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Abstract. Characteristic curves like isophotes, reflection lines and reflection cir-
cles are well–established concepts which have been used for automatic fairing
of both parametric and piecewise linear surfaces. However, the result of the fair-
ing strongly depends on the choice of a particular family of characteristic curves:
isophotes or reflection lines may look perfect for a certain orientation of viewing
and projection direction, but still have imperfections for other directions. There-
fore, fairing methods are necessary which consider multiple families of character-
istic curves. To achieve this, we first introduce a new way of controlling character-
istic curves directly on the surface. Based on this, we introduce a fairing scheme
which incorporates several families of characteristic curves simultaneously. We
confirm effectiveness of our method for a number of test data sets.

1 Introduction

Visualization of characteristic curves provides a valuable and important tool for first–
order surface interrogation (see [1] for a recent survey). Inspection of characteristic
surface curves allows for rating and improving surface design as well as for intuitive
detection of surface defects: on the one side, they simulate aesthetic appearance un-
der certain lighting conditions and environment, while on the other hand continuity
and smoothness of these curves visualize respective differential properties for surface
derivatives.

Characteristic surface curves like reflection lines were originally (and still are) used
for interrogation and design of physical models, and the concept is simulated for CAGD
models in a virtual environment. Surprisingly these curves are mainly used for interro-
gation, and only few approaches exist which apply them for surface fairing and design
[2–4].

Yet, the proposed methods that take advantage of characteristic curves in this setting
all have in common that they only consider a single curve family, i.e., a main direction
represented by these curves. This results in an optimized behavior of the curves for this
single direction, but — as we will show in this paper — the single direction fairing does
in general not also yield an optimized characteristic of all other curve directions at the
same optimized location. In fact, our experiments indicate that the reverse is true.

Section 4 presents a new fairing scheme for triangulated surfaces that is capable of
incorporating an arbitrary number of families simultaneously. Prior to that, for efficient
use of this scheme in practice, in section 3 we develop intuitive methods for real–time
curve control, i.e., determining parameters such that specific interpolation or alignment
constraints on the surface are fulfilled. These methods allow for interactive and auto-
matic curve specification.
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(a) Isophotes (b) Reflection lines (c) Reflection circles (d) Isophotes ex-
ample

Fig. 1: Definitions of characteristic curves and example for family of isophotes on a wavy cylinder

1.1 Related Work

In this paper, we consider isophotes, reflection lines, and reflection circles. All these
classes of characteristic curves are illumination curves since every curve originates from
light–surface interaction [5].

Isophotes can be regarded as surface curves of constant incident light intensity
which were extensively used to detect surface imperfections [6, 5, 1].

The reflection of a straight line on a surface is called reflection line. Just as isophotes,
reflection lines possess special properties making them valuable for surface interroga-
tion and surface fairing applications of parametric [2, 3, 7] and piecewise linear sur-
faces[4]. Recently, [4] applied reflection lines for fairing triangular meshes employing
a screen–space surface parametrization. This work provides profound analysis of the
arising numerical minimization and careful discretization of the emerging differential
operators [8]. It is most similar yet different to this work.

Reflection circles arise from the reflections of concentric circles on a surface similar
to reflection lines. Although reflection circles are the more general class of surface
curves [9], they haven’t been used as thorough as the other more specialized classes
in surface–fairing applications. Still, recently [10] argue that a simplified version of
reflection circles called circular highlight lines also performs well in surface–fairing
applications.

There is vast literature on general surface denoising and fairing methods as well
as fair surface design based on polygonal meshes, which we do not consider here but
instead refer to a recent survey [11]. Similarly, we do not discuss alternative use of light
lines such as surface reconstruction applications (see, e.g., [12]).

2 Characteristic Curves

We use definitions of characteristic curves — isophotes, reflection lines, and reflection
circles (see figure 1) — which only depend on the normal directions of the surface and
not on its position [9]. This means we assume that both, viewer and light sources (which
are lines and circles), are located at infinity. This is a common simplification for various
kinds of environment mapping. In the following, e denotes the normalized eye vector
(viewing direction), and n(u, v) is the unit normal to the surface x(u, v).

