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Abstract where the values of two variables for a sample in a
data set are used to plot a point in 2-dimensional
Parallel coordinates and scatterplot matrices argpace, resulting in a scattering of points. Scatter-
widely used to visualize multi-dimensional dataplots are very useful for visually determining the
sets. But these visualization techniques are ingorrelation between two variables. A SPLOM is
sufficient when the number of dimensions grows.a symmetric matrix of adjacent scatterplots and al-
To solve this problem, different approaches to pretows the user to analyze the diverse dimensions at
select the best views or dimensions have been pronce. If there arer variables, the SPLOM has di-
posed in the last years. However, there are still sevmensionn x n and the element at theth row and
eral shortcomings to these methods. In this papef-th column is a scatterplot of theth and;-th vari-
we present three new methods to explore multivariable. Related to this kind of visualization, we pro-
ate data sets: a parallel coordinates matrix, in anapose two extensions: a class based scatterplot ma-
ogy to the well-known scatterplot matrix, a class-trix and an importance oriented reordering of the
based scatterplot matrix that aims at finding goodiimensions of the matrix. The proposal of ttass
projections for each class pair, and an importanceased SPLOMC-SPLOM) is to support the visual
aware algorithm to sort the dimensions of scatteranalysis of labeled (classified) data sets. In such
plot and parallel coordinates matrices. data sets, the analyst often searches for projections
where distinct clusters can be observed. Previous
approaches aim at finding good views of a data set
considering all classes at once. The problem with

With the exponentially increasing amount of ac_such. approa_ches is that this global optimization
quired multivariate data, several multi-dimensionalMay ignore views that separate two classes well, be-
visualization techniques have been proposed duff2use of t.he d!StI’IbUtIOﬂ of the remaining classes.
ing the last decades [10]. Based on the fact© deal with this, our C-SPLOM presents the best
that human perception cannot deal well with morgProjection for each class pair, based on a ranking in-
than three continuous dimensions simultaneousl)ﬁ’ex- This class based visualization method is useful
such techniques usually project the data in lowiC analyze labeled data sets with a large number of
dimensional embeddings and combine these repré{_arlables that cannot be well visualized using tradi-
sentations in a single plot or present them to thdional SPLOMs.
user in an interactive way. Some well-known exam- Another popular visualization technique are par-
ples of multi-dimensional visualization techniquesallel coordinates plots (PCPs) [9]. In such plots,
are glyph techniques [17], parallel coordinates [9],each sample of aiv-dimensional data set is rep-
scatterplot matrices [7] and pixel level visualiza-resented by a polyline that intersecé vertical
tions [11]. But even these techniques do not scalexes (dimensions). The intersection point repre-
well to high-dimensional data sets. In this work wesents its value in the respective dimension. Similar
focus on parallel coordinates plots (PCP) and scato the scatterplot matrices the parallel coordinates
terplot matrices (SPLOM), and propose extensionglots, do not scale well when the number of dimen-
to these well-known visualization techniques. sions grows, as important dimensional relationships
Scatterplots are one of the oldest and widely usedight not be visualized. Addressing this shortcom-
visualization methods.We can define them as graphiag, we propose an importance orienggtallel co-

1 Introduction
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ordinates matrix(PCM). Unlike the SPLOM the Considering classified datasets, a class consistency
PCM is not symmetric, each rowof the matrix visualization algorithm has been proposed by [12].
represents the relation of one dimensidrio the  Similar to our class based matrix, the class consis-
others of the data set, ordered by the inherent intency method proposes measures to rank lower di-
formation value. Additionally, we propose a qual- mension representations. The method proposed in
ity aware dimension reordering framework for visu-[12] filters the best scatterplots based on their rank-
alization matrices, like SPLOMs, C-SPLOMs anding values and present them in an ordinary scatter-
PCMs, to improve the visual analysis task of high-plot matrix. One problem of this method is that the
dimensional data sets. SPLOM does not scale well for high-dimensional
data sets and even if a zoom option is available,
the overall visualization of the SPLOM is preju-
diced. Another problem happens when all classes
_are analyzed together to rank the projections, in
SPLOMand PCP are two of the most popular multi-yiq cage projections that separate two classes very

dimensional visualization techniques and are implegood might receive a bad ranking because of the

mented in diverse popular visualization t0ols as foligyiption of the remaining classes. Our method
example in the XmdvTool [17] and GGobi [14].  o4y,ces the matrix size to the number of classes of
the data set and presents to the user the best projec-

