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Abstract—The concept of continuous scatterplot (CSP) is a modern visualization technique. The idea is to define a scalar density
value based on the map between an n-dimensional spatial domain and an m-dimensional data domain, which describe the CSP space.
Usually the data domain is two-dimensional to visually convey the underlying, density coded, data. In this paper we investigate kinds
of map-based discontinuities, especially for the practical cases n = m = 2 and n = 3 | m = 2, and we depict relations between them
and attributes of the resulting CSP itself. Additionally, we show that discontinuities build critical line structures, and we introduce
algorithms to detect them. Further, we introduce a discontinuity-based visualization approach – called contribution map (CM) – which
establishes a relationship between the CSP’s data domain and the number of connected components in the spatial domain. We show
that CMs enhance the CSP-based linking & brushing interaction. Finally, we apply our approaches to a number of synthetic as well
as real data sets.
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1 INTRODUCTION

To enhance the user’s perceptual effectiveness and to ease the inter-
pretation it is important to have smooth data visualizations in arbi-
trary degree of detail and without artifacts like gaps or bucklings.
The continuous scatterplot (CSP) [2] is such a technique which en-
hances the classical concept of (discrete) scatterplots. Instead of
scattered samples it visualizes a continuous density function based on
a mapping function between an n-dimensional input domain and an m-
dimensional output domain. Hence, CSPs allow zooming into regions
of interest. In practice the application area of a CSP is mainly 2-3 di-
mensional time-independent data or – with additional time dimension
– 3-4 dimensional time-dependent data. Such data frequently occur in
nature or in computational science.

Due to the mathematical nature of CSP there has to be an under-
lying topological structure with discontinuities which is meaningful
for the interpretation of the data. With respect to the case of a one-
dimensional data domain (m = 1) Carr et al. [6] discussed some
problems using histograms to describe an underlying function dis-
tribution. Our work investigates kinds of meaningful discontinuities
for a two-dimensional data domain (m = 2), especially for the practi-
cally relevant time-independent case of 2-3 dimensional data. Infor-
mally, discontinuities are points, lines or areas where an event happens
“suddenly” and not continuously. A more theoretical perspective on
discontinuities is given e.g., in [8].

The main contributions of this paper are:
1) The introduction of two different kinds of discontinuities for CSPs

of the case n = m = 2.
2) The analysis of relations between these discontinuities of the case

n = m = 2 and the visual characteristics of CSPs themselves.
3) The description of applications for linking & brushing and – with

the concept of contribution maps – a new visualization approach for
the visualization of structural information between the data domain
and the spatial domain.

4) The introduction of four different kinds of discontinuities for CSPs
of the case n = 3 | m = 2.

5) The analysis of relations between these discontinuities of the case
n = 3 |m = 2 and the visual characteristics of the CSPs themselves.
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2 RELATED WORK & BACKGROUND

The multivariate data visualization approach of CSPs has been intro-
duced by Bachentahler and Weiskopf [2] to enhance the classical con-
cept of discrete scatterplots in a continuous manner. It addresses data
sets which can be described by a continuous mapping τ of n indepen-
dent variables onto m dependent variables: τ : Rn → Rm. The space
Rn is called the spatial domain because the data are measured there.
The space Rm is the data domain. In practice, the domains are mostly
sampled discretely, and the continuous mapping τ might be obtained
by a (multivariate) interpolation technique, like Shepard interpolation
[11] or radial basis (RBF) interpolation [7].

The m-dimensional CSP corresponds to a scalar density function
σ(ξ = τ(x)), whereas x ∈ Rn is an element of the spatial domain and
ξ = τ(x) ∈ Rm is the element mapped onto the data domain. The
approach requires a scalar density description s(x) for each spatial
domain element x which is typically uniform, e.g., s(x) = 1. Inte-
grating the elements s(x) ∈ V of a spatial domain volume V results
into the mass equation msd =

∫
V s(x) dnx. Further, the mass equation

mdd =
∫

φ=τ(V ) σ(ξ ) dmξ for the data domain results from integrating
the elements σ(ξ = τ(x)) ∈ φ of the corresponding volume element
φ = τ(V ) of the data domain. Assuming that the mapping τ fulfills the
property of mass conservation msd = mdd , a general implicit equation
of the CSP’s scalar density function σ(ξ ) is:

∫

Φ=τ(V )
σ(ξ ) dmξ =

∫

V
s(x) dnx. (1)

