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Figure 1: Vector field contours of the electrostatic field around a benzene molecule from different view directions. Using our new technique allows to select those

stream lines which have tangent direction and osculating plane perpendicular to the current view direction in the seeding point.

ABSTRACT

We describe an approach to define contours of 3D vector fields and
employ them as an interactive flow visualization tool. Although
contours are well-defined and commonly used for surfaces and 3D
scalar fields, they have no straightforward extension in vector fields.
Our approach is to extract and visualize specific stream lines which
show the most similar behavior to contours on surfaces. This way,
the vector field contours are a particular set of isolated stream line
segments that depend on the view direction and few additional pa-
rameters. We present an analysis of the usefulness of vector field
contours by demonstrating their application to linear vector fields.
In order to achieve interactive visualization, we develop an efficient
GPU-based implementation for real-time extraction and rendering
of vector field contours. We show the potential of our approach by
applying it to a number of example data sets.

Index Terms: I.3.3 [Computer Graphics]: ,—Contours, Flow Vi-
sualization

1 INTRODUCTION

Contours, also called silhouettes, are a well-established and popu-
lar tool for the visualization of 3D shapes. Their expressiveness is
the main benefit: the most significant surface features and hence the
essential information is conveyed easily with only few line primi-
tives.

Such information is easily comprehended, because human visual
perception is highly trained for interpreting such contour based in-
put. Contours are integral to technical illustration, and for more
than a decade, non-photorealistic rendering (NPR) had adopted line
drawing styles such artistic styles like pen-and-ink illustration [31].
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In these, contours are of central importance as they efficiently con-
vey the most relevant information.

Various kinds of contours of surfaces have been studied exten-
sively, and they have emerged as standard features (see [6] and the
references therein). For volume rendering, contours have been suc-
cessfully applied to the visualization of 3D scalar fields: several ap-
proaches emphasize linear features by modulating opacity [5,8,18],
or using curvature directions [14, 21] or curvatures [16]. Typically,
contours for scalar fields are defined as contours of implicit sur-
faces. There, the algorithmic focus is on efficient isosurface extrac-
tion or optimized extraction of the linear features [2, 4], possibly
using high quality parametric curves [22] or graphics hardware to
determine discrete silhouette pixels [20]. We remark that there is
also considerable work on frame-coherent interactive methods and
visualization of time-varying fields, however, this is not within the
realm of this paper.

Vector fields constitute an important class of data in scientific
visualization. They frequently result from numerical simulations
such as computational fluid dynamics. Due to the size and complex-
ity of the data, direct visualization of such 3D flow data is extremely
challenging. The success of contours for representing surfaces and
scalar fields and the fact that the human visual system is adapted at
recognizing and interpreting contours motivates the central goal of
this paper: determining vector field contours for flow illustration.
We are only aware of one previous approach to using contours in
vector field visualization: Svakhine et al. [25] consider those sur-
faces where the vector field is perpendicular to a certain view direc-
tion and use it to enhance the illustration of the flow. Contrary to
this work, our approach extracts and processes geometry, i.e., line
structures, based on additional criteria.

When considering vector field contours for visualization, we ob-
serve that:

1. A straightforward extension of the concept of contours to vec-
tor fields is not possible, since the original definition of a con-
tour depends on the existence of underlying (iso)surfaces and
their normals and such surfaces are generally undefined for
3D vector fields.

2. Stream lines have proven to give expressive visual representa-
tions if they are combined with appropriate seeding strategies.



In fact, stream lines are perhaps the most common standard
tool for visualizing vector fields.

Combining these observations, we propose to extract a number of
isolated stream lines which display the most similar behavior to
classical contours on surfaces. In this way, our approach can be
considered a stream line seeding approach: depending on the view
direction and additional parameters, the seeding points are defined
by certain local conditions. Starting from these points, the stream
lines are integrated both in forward and backward directions until
their similarity to surface contours is beyond a certain threshold.

Contrary to pre-existing stream line seeding approaches for 2D
[15,19,28,29] and 3D [32] vector fields, our approach is, to the best
of our knowledge, the first that seeds in a view direction dependent
manner. Therefore, our approach is only applicable as an interac-
tive visualization tool if the view direction can be changed under
quasi-interactive frame rates. In order to achieve this, an efficient
interactive GPU implementation is necessary.