2.1 Scatterplot Matrix tions for each class pair individually.

2 Redated Work

The SPLOM was first published by_Jonn Har‘[i_gan?_2 Parallel Coordinates
[7] and later explored and extended in diverse visua
exploration tools. As aforementioned, SPLOMsAnother very popular multivariate visualization
lose their effectiveness when the number of varitechnique are parallel coordinates [9]. In a paral-
ables is large; to deal with this problem differentlel coordinate plot each dimension appears just once
approaches have been proposed: The grand toand the relation with other dimensions may be diffi-
[3] is a dynamic tool that presents a continuous seeult to pinpoint depending on the distance between
quence of lower dimensional (e.g. 2-dimensionalXhem in the plot. Diverse linking and brushing al-
point scatters. However, an exhaustive exploratiogorithms [17, 14] together with transparency lev-
of a high-dimensional data set requires prohibitiveels have been proposed to help visualizing these re-
time. Projection pursuit [6, 8] was proposed as arlations. However, they do not solve the problem
alternative to an exhaustive visual search, a statisvhen one dimension shares important correlations
tical technique to search for low dimensional (onewith more than its two neighboring dimensions in
or two-dimensional) projections that expose interthe visualization. Opposingly, we propose a paral-
esting structures of the high dimensional data selel coordinate matrix, where there is the possibility
Later on, different projection pursuit indices [5, 8] to plot all possible 3-dimensional combinations for
and a combination of the grand tour and projec-each dimension. In this matrix we have for each di-
tion pursuit [4] as a visual exploration system havemensiond up to(n — 1) /2 3D parallel plots, where
been proposed. In a similar direction, the Scagnosd is the central dimension, theoretically revealing
tics method [16, 18] was proposed.In this tech-all important relations for this dimension. An im-
nique, different scagnostics indices (e.g. Convexportant issue for parallel coordinates is how to or-
ity, Skinny, etc.) are computed and presented ader the dimensions in the plot. Different proposals
a scatterplot matrix of the indices themselves (theo solve this problem focus on ordering the dimen-
scagnostics SPLOM). Such scagnostic indices casions by similarity [2, 19], and a recent work [15]
be used to reveal structures of the data set in thproposes a sorting of the dimensions based on the
form of trends, hypersurfaces, clusters, or anomaguality of the plots. In this second case, a rank func-
lies in the data set. tion evaluates each 2D dimensional parallel plot and
In our method we make use of projection pur-the result is used to determine the order of the di-
suit like measures in a twofold way, to selectmensions in the final plot. Our PCM capitalizes
information-bearing projections for the C-SPLOM on this second approach to order the 3D individ-
and PCM, and to perform dimension reordering.ual plots. For each dimension we sort its respective



3D plots using a ranking function; the plots with a (n-1y2
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higher ranking are presented first and the ones with dimenaion Clabel

. . abel
a lesser amount of useful information are presented 03D parallel
last. coordinates plot

n
3 Visualization Matrices N
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. . . . . best worst

In the following subsections we describe our infor- visualization visualization

mation bearing visualization matrices in more de-

tail and define the measures we use to rank th&igure 1: Structural overview of the PCM. Each

low-dimensional projections. We then discuss re+ow has one main dimension appearing in the mid-

ordering of scatterplot matrices using such qualitydle of each 3D plot and as a label on the left for a

measures and how it can help to visualize highbetter overview. The rows are ordered according to

dimensional data sets. the overall importance of the main dimension in as-
cending order. The visualizations in each row are