This equation has already been solved for different cases: if n = m, an
element ξ of the data domain is connected with an element x = τ−1(ξ )
in the spatial domain. The implicit Equation (1) can be rewritten by
using the transformation theorem for integrals with the Jacobian D(τ):

∫

V
σ(ξ = τ(x)) |det(D(τ))(x)| dnx =

∫

V
s(x) dnx. (2)

By rearranging Equation (2), the explicit CSP density function for the
m = n case is obtained:

σ(τ(x)) =
s(x)

|det(D(τ))(x)| . (3)

If n > m, an element ξ of the data domain is connected to a contour
xc = τ−1(ξ ) in the spatial domain with the dimension n−m. Thus,
the determinant det(D(τ)(x)) is not defined anymore, and the trans-
formation theorem does not apply. Therefore, Equation (3) has to be
adapted as an integral of all elements xt ∈ xc over that contour xc:

σ(ξ ) =
∫

τ−1(ξ )

s(xt)
|Vol(D(τ))(xt)| d(n−m)xt . (4)



Note that a number k of spatial domain contours xci , i = 1, . . . ,k,
for the n > m case as well as spatial domain elements xi, i = 1, . . . ,k,
for the n = m case can contribute a density σ(ξ = τ(ei)) to the same
data domain element ξ (with ei = xci for the n > m case and ei = xi
for the n = m case). Therefore, the total data domain density σ(ξ )all
is the superposition of all these single density values:

σ(ξ )all =
k

∑
i

σ(ξ = τ(ei)). (5)

In [3] the same authors presented an approximation approach to
render CSPs for arbitrary dimension numbers of the spatial domain
as well as the data domain. Based on the implicit density function
(Equation (1)) they describe an approximation as follows:

s(x) V ≈ σ(ξ ) Φ ⇔ σ(ξ = τ(x))≈ s(x) V
Φ = τ(V )

.

Due to the fact that the spatial domain density is mostly uniform
(s(x) = 1), the density σ(τ(x)) is finally defined as ratio between V
and the mapping τ(V ):

σ(τ(x)) =
V

τ(V )
; x ∈V.

The approximation error is directly correlated with τ(V ). Thus, to
steer the error a threshold Φmax = τ(V )max is used as upper limit for
the measure of the mapped volume. If the volume τ(V ) is larger than
the threshold Φmax, an adaptive dividing step of V is recursively done.

To accelerate the rendering of CSPs, a GPU-based algorithm for in-
put data on tetrahedral grids has been introduced in [1]. It combines
a cache concept with a sorting strategy to master the typical computa-
tional overhead with parallel computing.

Further, Heinrich and Weiskopf [9] presented a concept for continu-
ous parallel coordinates based on CSPs. They described a continuous
transformation between two-dimensional CSPs and two-dimensional
continuous parallel coordinates with the aid of the point-line-duality
and the mass conservation.

3 DISCONTINUITIES OF THE CASE n = m = 2

In this section we consider the case of a two-dimensional spatial do-
main and data domain. Such data often occurs in climate or geology
research. Typical data sets for that case represent physical variables
in the data domain, like temperature, (atmospheric) pressure or stress,
with respect to a two-dimensional spatial domain for instance a seabed,
terrains or material surfaces. Such data sets are either static data sets
or single slices of a time-dependent one. To visualize all slices as a
stack of CSPs could under certain circumstances be an appropriate vi-
sualization technique for the time-dependent case. However, to handle
this case we will define different models of discontinuities in the next
sections.

3.1 Discontinuity Model of the Mapping Function

Based on the density function (3) we are interested in discontinuities.
A discontinuity is an element ξ = τ(x) of the data domain with an
infinite density σ(ξ ). Such elements are explicitly described by the
limit:

σ(ξ = τ(x)) =±∞ ⇔ lim
det(D(τ)(x))→±0

s(x)
|det(D(τ)(x))| .

The limit leads to an appropriate criterion for a discontinuity element
ξu:

ξu ⇔ det(D(τ)(x)) = 0. (6)

Note that the discontinuity ξu depends on the mapping function τ and
is independent of the spatial domain density function s(x).