The rest of the paper is organized as follows: In Section 2 we
describe our contour approach. In particular, we describe how to
define the similarity of a stream line to a surface contour and how to
obtain local conditions for the seeding structures. Then an analysis
follows in section 3 which details on the properties and usefulness
of vector field contours as a visualization tool. Section 4 describes
a fast GPU-based implementation of our approach which enables
interactive adjustment of contour parameters, such as the view di-
rection, and therefore enables interactive explorations of the vector
field. In Section 5 we apply our approach to a number of test data
sets and show results. Conclusions are given in Section 7.

2 DEFINITION OF VECTOR FIELD CONTOURS

In order to define contours of vector fields, we start with a short
description of contours of surfaces and 3D scalar fields. Given a
regularly parameterized surface x(u,v), a contour (we consider the
original notion of contours as silhouette lines not including sug-
gestive contours [6]) is defined by a (unit-length) view direction
r. Here, we consider only the case of constant view direction, i.e.,
parallel projection. Then contours are surface curves consisting of
points with r ·n = r · (xu ×xv) = 0 where · denotes the dot product
of vectors.

The main idea for the definition of contours of a 3D scalar field
s(x,y,z) for a given view direction r, is to pick an isovalue s0 and to
define the contour of the isosurface s = s0 as described above. This
means that given r and s0, the contour consists of all points of the
domain of s with [r ·∇s = 0 ∧ s = s0 ].

In order to extend the concept of contours from scalar fields to
vector fields, we begin with the observation that stream lines and
stream surfaces are probably the most recognized and most impor-
tant line and surface features in vector fields. In 2D, smart place-
ment of an appropriate number of stream lines has been proven to
deliver expressive visualizations [15,19,28,29]. The generalization
to 3D vector fields is not straightforward, and sophisticated filtering
of stream lines is required to process moderately complex data [32].
Instead of trying to capture all topological features simultaneously,
we perform a careful real-time selection of an efficient set of rep-
resentative stream lines which are closest to contours for a given
viewing direction.

As input, we are given a 3D steady vector field v(x,y,z) in a
volume domain D and a view direction r. We search for parts of
stream lines that locally act as contours. Two steps are required to
execute this search: first, we set the seeding structures, second, we
integrate stream lines from the seeds in both forward and backward
directions until a certain threshold is exceeded.

Consider the isosurface a ⊂ D which is defined by

r ·v = 0 (1)
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Figure 2: (a) A stream line (x0,x1,x2, ...) locally acting as contour when:

r · v(x0) = 0 and r · v(x1) = 0; (b) a point x is on the seeding structure if

r ·v(x) = n ·v(x) = 0.

in D. Note that in general, a is neither a stream surface, nor a stream
line is a surface curve on a. Equation (1) corresponds to the condi-
tion r ·∇s = 0 for contours of scalar fields. We provide two charac-
terizations of the seeding structures of the vector field which stem
from different interpretations and turn out to be equivalent:

1. We search for points x ∈ a where one infinitesimal integration
step preserves (1), i.e., the stream line starting from x acts
locally as a contour. Consider an Euler integration (the Euler
step serves as theoretical tool here. Our implementation uses
forth order Runge-Kutta integration) with the step size ε, the
condition can be formulated as r · v(x1) = 0 with x1 = x +
ε v(x). Furthermore, since

lim
ε→0

v(x1)−v(x)

ε
= (∇v) v,

this condition can be written as

r ·w = 0 (2)

with w = (∇v) v. Figure 2a gives an illustration.

2. We search for all points x ∈ a where the stream line starting
from x is locally a surface curve of a, i.e., v(x) is locally per-
pendicular to the normal of a in x. Since the normal of a is
parallel to ∇(r ·v), we get the condition v ·∇(r ·v) = 0. It is a
straightforward exercise in vector algebra to show that this is
equivalent to (2). Figure 2b gives an illustration.

The first formulation focuses directly on the local contour charac-
ter of stream lines originating from x. The second formulation is a
little more abstract and based on the observation of tangent spaces
of a. Figure 2 illustrates both interpretations. The essential char-
acterization of seeding structures in a is given by equation (2). It
means that a contour is a part of a stream line with its osculating
plane perpendicular to the view direction.