31 Parallel Coordinates Matrix again odered according to their relative importance.

Parallel coordinates plots [9] are one of the tech-
nigues which allow to visualize an arbitrary num- i . )
ber of dimensions of a data set within the same with lesser information value are closer to the
plot. This makes them very attractive for high- bottom of the matrix.

dimensional data sets but comes at a cost. Th&niSway, only looking at the x p submatrix, start-

amount of information bearing content is very senind at index(0, 0) reveals the most valuable rela-

sitive to the ordering of dimensions [2]. In addition, ionships, i.e. visualizations to the user. An example
every dimension can be paired with only two other©f this concept is given in Figure 1.

dimensions. Therefore important relations to a third I @ first step, alln® 2D visualizations are cre-
or fourth dimension might be missed. ated. A quality measurement is applied to charac-

Our approach aims at presenting all those relatérize the possible information value of each visu-

tions in a single matrix, where each entry showd@lization. Most approaches in the literature aim at
the relationship between only two dimensions. Thiginding the best ordering of ail dimensions glob-
way alln? possible combinations of dimensions are@lly, or choosing a subset of them.

represented and no information is lost. The problem Only recently an approach has been presented,
with such an approach is the overstraining of thevhich rates every PCP consisting of only two di-
user as he would have to check every single visualnensions and combines them in a second step to
ization for possible information content. It is there- the complete visualization [15].

fore important to sort the visualizations inter- as We exemplarily make use of theaverlap mea-
well as intradimensionally, so that important visu-sure for our test data, which measures the simi-
alizations are spatially close together and at knowarity between the different classes of the data set
positions in the matrix. We found that such a matrixin Hough space. Visualizations with distinctive
is most legible if three constraints are fulfilled: classes therefore receive a high quality value and

1. Every row should contain one main dimen-Vvisualizations with very similar classes receive a
sion, which appears in every visualization inlow value. Other measurements, class and non-class
this row. A label is assigned at the left of the based, would be possible as well and can be easily
row for faster indexing. included in our framework, like [2].

2. The visualizations in each row should be We initialize the matrix so that each row of the
sorted in descending order according to theimatrix has one main dimension, e.g. each visual-
inherent information value. The best should beization in row 1 contains the dimension 1, each in
positioned on the left, the worst on the right. row 2 the dimension 2 and so on. We then sort the

3. The dimensions itself, i.e. the rows of thevisualizations intradimensionally, i.e. per row. As
matrix, should be rearranged so that the moseach visualization is associated with a quality value,

valuable rows are on top, while dimensions



we can easily apply a simple standard sorting algof®
rithm. We always combine two 2D visualizations |
to a 3D visualization, as both share the same mair
dimension, which is then positioned in the middle. £

In a last step we reorder the dimensions itself[=
i.e. the rows of the matrix. We tested different cri-;
teria, like summation of all quality values in each|
row or linear and Gaussian falloffs, increasing the
importance of the first visualizations in each row,[;
while decreasing the importance of the lesser valuer;
ones, and found that the linear falloff gives good re+}g&
sults for the PCM. More details and a more genera:
description for dimension reordering visualizationy;
matrices is given in Section 3.3. Therefore the qualf
ity value of thej-th dimension is computed by ‘
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Dj=) (n; i)Q(Puui)) ; (6N

i

wheren is the number of dimensions a6{(p(; ;)
is the quality value for the-th visualization in the Figure 2: Results of the PCM for the WDBC data

j-th row of the matrix. set. Malign nuclei are colored black while healthy
nuclei are red. Visualizations with only few overlap
311 Evaluation and Results are preferred, so the difference between malign and

_ o _ benign cells becomes more clear, and can be found
We used theéVisconsin Diagnostic Breast Cancer in the top left of the matrix. The worse visualiza-

(WDBC) as well as others from the UCI data base tajons in the bottom right hardly convey any useful

test the usefulness of our PCM. The WDBC data sehformation.