3.1.1 Critical Curves
The union of adjacent discontinuities ξu forms coherent critical curves
ξc within the data domain, given by ξc =

⋃
ξu. As shown in Equa-

tion (5), the density σ(ξ )all of a data domain element ξ consists of
superpositioned scalar density values σ(τ(xi) = ξ ), i = 1, . . . ,k. How-
ever, Equation (6) has shown that it is necessary to consider only
single density contributions σ(τ(xi) = ξ ) and not a superposition of
it. On the other hand, σ(ξ )all as well as single density contributions
σ(τ(xi) = ξ ) will in practice be finite due to numerical reasons. There-
fore, it is ambiguous to detect discontinuities directly from the density
function.

In analogy to level-set methods the approach embeds the density
and the mapping function into a higher dimensional function to ease
the discontinuity detection. Thus, we propose a parametric surface
Sξ ,d :R2 →R3 where the first two components are the mapping func-
tion ξ = τ(x) and the last component d is the signed reciprocal of the
corresponding density value σ(ξ = τ(x)):

Sξ ,d =
(

ξ
d

)
=




ξ1 = τ1(x1,x2)
ξ2 = τ2(x1,x2)

d = det(D(τ)(x)))


 , (7)

with

ξ =
(

ξ1
ξ2

)
and τ(x) =

(
τ1(x1,x2)
τ2(x1,x2)

)
.

With respect to Equation (6) and (7) we can give a more formal de-
scription now: critical curves correspond to those isolines of the sur-
face Sξ ,d which satisfy Sξ ,d=0. This shows that critical curves for
non-degenerated mappings τ are coherent curves in the data domain
which are given by: ⋃

ξu ⇔ Sξ ,d=0. (8)

3.1.2 Critical Curves Detection Algorithm
By sampling the parametric surface Sξ ,d , this surface can be repre-
sented by the resulting mesh Mξ ,d . The approximation error ||Mξ ,d −
Sξ ,d || depends only on the sampling resolution and can be chosen as
small as desired. Detecting critical curves now means to clip that mesh
with the plane d = 0 by using standard clipping approaches. The re-
sulting polylines are the critical curves.

3.2 Discontinuity Model of the Boundary
In this section we introduce another discontinuity type: boundary
curves. The spatial domain is usually finite and corresponds to a
two-dimensional rectangle. The boundary b consists of four boun-
dary edges. As Figure 1 (left) illustrates, an element of the spatial

Fig. 1. Boundary curves: (left) A boundary element of the spatial domain
gets to an element of the boundary curve in the data domain by mapp-
ing it. (right) The union of mapped boundary elements forms a boun-
dary curve (implied by red points). The yellow point indicates where the
corresponding volume (pink) changed from the left side of the boundary
curve to the right side.

domain boundary xb ∈ b is mapped onto an element ξb = τ(xb) of the
data domain. Additionally, the element xb is a boundary element of
a corresponding infinitesimal volume V of the spatial domain, and the
mapped element ξb = τ(xb) is also a boundary element of the mapped
volume Ω = τ(V ).

Figure 1 (right) and the last explanation depict the following: an
arbitrary amount of adjacent boundary elements xbi , i = 1, . . .w, being



mapped and forming a boundary curve. The corresponding volume V
being mapped and forming the volume Ω which is mainly on one side
of the boundary curve. Therefore, boundary curves produce curves in
the data domain where the density contribution from one side of the
curve to the other side suddenly disappears. That is the reason why
these curves form discontinuities.

Finally, Figure 2 shows critical and boundary curves for a CSP with
m = n = 2. The underlying synthetic 2D scalar data sets are sampled
from the function

(
ξ1(x)
ξ2(x)

)
=

(
sin(x1) x1 + sin(x2) x2
sin(x1) x2 + sin(x2) x1

)

on a uniform grid with cell size 0.1 within the spatial domain [0,3]×
[0,3].

Fig. 2. Critical and boundary curves of a CSP of the case m = n = 2
based on a synthetic data set: (a) CSP of the data set with respect to
[2], (b) Critical (green) and boundary curves (dark green) in the CSP, (c)
According 3D mesh Mξ ,d (blue) that approximates the surface Sξ ,d , (d)
Mesh Mξ ,d with critical (green) and boundary curves (dark green).

3.3 Analysis
In this section we investigate limitations and consequences of the con-
cept of boundary and critical curves. Furthermore, we derive relations
between these curves and visual characteristics of the CSP.

3.3.1 Limitations
The critical curves correspond to the null set where the mapping func-
tion (with respect to the density function) is not a diffeomorphism. If
the function is additionally degenerated, e.g., piecewise constant, the
critical curves become critical surfaces because the zero-crossings of
the surface Sξ ,d=0 cover a whole region instead of just curves. Such
critical areas are structurally unstable, i.e., they would break by adding
noise. For our work we assume only structurally stable (smooth)
mapping functions as input data.