Enforcing (1) and (2) together yields a line structure l in D. The
stream surface starting from l in both forward and backward direc-
tion corresponds to the surface r ·∇s = 0 for a scalar field. There,
the surface is further reduced by additionally considering the con-
dition s = s0, i.e., picking a particular isovalue. Since there is no
equivalent to such isovalues for vector fields, we use the curvature
of the stream lines

κ(x,y,z) =
‖v×w‖
‖v‖3

(3)

as a thinning criterion for l: given two curvature values κ1 ≤ κ2, the
thinned seeding structure lc consists of all points (x,y,z) ∈ D with

[ (1) ∧ (2) ∧ κ1 ≤ κ ≤ κ2 ]. (4)

If κ1 < κ2, lc consists of (open or closed) lines, while for κ1 = κ2,
lc consists of isolated points.
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Figure 3: Concept of vector field contours: curvatures κ1 ≤ κ ≤ κ2 of the

stream lines define a narrow band of seeding points on l. Integration stops
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Figure 4: (a)-(d): seeding structure without relevance criterion: collapsing

and disappearance of l leads to an abrupt disappearance of the contour; (e)-

(h): seeding structure with relevance criterion gives a smooth disappearance

of the contour.

The stream lines starting from lc locally behave like contours.
However, after leaving the seeding structure the contour-like be-
havior may be lost. We address this fact by monitoring r · v along
the stream lines of v: if ‖r · v‖ exceeds a certain threshold p, the
integration stops. Figure 3 illustrates our concept of vector field
contours.

The concept of vector field contours introduced up to now may
still introduce temporal incoherencies while smoothly changing r.
The reason for this lies in the fact that the seeding structure defined
by (4) may collapse and disappear while smoothly changing r. Fig-
ures 4(a)-(d) illustrates an example for four directions of r adjacent
to each other. The closed seeding structure l collapses to a point
and disappears while smoothly changing r. As a result, the con-
tours starting from l disappear abruptly. As a solution for this, we
introduce a relevance criterion ρ for each point of l and incorporate
this into the control of the length of the contours. Figures 4(e)-(h)
illustrate this concept: a collapsing and disappearance of l leads to
a smooth shortening and disappearance of the contour.

As the measure of relevance, we use

ρ = 1− e−r·‖∇(r·v)×∇(r·w)‖ (5)

which can be computed locally for every point of l. Note that ρ is a
number between 0 and 1: it becomes small if l is about to disappear.
The number r is a user-adjustable value steering the influence of
the relevance criterion. The smaller r, the more impact does the
relevance criterion have.

Once the relevance criterion is introduced, it steers the length of
the contour in the following way: instead of stopping the integration
of the contour if ‖r · v‖ exceeds p (as introduced above as a first
attempt), we stop the integration if ‖r · v‖ exceeds ρ · p. Figure 11
illustrates the impact of the relevance criterion.

To summarize, our definition of vector field contours depends on
the following parameters:

• r – view direction

• κ1,κ2 – curvature thresholds for seeding structure selection

• p – measure of “contourness” to control the length of con-
tours.

• r – measure to steer the impact of the relevance criterion to
the length of the contour.

In the subsequent sections we will present an analysis of vector field
contours and show how this concept can be implemented efficiently
for interactive flow visualization.

3 ANALYSIS OF VECTOR FIELD CONTOURS

The human visual system is well-trained to recognize 3D shapes
from their contours. This fact has been used is a variety of ap-
proaches to represent shapes by their contours. This is also the
motivation of expanding the concept of contours to vector fields.
However, contrary to 3D shapes the human visual system is not
adapted to recognizing vector fields from their contours. This is
because contours have not been applied to vector fields before.

3D shapes are recognized by the human visual system on an ev-
eryday basis. This is not the case for vector fields, describing flows
and other phenomena: flows (e.g. of air) is rather invisible. Only
its impact to certain objects may let the human infer its behavior.
Therefore, vector field contours share a problem with all flow vi-
sualization techniques: they cannot rely on a human visual system
which is well-trained for this.

In order to make vector field contours applicable, we have to an-
alyze which properties of a vector field can be recognized by con-
tours. We do so by analyzing linear vector fields of the kind

v(x) = J x (6)

where J is the constant 3×3 Jacobian matrix. This vector field has a
critical point at (0,0,0). It is a well-known fact that its classification
is obtained by an eigen-analysis of J. Moreover, it is well-known
that the critical points and the topological skeleton starting from
them gives a rather complete description of a vector field [12], and
that structurally stable critical points can be represented by a first-
order approximation similar to (6) [1]. Therefore, we have to show
that vector field contours can reveal the eigenvectors of v defined
by (6).