consists of 569 samples with 32 real-valued dimen-

sions each [13]. The task is to find the best dimen-

sions separating the malign and benign cells in th&ot sorted. This Iimi?s thei_r usefulness for data sets

data set. We created our PCM for this data set us?f up to a dozen dimensions only, otherwise ex-

ing theoverlap measuréom [15]. Other measure- haustively investigating eac_h plot is_oversf[raining

ments could be used as well, depending on the tasfor @ user. Even when sorting the dimensions be-

Figure 2 shows the complete PCM with the pesforehand, as proposed in 3.3, additional informa-

and worst ranked visualizations enlarged. Visualfion as color encoding or ranking values are needed

izations with higher information value are found in t0 guide the visual search. Using PCMs, looking at

the top left of the matrix, as desired, while the visu-then x p submatrix, starting at indefo, 0) always

alizations on the bottom right are hardly of any usereveals the most valuable relationships, i.e. visual-

Looking only at the best parallel coordinates plots,zations to the user, no matter how high the dimen-

like other approaches did [19, 15], one might missSionality of the data set is. Of course the choice of

important information. E.g. dimension 22 (radius Parallel Coordinates could also be exchanged with

(worst)) in combination with dimension 9 (concave Scatterplots, which one is more beneficial depends

points (mean)), 29 (concave points(worst)), 25 (are&N the preference of the user.

(worst)) and 5 (area (mean)) all separate the ma-

lign and benign cells .compari.ngly well, butin USUZ'?1| 3.2 Class-Based Scatterplot Matrix

parallel coordinate visualizations only two combi-

nations could be displayed in one visualization. A common task in visual analytics is to search
One could argue that SPLOMs fulfill a similar for projections of high-dimensional data that shows

task as PCMs, but there are major differences bewell defined clusters. The same occurs when

tween these two approaches. First, SPLOMS arelass information is available; finding the projec-
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tions or dimensions that can well separate the dis
tinct classes is a desired outcome. To serve thi
purpose, we introduce a new visualization matrix
calledclass-based scatterplot matr{-SPLOM). SR g
We assume that each point in the high-dimensional o —
space has a class lahel Diverse data sets have a

clear definition of classes, but this assumption doeEigure 3: The first scatterplot is the one with the
not limit the use of this technique to these data setdlighest rankQ) = 1, when considering all classes,

as class labels can be assigned through an automaflewever the second one with ra@ = 0.44
clustering algorithm. presents a better separation of th¢h and 4-th

classes (red and green), as can be seen in the third

Similar to the well known SPLOM, the class-
based version is also a matrix of pairwise scatter*
plots s(a, b), with data dimensiong andb. The

difference is that the classes are listed on the rowgnq gense clusters. We adopted their algorithm with
and columns instead of the original dimensions. Ife gifference that only one class pair is considered
there aren classes in a data set, the C-SPLOM hagyer time. To rank projections considering a specific
dimensionsn x m and the element at theth row  ¢ja55 pair, the algorithm is applied only to the data
and;-th column is the scatterplot of theth andh-  of the respective classes and the best ranked scatter-
th variable. The projection axésandh are chosen ot will represent this class pair in the C-SPLOM.
in a way to maximize the information content for The second measure, as the first one, presents high
the pairwise relation of theth andj-th classes. \1yes for plots with well separate clusters and in-
An important issue of the C-SPLOM is to choosestead of dense clusters, this measure has a bias to-
an appropriated analysis algorithm to compute thevards larger distances between the clusters. The
quality indexQ(s(a,b)) of the scatterplots. Dif- distance at a pixep is defined as:, wherer is
ferent algorithms can be used to this end [12, 15the radius of the enclosing sphere of thenearest
as long as they consider the pairwise relationshipaeighbors ofp:
between classes. The problem in considering all
classes at once, as proposed in [12, 15], is that T = maTien,||x — xi||, 2)
the global optimization may ignore views that sep-
arate two classes well, because of the distributioms defined in [15]. Both measures then compute
of the remaining classes.The Figure 3 shows exanthe sum of the mutual differences of these images.
ples of scatterplots generated from Dévesdata To decide which algorithm is the best one depends
set. (Section3.2.1). The first scatterpkitt,5)  strongly on the user task. Figure 4 shows an exam-
has the highest rani(s(4,5)) = 1 considering ple of the differences between the C-SPLOMs for
all classes. However the scatterpki®, 8) with  theWinedata set (Section3.2.1), using these two ap-
rank Q(s(2,8)) = 0.44 presents a better separa-proaches.
tion of 3-th and4-th classes presented in the data set Note that for thel-st and2-nd class (in black
(the South-Apuliaregion in red andbicily region in  and red respectively) the class density presents a
green, respectively), as can be seen in the third plogcatterplot with more dense clusters as best result,
This outcome is only possible if the adopted meawhile the class distance measure presents a scatter-
sure analyzes the pairwise relationships betweeplot where the distance between the center of the
classes instead of a global measure. The resultingusters is larger. The same happens forlt#st and
quality index@ is then used to rank the scatterplots,3-rd class (in black and green respectively), and for
and the best scatterplot is selected for the respectii@e 2-nd and3-rd the same scatterplot is chosen.
class pair.