3.3.2 Contributions of the Spatial Domain to the Data Domain
As already mentioned, a scalar density value σ(ξ )all of the data do-
main consists of a number k of different superpositioned density ele-
ments σ(τ(xi) = ξ ), i = 1, . . . ,k. Therefore, we denote the number of
contributing elements xi, i = 1, . . . ,k, the contribution number k(ξ ) of
ξ . This number describes how many (isolated) elements of the spatial
domain are used to produce the density of a certain element of the data
domain. Formally, k(ξ ) is defined as:

k(ξ ) = number of elements xi with xi = τ−1(ξ ).

How can this contribution number be detected for each data domain
element? Let us consider the parametric surface Sξ ,d which was intro-
duced in Section 3.1.1. By sending a ray r(ξ ) from ξ in the directions
±d the contribution number k(ξ ) is equal to the number of intersec-
tion points between r(ξ ) and Sξ ,d (see Figure 3 (a)). The problem
of detecting the contribution number is transformed into a ray casting
problem.

Another property is also of interest: the contribution number is con-
stant within the data domain until either (i) the surface Sξ ,d ends or (ii)
the last component nz of the surface normal n = nSξ ,d = (nx,ny,nz)T

changes its sign. Figure 3 (a) demonstrates this. In detail this means:
(i) The first kind of locations in the data domain where the contribu-
tion numbers change is where the surface Sξ ,d ends, because there the
number of intersection points decreases by one.
(ii) The second kind of locations is where the nz-component of the
surface normal nSξ ,d is changing the sign, which is also depicted in
Figure 3 (a). The normal nSξ ,d of a surface is defined as cross product
over the gradients:

nSξ ,d =




nx
ny
nz


 =




ξ1x1
ξ2x1
dx1


×




ξ1x2
ξ2x2
dx2


 ,

with the partial derivatives ξix j
, dx j , i, j ∈ {1,2}. With respect to the

nz-component of that normal nSξ ,d
this equation leads to:

nz = ξ1x1
ξ2x2

−ξ2x1
ξ1x2

= det(D(τ)(x)).

This shows that the nz-component of the surface normal nSξ ,d is equi-

Fig. 3. (a) Detection of the contribution number k(ξ ) from the surface
Sξ ,d with ray cast: Contribution numbers are piecewise constant and
change their value depending on attributes of the surface normals and
the surface boundary. (b) Relation between surface normal component
nz and component d = det(ξ ) of that surface. Both change their signs
synchronously.

valent to the d-component of the surface Sξ ,d itself. Hence, the nz-
component of the surface normal nSξ ,d and so the d-component of the
surface Sξ ,d change their sign at d = det(D(ξ )) = nz = 0 (see Fi-
gure 3 (b)). With respect to Equation (8) critical curves are defined
by det(D(ξ )) = 0 and thus they also have to be boundaries of areas of
constant contribution numbers in the data domain. It follows that k(ξ )
is a piecewise constant function.

Note that self-intersections of the surface Sξ ,d do not need to be
considered for the question where the contribution number changes
because they do not influence the number of intersection points.

3.3.3 Relations between Critical/Boundary Curves and CSPs
Figure 4 (a-b) shows a comparison of the edges of a CSP (a) with boun-
dary and critical curves (b). It can be noticed that edges/discontinuities
in the image space of that CSP relate to critical as well as boundary
curves of the case n = m = 2. Boundary and critical curves are struc-
tures where either a density suddenly ends or gets infinite. On the other



hand, it has already been shown that boundary and critical curves also
correspond to boundaries of constant contribution numbers. The con-
tribution number changes by one when crossing a boundary curve and
by two when crossing a critical curve, as shown in Figure 3. Con-
sequently, the contribution number boundaries also relate to edges in
the image space of the CSP. Concluding, Figure 4 (c) illustrates that
isolines of the surface Sξ ,d with d 6= 0 are not edges in the CSP.

Fig. 4. Relation between CSPs and critical and boundary curves: (a)
Edges in a CSP detected with a canny [5] image process operation,
(b) Critical and boundary curves of the same CSP detected with the
described approaches, (c) Counterexample: Isolines (green) of surface
Sξ ,d with d 6= 0 are neither critical curves nor image edges (left to right)
d=3, d=5, d=7.