Given v by (6), it is a straightforward exercise in algebra to show
that w is a linear vector field as well which can be written as

w(x) = J J x (7)

This gives that for a given view direction r the seeding structure l is
a straight line through the origin which can be generally written as

l(t) = t · (∇(r ·v)×∇(r ·w)). (8)

It turns out that the eigenplanes of J (i.e., the eigenvectors of JT )
can be observed in an intuitive way using vector field contours: if
r moves over the direction of an eigenplane, (8) does not hold as
solution for l any more. Instead, the whole eigenplane becomes
the seeding structure, and all stream lines in the eigenplane become
contours. Moreover, they do not leave this plane and therefore have
maximal "contourness" and length. This means that by interactively
moving r to explore v, the eigenplanes can be found by search-
ing for directions where the contours have a maximal number and
length. Figures 9, 10 and the accompanying movie show an illus-
tration.

4 EXTRACTION AND VISUALIZATION

In order to make vector field contours applicable as an interactive
analysis tool, interactive frame rates must be achieved for extrac-
tion and visualization of contours while changing the parameters
r,κ1,κ2, p. We achieve this by an efficient GPU implementation of
the algorithm and moderate preprocessing of the input data.

As usual, we assume that the vector field v is given as discrete
samples on a regular grid defining a piecewise trilinear function.



We precompute an approximation of w = (∇v) v as a second vector
field over the same grid in the following way: w is estimated in the
grid points by using central differences to estimate ∇v. Then the
samples of w are trilinearly interpolated inside the grid cells.

For given v and w, the extraction of l is equivalent to intersect-
ing isosurfaces of r ·v and r ·w. For this, efficient CPU realizations
exist [4], which may trade speed for accuracy in the sense that there
is no guarantee that all intersection curves are detected. Our tech-
nique differs from [4] in both, accuracy and efficiency. We guaran-
tee the detection of all intersection points between the isosurfaces
and the underlying grid faces while using a high-performance GPU-
based approach. Efficient extraction is especially important because
subsequent visualization steps frequently consume many resources
depending on style choices and the size of data sets. Often this
drastically influences the overall performance of the application.

Implementation details are presented in the subsequent sections
which discuss the efficient generation of intermediate data struc-
tures. These seeding structures lc, represented as point sets, are
finally represented as three packed textures. Such textures can be
used as an input for many visualization techniques. We use them as
starting point for rendering our vector field contours.

4.1 Seeding Structure Extraction

Extracting seeding structures associated with a certain view direc-
tion involves several intermediate rendering passes before the re-
sults can be used for visualization. An explanatory overview of our
GPU-based rendering of vector field contours is given in Figure 5.
The input data consists of the original vector field v and the finite
difference approximation of w (see above) and curvature samples κ,
which are obtained from (3). Note that w and the scalar field κ are
precomputed once for a given data set and are then used as input.

First we stream entries of both fields, v and w, into a shader
that computes the dot product between r and each vector in v and
w, respectively. Results are stored in a new 2D off-screen texture
ST k (we arrange the 3D vector field slices into a larger 2D tex-
ture to ease intermediate computations) with three channels: the
right-hand-sides of (1) and (2) are stored in red and green chan-
nels, respectively. We refer to these entries as S and T . The blue
channel, labeled k, contains the constant κ which was loaded during
initialization.

Each texel in ST k represents a reference vertex of a grid cell
which is shared by three cell faces (see Figure 6). Points where
both isosurfaces intersect one of these faces are computed by the
intersection shader in three additional rendering passes. The out-
put is a texture with only very few of the total number of texels
encoding intersections. Using such texture as is would be inappli-
cable for visualization due to bandwidth limitations. Instead, we
take advantage of the sparseness of the intersection data.

Therefore, we apply an efficient texture packing algorithm to ef-
ficiently convert sparse into the final compact seeding structure rep-
resentation l (Figure 5). In the following we describe each part of
the algorithm in more detail.

Data representation: Both vector fields v and w are stored as
3D textures using 16-bit floating point precision. Here, each tex-
ture tile of 2× 2 texel determines a grid cell front face (z face) as
depicted in Figure 6. Half-float precision is favorable as state-of-
the-art GPUs support trilinear filtering in hardware for this format.
All other textures are IEEE 32-bit 2D float images. Prior to ex-
traction we first fill the blue (k) bit plane of ST k texture with the
precomputed curvature values. We mark it for read-only access as
these values remain constant for a given data set.