Isophotes are surface curves of constant incident light intensity essentially taking
into account Lambert’s cosine law or diffuse lighting. Given are eye direction e and an
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angle α, then an isophote consists of all surface points x(u, v) satisfying e · n(u, v) =
cosα. Variation of angle α yields a family of isophotes.

Reflection lines are surface curves showing the mirror image of a line shaped light
source. Given are eye direction e and a line at infinity defined by its unit normal p, then a
reflection line consists of all surface points satisfying a·p = 0 with a = 2 (e · n) n−e.
Variation of p along a line at infinity yields a family of reflection lines.

Reflection circles [9] provide a generalization of isophotes and reflection lines. They
can be considered as mirror images of a family of concentric circles on the surface.
Given are e and a circle at infinity defined by a normalized center direction r and an
angle α, then a reflection circle consists of all surface points satisfying a·r = cosαwith
a = 2 (e · n) n−e. This can be easily transformed to the condition (e · n) (r · n) = v,
where v = 1

2 (cosα + e · r). Reflection circles provide generalizations of other classes
of characteristic curves in a sense for r = e or r = −e they are equivalent to isophotes,
whereas for r · e = 2v they are equivalent to reflection lines, respectively. Families of
reflection circles are obtained by either variation of v within range [−1, 1], or variation
of a, or simultaneous variation of both parameters, respectively. In the following we
will consider only the first option of varying the scalar parameter v.

3 Characteristic Curve Control

For virtual surface interrogation, e.g., using reflection lines, a simple environment map
is sufficient to show families of reflection lines while the user moves the geometric
object under inspection. This is simple and intuitive. However, in our setting of sur-
face fairing, we require specification of certain characteristic curves: for a region in
focus the user wants to specify curves quickly and intuitively such that they are roughly
aligned with a prescribed direction. This setting provides a problem of its own because
the defining parameters of the curves do not directly relate to the resulting pathway
on the surface. Moreover plain parameter variation often yields counterintuitive and
unexpected results.

In this section we show how to facilitate control of characteristic curves on surfaces
in order to enable their intuitive use in practice.

The basic idea of every presented alignment method is to let a user or a (semi-
)automatic operation specify a small number of points on the surface which a curve or
family of curves shall pass through. Such points will be called selections. Then param-
eters of the curves are calculated by different alignment methods from surface normals
in a way that the respective defining conditions are satisfied. Alignment methods differ
in the number of required point selections and in their semantics in relation to the curve
class. As every alignment method only depends on a small, constant number of points
and specifically on the surface normals in these points, they are independent of the
complexity of the surface the controlled curves are embedded in. In practice, the user
selects by ray intersections with the surface, and selections can be dragged on the sur-
face to fine–tune a curve alignment in real–time. In a similar way, a stencil of selection
prototypes can be projected onto the surface for automatic curve control.
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(a) (ISOP, 3x) (b) (ISOP, 2x + 2x)

Fig. 2: Isophotes alignment methods Fig. 3: Alignment examples using
(ISOP, 3x) and (RECI, 2x
+ constr)

3.1 Alignment of Isophotes

It turns out that three selections on the surface are sufficient to define a general isophote
passing through these points. We give a closed form expression which yields the pa-
rameter e and cosα. Let x1, x2 and x3 be three selections on a smooth surface and n1,
n2, and n3 the respective unit surface normals. Then

e =
(n1 × n2) + (n2 × n3) + (n3 × n1)
‖(n1 × n2) + (n2 × n3) + (n3 × n1)‖ and

cosα = e · n1 = e · n2 = e · n3

(1)

are the parameters defining an isophote (e, cosα) interpolating x1, x2 and x3.
In the remainder we refer to this alignment method as (ISOP, 3x), indicating that

an isophote is aligned using three selections. Figure 2a illustrates the configuration.
The alignment of a family of isophotes is achieved using two pairs of selections:

Let (x1,x2) and (x3,x4) be two pairs of selections on a smooth surface and (n1,n2)
and (n3,n4) the respective unit surface normals. Then

e =
(n1 − n2)× (n3 − n4)
‖(n1 − n2)× (n3 − n4)‖ ,

cosα1 = e · n1 = e · n2 and
cosα2 = e · n3 = e · n4

(2)

are the parameters defining two isophotes (e, cosα1) and (e, cosα2) of the same fam-
ily passing through the points x1, x2 and x3, x4, respectively. We call this method
(ISOP, 2x+ 2x) because two isophotes of the same family are aligned requiring two
selections for each curve. Two isophotes of the same family aligned using this method
are depicted in figure 2b.

3.2 Constraint Alignment of Reflection Lines and Circles

Due to their relative simplicity, isophotes constitute a special case for which closed
form solutions to the general alignment can be given. In contrast, general alignment of
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reflection lines and circles requires root finding of higher order polynomials to deter-
mine parameters. Hence, no general closed form expressions can be given. Instead, we
present a constraint approach.

The constraint approach requires only two selections in order to align both, either
reflection lines or reflection circles on smooth surfaces. Reflection circles are a general-
ization of reflection lines: setting its cosα parameter to zero in fact specifies a reflection
line with one lost degree of freedom which can be taken advantage of afterwards. We
restrict the derivation of the alignment method to reflection lines in the first place and
make it applicable for both curve classes by variation of the extra parameter. Let x1,
x2 be two selections on a smooth surface and n1, n2 their linear independent normals.
Then

e =
(n1 + n2)
‖(n1 + n2)‖ and r = p =

(n1 × n2)
‖(n1 × n2)‖ (3)

are the parameters defining a reflection line (e,p) as well as a reflection circle (e, r,
cosα = 0) passing through the points x1, x2. These alignment methods are referred to
as (REFL, 2x+ constr) and (RECI, 2x+ constr), respectively. We call the approach
constraint as the parameter vectors of eye vector e and normal p of the line at infinity
are restricted to be perpendicular, so e · p = 0. Geometrically this means that the eye
point at infinity is constraint to the respective line at infinity.

4 Surface Fairing

We define the goal of our surface fairing method as follows: a smooth surface should
be altered by minimal local displacements such that pathways of characteristic curves
are straightened and homogenized. Therefore, our aim is to penalize curvature of char-
acteristic curves.

Let C define a set of discrete families of curves f , e.g., specified by a finite set
of angles. We consider piecewise linear surfacesM, i.e., triangles meshes defined by
(V, E ,F), sets of vertices, oriented edges, and faces, respectively. Then we define dis-
crete error functionals as

E(V) =
∑
f∈C

Ef (V) with Ef (V) =
∑
v∈V

κ2
f (v) , (4)

where v denotes the position of vertex v ∈ V and κf (v) is the curve curvature of the
family member of f at v. We call Ef family error and E accumulated error, respec-
tively. Minimizing E(V) by altering vertex positions yields an optimized, fair surface
M′.

Curvature of Characteristic Curves

Each family of characteristic curves defines a piecewise linear scalar field over the
surface, i.e., the defining equations are evaluated at every vertex. Then members of
the family are given implicitly as iso-curves w.r.t. to a certain isovalue. We approximate
curvature of such characteristic iso-curves per vertex v ∈ V as follows.
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We find intersections of the iso-contour c(v) = cv with the edges (i, j) ∈ E1
v bound-

ing the 1–ring neighborhood Nv of v by linear interpolation between c(vi) = cvi
and

c(vj) = cvj . From v and the positions of two intersections, curvature κf (v) is given
as the inverse radius of the interpolating circle. If the intersections are approximately
collinear, i.e., circle degenerates to a line, we assume zero curvature.

