v) = x4%(0,0) = x%(0,0) for 0<i<n

(20)
x"TL0 ) = x"TL(0, 0) + py(v) - %4 (0,v) + pa(v) - %, (0, v).

From (18) and (20) we see that X and x are C™*! along I. Since % is obtained

from x by reparametrization, we have shown that x and x are G"*! along .
|

Remark: The special case n = 1 of theorem 2 is already shown in [5].
The constraints there are formulated in a slightly different way but coincide
with the constraints of theorem 2.
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64. Local Properties of Isophotes and Surface Interrogation

Since we were able to compute the first and second derivative vector of the
isophote through a given surface point x(ug, vg) (see (6)), we can compute the
geodesic curvature of the isophote in this point:

¥, (to) = ¥(to) — ((uo, vo) - ¥(to)) - n(uo, vo)

y(to) x ¥, (to 21
K (uo, vo) = sign(det[y(to), ¥, (¢o),n(uo, vo)]) - ||y<t||;(t0§ﬁ?(>t )l (21)

‘yp denotes the projection of y into the tangent plane. Since the geodesic
curvature of a surface curve can be considered as the curvature of a 2D curve,
it can be equipped with a sign.

The "thickness of isophotes” (or ”distance between adjacent isophotes”)
is a measure of how strong the value of s(u,v) changes locally. A strong
change in s implies that "many isophotes are close together”, one isophote is
"thin”. For the isophotes in the domain of x the measure of the ”thickness”
is th = m = ”71” Mapping this onto the surface, we obtain for the

"thickness” of the isophotes through x(u, vo):

th(ug, vo) = [|%u (10, v0) X xv(uo,vo)H' (22)

1y (£o)]

Note that neither the geodesic curvature nor the ”thickness” of the isophote
through x(ug,v9) depends on the parametrization of x. Also note that we
were able to compute geodesic curvature and ”thickness” of the isophote in
x(up, o) in a closed form even if a closed form of the isophote itself does not
exist.

Except for critical points of isophotes we can compute geodesic curvature
and ”thickness” of the isophotes for every surface point. Around critical points,
geodesic curvature and ”thickness” of isophotes diverge to infinity.

For using geodesic curvature and ”thickness” as a surface interrogation
method we compute and color code these measures for every surface point. For
doing this we use a continuous color coding map with the following properties:
a negative value gets a green color, a positive value gets a red color, the higher
the magnitude of the value the lighter the color gets. In fact, a zero value
gives black; if the value diverges to plus (minus) infinity the red (green) color
tends to white.

The upper left picture of figure 1 shows the ray traced image of the shoe-
shaped test surface. This surface consists of 29 x 10 piecewise bicubic patches
and is G? continuous along the patch boundaries. The surface looks smooth,
imperfections are hardly detectable.

The middle left picture shows the usual way of visualizing isophotes on
the surface. The isophotes here are computed in the following way: choose a
(small) interval and mark all points on the surface where the values of s(u, v)
are in the interval. The result are not the isophotes themselves but point sets
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Fig. 1. Isophotes and their local properties on a test surface.

on the surface which give an impression of the behavior of the isophotes. In
particular we can see that the point sets have a varying ”thickness”.

The upper right picture of figure 1 shows the visualization of the ”thick-
ness” of the isophotes. Here we clearly detect areas of the surface where a
redesign is necessary. The critical points of isophotes appear as highlights in
the visualization.

The middle right picture of figure 1 shows the visualization of the geodesic
curvature of the isophotes. Again, the critical points of isophotes appear as
highlights. We can clearly detect that the isophtes are not curvature (i.e.
G?) continuous at the patch boundaries. Therefore the surface is not G®
continuous.

The lower left and the lower right pictures of figure 1 are magnifications
of the middle left and the middle right picture.
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