The ST k texture size is determined by the number of slices of
v combined with the individual slice resolution. Our current im-
plementation trades texture memory for speed and uses the nearest
power of two size as this alleviates the computational load of tex-
ture packing. In Figure 5 unused texture memory appears as an
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Figure 5: The pipeline for vector field contour computation (left) and visual-
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and converts sparse intersection textures into a packed seeding structure l.

Right (a) shows the resulting seeding structure found during the extraction

process and (b) illustrates contours rendered as stream tubes.

empty black column right at the end of the slices.

Intersection: At the beginning of the extraction process a simple
shader kernel fetches samples from both vector fields, computes (1)
and (2) using the view direction and writes S and T into texture
memory. View direction r is sent as shader parameter each time we
execute the shader. For unfolding all vector field slices into a 2D
texture we use a proxy geometry in the form of quads that have the
same dimension as one slice. Each quad vertex is equipped with
3D texture coordinates where the z coordinate indexes slices and
x,y perform inner slice addressing. Each time we unfold a slice
we shift the viewport before each rendering to the new position in
the large ST k texture. As soon as ST k texture computation has
finished we bind it as an input for subsequent intersection tests.
We search for those discrete intersections between two isosurfaces
which are constrained to faces of grid cells. As intersections of
isosurfaces with such faces are hyperbolas [27], the local search
for each face consists only of finding roots of a quadratic equation.
The coefficients of this equation are given as samples in our input
texture ST k.

We have to distinguish between x, y, and z faces as texture ad-
dressing is different for each of them. Figure 6 illustrates a sample
grid cell, its corner vertices and the faces shared by a reference ver-
tex. The easiest case are intersections with z faces: all vertices of
the face are adjacent within the same slice as the base vertex (lower
left here). However, for x and y faces we have to sample two tex-
els from a neighboring slice (Figure 6). Using this scheme all data
required to intersect both isosurfaces is available in the shader. De-
pending on the values S and T stored at the grid cell corners we can
have either zero, one or two intersections (for instance P0 and P1 in
Figure 7a).

Once we have identified those intersections which are in para-
metric range [0,1] we can directly store those coordinates in the
RGBA components of the fragment data. Later on during the tex-
ture packing we reconstruct the current position within the volume
through a simple mapping using the texture coordinates. Results
can therefore immediately be used for visualization.

Testing for intersections is done for each class of the faces x, y
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Figure 6: Grid cell faces and adjacency sampled in 2D. Four vertices from

the z-face are four texel in the STk Texture slice Si. The other three vertics

required to compute all intersections are located in the next slice Si+1.

and z separately. Additionally, isosurface intersection generated in-
correct results at slice boundaries as there are no associated faces.
Checking for this case in the pixel shader is inefficient as it only ap-
plies for a small subset of fragments. Instead we simply overdraw
a pattern to mask those region out. In total, this mask only consists
of a few lines of one pixel width and an additional quad that masks
the last slice. After the first intersection test is complete we have
got a sparse intersection texture in which only a fraction of texels
contribute to the seeding structure l. Using such kind of textures di-
rectly is infeasible for visualization. Thus we conduct an additional
compaction pass to finally obtain packed textures illustrated in our
pipeline (Figure 5).

Relevance criterion: At the end of the intersection computation
we check if both isosurfaces intersect in at least one point within
the current voxel. If they do, we continue to compute the rele-
vance value ρ for this voxel according to Equation (5). The rel-
evance value is then packed into the 32 bit floating point depth
buffer attachment of the current frame buffer object rather than
another color attachment. This is significantly faster, since the
GL_EXT_framebuffer_object extension requires all color attach-
ments to have the same format. So we would have to clear and
write to 32 bit float RGBA channels otherwise. This would drasti-
cally reduce extraction performance.

The relevance texture has entries at exactly the same locations
as the sparse intersection texture. One can imagine it as just an
additional 5th component layer. In the packing process, described
in the next section, this layer can be treated in almost the exact same
way as the intersection texture. We will discuss the marginal shader
code differences in the next section.

Later on, when we visualize contour stream lines we convolve
the stop (“contourness”) criterion p with the relevance value ρ to
determine the final integration length for each stream line.