Local Optimization by Vertex Displacement

In order to minimize the accumulated error E, we iteratively displace vertices along
their normal direction. We analyze the local setting for vertex v and its neighborhood.
The surface normal n(v) := nv is approximated as the average of weighted triangle
normals, i.e., ñv =

∑
(i,j)∈E1v

(vi − v) × (vj − v), and nv = ñv

||ñv|| . Note that E1
v

includes all directed (counter-clockwise oriented) edges bounding the 1–ring of v. For
simplicity we use an area weighting scheme here, however, applying more sophisticated
normal approximation methods (see, e.g., survey [1]) yields similar formulas.

Displacing vertices as v′ = v + εnv for small scalar ε entails recomputation of
vertex normals only within the 1–ring of v. It is easy to see that curvatures, however,
are effected within the 2–neighborhood N 2

v and curvature variation is therefore locally
bounded. Consequently, scalar values within the 3–neighborhood N 3

v of v have to be
considered for computing the global variation of the error induced by the displacement.

We derive the following expression

ñv (ε) =
∑

(i,j)∈E1v

vi × vj + ε (δik (nvk
× vj)− δjk (nvk

× vi)) (5)

as updated unnormalized normal direction of vertex v after displacement of vertex vk

by εnvk
. The normal of the displaced vertex remains constant.

For fairing, a vertex is iteratively translated in several ε-steps as long as a single
displacement reduces the global error.

Mesh Fairing

We use the analysis of the local setting to globally minimize the accumulated error
E(V) for all vertices (or for those within a region of interest, respectively). We take a
randomized and serialized approach which iterates the following steps:

1. Randomly pick a vertex v ∈ V .
2. Take a binary decision whether a translation direction of v in direction nv or −nv

makes E decrease; otherwise restart at step 1.
3. Find the most effective displacement of v by integrating ε-steps as long as the

global error reduction is of significant magnitude. The step size ε is adapted during
integration by logarithmical attenuation depending on the error reduction rate.

We terminate the global iteration if no more enhancement can be achieved over a spe-
cific number of iterations. Our experiments show that E(V) is effectively reduced at
reasonable computational cost (see section 5). We remark that in every local optimiza-
tion step curvature of characteristic curves is reduced not only for vertex v but also in
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its 2–neighborhood due to the overlap of the respective curvature stencils. Hence, for
optimization within a region of interest, the boundary region is automatically processed
such that smooth transition of optimized curves across the boundary is ensured.

5 Results

Curve control. The proposed alignment methods highly facilitate the interrogation of
surfaces by characteristic surface curves. Figure 3 gives two examples (see also supple-
mental video). We found (ISOP, 3x) and (RECI, 2x+ constr) especially useful for
automatic surface fairing applications as they require a low number of selections, are
computable in constant real-time and yield stable alignment results.

Single family fairing. To begin with, a single family fairing of a Chevrolet Corvette C41

engine hood by reflection circles, which were aligned by (RECI, 2x+constr), is shown
in figure 4. Within 2000 iterations the accumulated error dropped by 75.91% for about
500 optimized vertices; the processing time was 40s. All timings were measured on a
2.2GHz AMD Opteron processor.

Multiple family fairing. One of our main goals is to show that multiple families of char-
acteristic curves should be considered simultaneously. So far, only a single family had
been used in prior work. We demonstrate that the latter generally yields improvement
of this single family only, while other families may improve or not — or may even
get worse in appearance. Figure 5 shows an example, where three differently aligned
families (using (ISOP, 3x)) of isophotes are shown on the initial model of a BMW Z3
engine hood in the top row. The second row shows families resulting from solely fairing
the left family: the two other families did not improve in the same way. This is because
fairing of a surface by a single curve family does not necessarily improve the overall
reflective properties of a surface. A subsequent example shows that the contrary can
also be the case. Incorporating all three families into the fairing process gives better
overall results, see bottom row. The total processing time for multiple families depends
linearly on their number. The accumulated error of all families dropped by 32.5% after
fairing the single family using 2000 iterations, however, it dropped by 63.7% fairing all
directions. With the model scaled to the unit sphere, the average displacement per ver-
tex is of length 8.33 · 10−6, hence the induced approximation error to the initial surface
is negligible.