We tested our C-SPLOM with two similar algo- 351 Evaluation and Results
rithms to measure the quality of scatterplots with
class information. The first algorithm is tldass  To evaluate our C-SPLOM, we tested it on diverse
densitymethod proposed in [15]. It assigns highreal data sets from the UCI repository [1] with la-
values to plots with few overlap between the classebeled information. The first presented data set is



Figure 4: The resulting C-SPLOM for the class [
density (left) and class distance quality measure et .
(right). el I I I I

the Winedata set, a classified data set with 178 in- ==
stances and 13 attributes describing chemical prof |-
erties of Italian wines derived from three different || "] i el o o]
cultivars. The user task here is to find the projec- -
tions (dimensions) that separate these classes well, )
Figure 5 shows the comparison of the C-spLOM’'9ure 5: R_esul_ts O_f the (_:'SPLOM for the Wine
(upper-right) and its counterpart SPLOM (bottom-data set. Vlsuallzafﬂons with only few overlgp are
left). The C-SPLOM was computed by means c)fpreferred, so the difference betweep tht_a wine cul-
the distance measurelescribed previously. An- tivars become_s clearer. The best visualizations for
other data set we used to evaluate the C-SPLOI\WaCh class pair are shown in the C-SPLOM.

is theOlives[20] data set. With 572 olive oil sam-

ples from nine different regions of Italy; for each tpe pipeline of our framework for quality-aware re-
sample the r_10rmaI|z_ed concentrations of eight fatty) jered SPLOMSs (D-SPLOM) is shown in Figure 6
acids are given. Figure 3 show two scatterplots,ng explained in the following. As a pre-process for
of this data set, the first one with theth and ¢ reordering, we initially apply a quality-measure
§-th @mepsmns (concentrations pf the oleic andQ(Sm‘b)) to each scatterplot, ;). This quality-
linoleic acids), and the second with tend and  aa5ure ought to be a scalar one, so that it rates
8-th d_lmenS|o_ns ((_:oncentratlons of the palmitoleicy, o scatterplot unambiguously with a single num-
and eicosenoic acids). ber. Apart from that, it could be any useful measure
[18, 12, 15]. Furthermore, we need this quality-
3.3 Dimension Reordering measure to estimate the quality of each dimension
itself. Once we haver — 1 scatterplots for each
Often, n-dimensional datasets are represent as dimension in az-dimensional dataset, we consider
series of 2D scatterplots. Such scatterplots are — 1 quality measures (one per plot) to compute
commonly arranged in a SPLOM and usually, thethe dimension overall quality-measure.
dimensions are arranged as provided by the data For each dimensiod, we compute a dimension-
set. Dimension reordering methods for SPLOMmeasure as the base for reordering. A dimension-
based on the similarity between the projections haveneasurey) is a scalar functio) : R — R
been proposed [18]. But nquality-aware sort- over all quality-measure§)(s,,) of a dimen-
ing methods have been presented.. This motivatesiond: Dy = Q(s,)), Wherei # d andi €
us to adopt ayuality-aware sortingoncept and to [1,...,n]. It appraises the quality-aware impact
start investigating the advantages of such an apaver all scatterplots, which contains the dimension
proach. Note that the concept of dimension reorderd. There are exactly. dimension-measures for a
ing can be applied to any matrix-based visualizan-dimensional dataset. Different functions could
tion, e.g. in Section 3.1 we also apply a dimen-be used for computind,, as long as it is guar-
sion reordering for our PCM, but for the ease ofanteed that the measure-values are comparable to
understanding we will use SPLOMSs in this chaptereach other, as thmean aPCAor thevarianceover