Texture packing: Sparse texture analysis is a common problem
in graphics hardware programming. [13] introduces the concept of
data compaction, i.e. filtering away unwanted data elements from
a given data stream in logn iterations of successively producing
a running sum. Alternatively, bitonic GPU-based merge sort [9]
could be used for binary partitioning only, however, in O(n(logn)).

The functionality of our texture packing algorithm is described
in Figures 7 (a) and (b). The goal is to find and store all those tex-
els in an image that contribute information and to ignore all other,
irrelevant entries. Efficient queries are the key to high performance
texture packing in stream processing architectures. Our solution
introduces the histopyramid texture, an acceleration data structure
that lets us retrieve each key index with log2(max{xdim,ydim})
texture lookups. The building process for a histopyramid texture is
adopting a well-known technique known as “reduction operation”,
a variant of custom mipmapping (see also [3]) which is able to sum
n2 elements in log2 n passes building a Laplacian pyramid of par-
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Figure 7: Building a histopyramid texture from the intersection textures (a).

Each texel in the intersection texture can encode up to two face intersections

in RGBA. (b) Histopyramid textures are used for the conversion from sparse

into packed textures. The pack shader also converts from 2D texture space

into 3D object space coordinates (using texture coordinates and intersection

points) while writing the final result.

tial histograms. For fast rendering, we need to be able to output
into mipmap levels of textures. This is provided by the OpenGL
extension GL_EXT_framebuffer_object. In contrast to reg-
ular mipmapping, which averages the levels below, we sum up the
valid intersections that were found in the 2×2 cells of the mipmap
level underneath the current one. Figure 7a (right) illustrates such
a mipmap pyramid. Level L0 contains all possible combinations of
intersections that we may encounter in this simple example. We can
either have one (orange and red), two (split blue and black) or no
intersection at all (white), and store this count in level L1.

Now that level L1 has counted the presence of data elements in
level L0, we repeatedly collapse four input cells with the reduction
operator, starting at level Ln and writing the resulting sum into the
corresponding output cell at level Ln + 1. The iteration finishes
when only one output cell remains. This single cell, situated at level
Lmax, contains the total number of intersections and determines the

packed texture size, with 2D dimensions based on
⌈√

Lmax
⌉2

of
the number of entries.

The newly created histopyramid texture now enables efficient
texture queries based on a given key index. This key index is a
continuous integer, which we derive from the texel position in the
packed output image. Now, we start at the top level of the histopy-
ramid and descend every time the key index is within the range
of indices covered by one cell’s descendants (see Figure 7). The
traversal stops at the base level, where it finds the intersection result
with the corresponding key index. Finally, we convert the coordi-
nates of the target cell and its content into 3D object coordinates,
and output this result into the packed texture. (Note that since the
packed texture is 2D, there can be more texels than key indices.
Therefore, the pack shader discards all fragments whose index ex-
ceeds the number of valid entries.)



Our current implementation enhances the basic histopyramid
building and packed texture retrieval with vectorization. We store
the partial sum of a 2× 2 region in RGBA components, and first
add up the cell’s sum vector when the cell becomes a partial sum at
the next higher level itself. This way, we avoid unnecessary texture
lookups to compute index ranges, as we can predict the index range
of each leaf cell from the parent’s sum vector without actually ac-
cessing the leaf cell. Note that in this implementation, the top level
still contains a sum vector. Its four entries have to be added up on
the CPU to get the total amount of entries in L0.

After packing an intersection texture we immediately pack its
corresponding relevance value layer because we can reuse the his-
togram texture. Remember that both sparse textures, the intersec-
tion as well as the relevance texture, have their data entries at the
exact same positions. Then packing the relevance texture layer only
requires small changes in the packing shader. Firstly, we only work
on a scalar value which doesn’t need to be mapped into another
domain. Hence, there is no coordinate transformation necessary.
Secondly, indices are unambiguous, because there can only be one
data entry in each texel.

It should be noted that only image dimensions which are identi-
cal powers of two can provide the algorithm with a constant num-
ber of input and output cells. The histogram computation algo-
rithm itself could easily be adapted to rectangular and non-power-
of-two textures. However, current GPU programmability restric-
tions (namely, the inability to provide explicit texture sizes for each
pyramid level) would then severely limit the performance of the
subsequent packing algorithm. In the meanwhile, we choose to pad
the input dimensions of the image in order to be equal powers of
two.