In figure 6 we analyze the fairing of the car roof of a Volkswagen Beetle using mul-
tiple families of reflection circles which were automatically aligned by (RECI, 2x +
constr) to be uniformly distributed. This example illustrates several different families,
and it illustrates several facts: first, the benefits of simultaneous optimization of mul-
tiple families, second, the potential corruption of families if only a single other family
is considered. In the example the vertical family shows already good quality which de-
grades when only the horizontal family is optimized. In addition, the behavior of two
skew families is shown, in the final experiment they are also considered in optimiza-
tion. The error is plotted versus the number of iterations for all settings, accumulated

1 Corvette and BMW models from www.dmi3d.com.
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Fig. 4: Reflection circles on a Chevrolet Corvette
C4 engine hood before (left) and after
(right column) fairing

Fig. 5: Fairing of BMW Z3 model hood: Initial
three families (first row), only first family
faired (second row) and all families faired
(third row)

error dropped by 32.26%, 41.32% and 58.28%, respectively. We moreover found that
no other intermediate family direction showed an imperfect behavior on the surface
faired this way.

Curve class comparison. Both, isophotes and reflection circles, can be faired by our
generic approach. In our experiments cross validation showed comparable performance
for both curve classes. We could not affirm the proposition in [10] stating that circular
highlight lines are better suited for surface fairing than highlight lines, as all directions
are captured.

6 Discussion.

Our results support our claim that simultaneous consideration of multiple curve families
is advantageous for surface fairing. Furthermore, we provide new methods for control-
ling characteristic curves, which haven’t been applied in any previous approach.

Prior work most similar to our method is [4] who considered reflection lines for
shape optimization based on triangle meshes. They concentrate on optimizing one sin-
gle family of reflection lines. The family is provided by the user, control of curve param-
eters is not discussed. Emphasis on discretization and efficient numerical minimization
using screen–space parametrization and other approximations yields a real–time algo-
rithm with some view dependent limitations. In contrast our focus was on new aspects
summarized above. Our optimization method uses a far simpler randomized greedy
surface optimization which converges to local minima and is far from real–time appli-
cation. It would be an interesting project for future work to see whether our method
could be combined with the minimization framework in [4].
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7 Conclusions

In this paper we make the following contributions:
• We showed that the fairing of a particular family of characteristic surface curves

(like isophotes, reflection lines, or reflection circles) does not necessarily yield a
fairer surface in the sense that other families of surface curves become fairer as
well.

• We introduced a number of techniques to align characteristic curves on surfaces by
directly placing and interactively moving points on the surface instead of specifying
viewing and projection parameters.

• Based on this, we presented an approach for simultaneous fairing of multiple fam-
ilies of characteristic surface curves which gives better results than a single-family
fairing.

The following issues remain open for future research:
• Although the whole fairing process can be considered as a preprocess which is

carried out once, the performance of the algorithm could be enhanced.
• We have no general solution on the question how many families should be faired

simultaneously to get optimal results. Clearly, increasing the number of families
enhances the results but also increases the computing time linearly. In all our ex-
amples, four families were sufficient to ensure the fairness of all families. However,
we do not have a theoretical confirmation of this statement yet.
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Fig. 6: Optimization of the Volkswagen Beetle car roof. Bold family names in the error plot cor-
respond to optimized families. The top picture row shows initial curve families with a
plot of their respective curve curvatures. Solely fairing of the horizontally oriented family
corrupts the vertically aligned family (left plot, second row). Simultaneous fairing of both
families enhances appearance the horizontal family while preserving the quality of the
vertical family (center plot, third row). Even better results can be achieved by considering
also the two skew families (right plot, last row)