pre-computed quality-measures. We decided to udénear and non-linear correlation within the scatter-
the sum over all quality-measures as dimensionplots with respect to its two dimensions. The result
measure for this paper, as a proof of concept: is shown in Figure 8.

n

Dy = Z Q(sa.iy)- (3
i=1, id HE
This measure produces the same partial order be- 212
tween the dimension-measures as the mean, with 313
the advantage that it is easier and faster to compute. MR E
In this last step, we make use of the computed in- 5/5
formation to reorder @ x n SPLOM. Because such -

a SPLOM is symmetric, we use the upper triangu- 6/6
lar matrix for display. First, we allocate to each di- n
mension its quality-measure vald2;. We sort all 8/8
quality-measure/dimension paifBq, d) by means Normal Splom
of a simple partial order>) with respect to the 55 :
quality-measureD,, which gives us a dimension- 1
rankingr = (sort{(Da,d)};>). The dimension 44
7[0].d from rankingr describes théestdimension L2 I s |
andr[n].d theworstone. 22| |
We map a dimensionl to its position in the 33| ¢
rankingr and, depending on that mapping, we re- 717
order the scatterplots in the SPLOM and get the 6/6
dimension-based reordered SPLOM (D-SPLOM),

as can be seen in Figure 6.

)

8/8

1.0 >= CDM >= 0.65 D-Splom
0.65 > CDM >= 0.50
0.50 > CDM >=0.35
0.35 > CDM >= 0.00
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In Figure 7 and 8, relevant scatterplots are col-
ored more red than non-relevant. It is easy to see
that both types of scatterplots are distributed over
the whole SPLOM before the reordering. After
the reordering, relevant and non-relevant scatter-
plots in the D-SPLOM are mostly separated from
To evaluate our concept, we tested it on reakach other. Therefore, we can observe that the
class-based and non-class-based multi-dimensionglality-aware reordering reduces the region of in-
datasets. For classified data, we applied@hess terest, speeding up the visual search. l.e., a quality-
Density Measur¢CDM) [15] as a quality-measure aware reordering has practical advantages and en-
to theOlivesdataset [20], see Section 3.2.1 for a de-hances the visual quality of SPLOMs. Depend-
scription. The CDM assigns higher values to scating on the data set, some dimensions might contain
terplots with a better separation between the classesutliers. This may happen, when the used quality-
The result of the reordering is shown in Figuremeasure assigns a low value to most visualizations
7. For non-classified data we applied tRetating of one dimension, but a high value to only a few, as
Variance MeasuréRVM) [15] as quality-measure the dimensiont in the SPLOM, shown in Figure 8.
to the Parkinson-dataset. This set has 13 dimerur applied color coding allows for easy recogni-
sions, no classes and 197 items. The RVM rates thgon of such plots. In the future, we should inves-

Figure 6: Overview of the dimension reordering
Process

3.3.1 Evaluation and Results
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Figure 8: Evaluation on non-class-badeatkinson

ditionally, we proposed an information-bearing re-

ordering framework that can improve the visual

analysis task for any matrix-based visualization
method. We have shown that our quality-based vi-
sualization matrices together with the presented re-
ordering framework successfully reduces the region
of interest of the visualization matrices. In the fu-

ture, we intent to evaluate our methods more thor-
oughly with an adequate user study and to allow
user interaction while forming and reordering the

matrices. Furthermore, we would like to test more
sophisticated ranking functions for dimension re-

ordering.
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