As soon as all three textures are packed we have everything nec-
essary to start visualizing vector field contours. This is the topic of
the next section.

4.2 Contour Visualization

There exist some techniques for interactive visualization of vec-
tor fields, for instance [17, 24]. Our aim is to visualize vector
field contours, i.e., stream line segments emerging from the seed-
ing structure. The seeds (represented as packed textures) are fed
into a stream line integrator. A similar approach is used in [17] for
particle tracing. There, textures are used to inject a large number
of particles into a flow. Following [17], we employ a fourth order
Runge-Kutta formula for accurate integration. After every single
integration step, new positions are written into an off-screen texture
which is then used as input for the next step. Integration continues
within the domain as long as stream lines locally resemble contours
(see Section 2). This criterion is expressed as ‖r ·vi+1‖≤ (ρ · p) and
can be evaluated directly. In addition, we ultimately limit the maxi-
mum number of integration steps for practical reasons. In our exam-
ples up to 400 integration steps we used depending on the number
of seeding point which determine the read back burden. The result
of each stream line integration is a polyline. We finally render all
polylines using the approach in [24]. This enables us to also encode
the local “contourness” ‖r ·v‖ of a stream line by setting color and
thickness relative to the threshold (ρ · p).

We conclude this section with the following remarks. In fact,
the setup of stream lines is currently the bottleneck of our imple-
mentation: even though state-of-the-art PCI Express graphics cards
allow very fast data exchange with the host performance is hindered
by the large number of read backs required depending on the num-
ber of seed points multiplied by the number of intergation depth. In
practice, we often have to stream back textures more than 200 times
(see also Table 1). We are aware of sophisticated workarounds with
some potential to alleviating these limitations.

However, we see more elegant and promising solutions in reach
with the announced Shader Model 4: with the introduction of the

Data Set Size Ext. Vis. SLI SP

Isabel 1002 ×50 30 2-8 200 < 5519

Benzene 1003 21 5-8 250 < 9852

ABC 643 64 8-12 400 < 787

Saddle 643 63 8-16 400 < 186

Focus 643 63 11-13 400 < 180

Table 1: Summary of our example data sets. The columns show the name,

size, performance of extraction and visualization (both in frames per second),

(maximum) number of stream line integration steps, and number of seed

points, respectively.

geometry shader, which can create new geometry, performance of
stream line integration will be increased significantly. We have de-
cided to leave these optimizations for future work. This decision is
also justified by the fact that our extraction can be done in real-time
still allowing interactive frame rates for all our examples. We finally
emphasize that the focus of our GPU-based implementation is on
the efficient extraction of seeding structures using texture packing.

5 RESULTS

We apply our approach to a number of test data sets. The results are
shown in this section.

We start with a synthetic benchmark: The so-called ABC
(Arnold-Beltrami-Childress) flow field

v(x, t) =

⎛
⎝

(A+(1− e−t/10)sin(2πt))sinz+C cosy

Bsinx+(A+(1− e−t/10)sin(2πt))cosz
C siny+Bcosx

⎞
⎠

has recently attracted attention in the fluid dynamics community
because it describes an unsteady solution of Euler’s equation [11].

We visualize v for A =
√

3,B =
√

2,C = 1, t = 0 within the do-
main [0,2π]3. The data set is sampled on a regular 643 grid. Fig-
ure 11 (i)–(l) shows visualizations for different view directions.
Figure 11 (a)–(d) show the color-coded relevance criterion for a
disappearing seeding structure. The impact of the relevance depen-
dent scaling of stream lines on temporal coherence is emphasized
in Figure 11 (e)–(h).

Figure 1 visualizes the electrostatic field around a benzene
molecule from varying view directions. This data set was com-
puted on a 1003 regular grid using the fractional charges method
described in [23]. This data set is highly symmetric and rather
complex. It has been used for demonstration of other visualization
techniques recently [26, 30]

Figure 8 shows visualizations of the Hurricane Isabel data set,
which recently has been considered in a number of papers [7, 10].
Using vector field contours the wind tunnels are well visible un-
der the according view directions. We used the vector field at the
starting time of the simulation on a regular a grid. In Figure 9 we
visualize a saddle and Figure 10 shows vector field contours of a
repelling focus. This examples refer to the analysis we presented
in section 3. Our technique can reveal inherent structures of linear
vector fields by identifying its eigenvectors.

The screen shots and the accompanying videos demonstrate the
potential of vector field contours as an interactive flow visualiza-
tion tool. Table 1 summarizes information on the data sets of our
GPU-based visualization. Performance was measured on a com-
puter equipped with a 2.6GHz AMD CPU and a GeForce FX7800
graphics card with 512 MByte memory. The timings confirm the
efficiency of our approach.

6 LIMITATIONS

As every flow visualization technique, our technique is not perfectly
suited for every data set. In fact, our technique of vector field con-



Figure 8: Hurricane Isabel data set: vector field contours rendered as stream tubes. Please note that the tunnels of the storm are well separated in certain views

from other stream lines.

(a) (b) (c) (d)

Figure 9: A saddle. (a) illustrates the seeding structure. (b)–(d) capture the sweep through the eigenplane. The view (c) corresponds to the eigenvector

(1,0,−1)T of the linear vector field.

tours shares the property of scalar contours that there are configu-
rations in which too many or not enough contours appear, making
the visualization cluttered or sparse. For vector field contours, this
happens if a 3D vector field is in fact pseudo-2D, i.e., on vector
component is everywhere almost vanishing. In this case, all stream
lines are contours for a particular view directions, where for any
other direction no contours appear.

7 CONCLUSIONS AND FUTURE RESEARCH

The visualization of 3D vector fields constitutes a challenging prob-
lem and is an active area of research. Any approach to direct visu-
alization by rendering certain stream lines must carefully select the
most significant lines even for moderately complex data. This leads
to stream line seeding methods: these are well-established for 2D
vector fields. However, good direct visualization of 3D flow fields
is much more involved, and so far we are only aware of one non-
trivial seeding strategy [32]. At the same time we realize that NPR
techniques and in particular contours have emerged as a powerful
tool for the visualization of surfaces and 3D scalar fields. Here,
significance of features is prioritized by human visual perception,
and relatively few line primitives are required to convey the essen-
tial information. We are aware of only one approach that takes ad-
vantage of such NPR-like techniques to emphasize features in 3D
flows [25].

We presented a new approach to 3D flow visualization introduc-
ing vector field contours. Our method is related to the mentioned re-
cent approaches in that it computes certain seeding structures based
on ideas from NPR. In particular, a novel notion of contours for
flow data is used to select contour-like stream lines for rendering.
This combination makes our approach different to others. Most im-
portantly and contrary to previous work, our visualization method

is not static but is designed as a tool for dynamic, view-dependent
exploration of flow data. Contours depend on the view direction
and only a few other parameters which are subject to change. As
vector field contours are not intuitive to our visual system we have
conducted an analysis to show that our contour technique reveals in-
teresting structures such as the eigenvectors of linear vector fields.
We present a sophisticated implementation on the GPU that enables
real-time visualization. In fact, seeding and rendering is achieved in
real-time, which was not even achieved for 2D vector fields before.
By utilizing latest graphics hardware feature sets we are able to map
our entire extraction algorithm to the GPU. We see further possibil-
ities for performance tuning in the announcement of shader model
4.0 and the accompanying geometry shader. Our results show the
potential of vector field contours for flow visualization.

Furthermore, we achieve inter frame coherence by scaling the
length of stream lines using an additional parameter which deter-
mines the relevance of each seed point. Please see the supplemen-
tary videos for an illustration and the difference in coherence when
such a mechanism is absend.

Other possible research directions are the extension of sugges-
tive contours [6], extensions to time-varying data, and combina-
tions with other GPU-based interactive techniques like for instance
particle tracing.
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(a) (b) (c) (d)

Figure 10: A repelling focus. (a) illustrates the seeding structure. (b)–(d) capture the sweep through the eigenplane. The view (c) corresponds to the eigenvector

(0,0,−1)T of the linear vector field.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 11: The influence of the relevance criterion vizualized on a vanishing line loop. (a)–(d) show the color-coded seeding structure for the ABC dataset. The

relevance increases from dark to light color. The importance of the line structure in the red box decreases from left to right. (e)–(h) illustrate the corresponding

illuminated stream lines without using the relevance criterion. Note how the length of the stream lines decreases rapitly in (g) and finally vanishes completely

(h). (i)–(l) show stream lines which are scaled accodring to the relevance criterion and therefore increase the temporal coherence of renderings.
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