3.4 Applications
In this section we present applications and demonstrate real world ex-
amples for discontinuities of the discussed m = n = 2 case.

3.4.1 Discontinuities and Linking & Brushing
Linking & brushing (L&B) is an important interaction task of explo-
rative visual search. This technique has been introduced by Becker
and Cleveland [4] and is used to select exactly such elements from the
spatial domain and/or the data domain which are in a certain relation
to each other. Usually, these elements will be highlighted in both do-
mains to give a visual feedback to the user. With L&B techniques the
user is often able to find hidden patterns and relations within a multi-
variate data set.

Two L&B directions are possible for CSPs: from the spatial domain
to the data domain and vice versa. Selecting a volume V of the spatial
domain links to a volume Ω = τ(V ) of the data domain. In contrast,
selecting the same volume Ω in the data domain links to a number
of different volumes Vi = τ−1(Ω), i = 1, . . . , f , in the spatial domain:
this last case is because different elements of the volume Ω consist of
different elements of the spatial domain. The effect has already been
discussed in Section 3.3.2. Thus, the resulting spatial domain volume
Vres of the data domain area Ω is:

Vres =
f⋃

b=1

(Vb ⊆ τ(Ω)−1) with V ⊆Vres.

If all elements ξ ∈ Ω of the data domain volume Ω have the same
contribution number k(ξ ), the corresponding elements in the spatial
domain form at most k different volumes, or less due to volume fusions
in the spatial domain: f ≤ k.

If the elements ξ ∈ Ω are a mixture of different contribution num-
bers, the upper limit f of different volumes depends on the behavior
of the mapping function. However, we already know that such a vol-
ume Ω that contains a mixture of different contribution numbers has
to cross either a boundary or a critical curve because these curves are

boundaries of areas of constant contribution numbers. Nevertheless,
the area V and Ω link in both linking directions to each other.

Now, we propose a new visualization technique called contribution
map (CM) to improve the user’s ability to recognize relations between
the data and the spatial domain for the complex case of linking from
the data to the spatial domain. This technique is derived from the
contribution number concept which has been discussed in Section 3.3.
A CM is defined as the color-coded visualization of all contribution
numbers k(ξ ) of the elements ξ of that data domain. Based on the
results of the discontinuity analysis in Section 3.3.3 it is obvious that
the image edges of a CM correspond on the one hand with the boun-
dary and critical curves, and on the other hand with the edges of that
CSP. Figure 5 shows a CM.

Fig. 5. Contribution Map: (a) Color-coded contribution map of a CSP:
the more red, the larger is the contribution number. (b) The same con-
tribution map with critical (green) and boundary curves (dark green).

Supported by a CM the user is able to visually estimate which el-
ements of the data domain consist of more or less contribution of the
spatial domain compared to other elements. In other words: the CM
visualizes which areas of the data domain incorporate more or less
areas of the spatial domain. Thus, a CM is a new source for structural
information about the underlying data set.

Therefore, the CM visualization might be combined with an inter-
active L&B technique to introduce a new visual exploration tool for
CSPs. So the user can select an area of interest in the data domain with
a variable contribution number and, by L&B, the user can investigate
the distribution behavior of the corresponding areas in the spatial do-
main to search a meaningful distribution pattern. Further, it is possible
to explore relations between the visually coded variables of the data
domain and the number of contributions (or connected components,
respectively) in the spatial domain. Figure 6 illustrates an example
of this exploration tool. The larger the contribution number k(ξ ) of
the selected area in the data domain is, the larger is the corresponding
linked area Vres in the spatial domain.

Fig. 6. Contribution Map combined with Linking & Brushing: The more
red colored an element of the CM is, the larger is the underlying contri-
bution number. (a) A selected area in the data domain (green bordered
rectangle) with low contribution number (orange) links only to a small
area in the spatial domain (cyan), (b) A selected area in the data do-
main (green bordered rectangle) with a higher contribution number (red)
as before links to a larger area in the spatial domain (cyan) than before.

3.4.2 Alternative Linking & Brushing Concepts
To facilitate the intuitive understanding from which spatial domain el-
ement a data domain discontinuity element comes from, an animation



Fig. 7. Discontinuity application “north sea” (up) and “Hurricane Isabel” (down) data set: (a up) The underlying 2D scalar fields of the CSP
calculations with a grid resolution of 130×30, color coded x velocity component and y velocity component of the sea current. (a down) The underlying
2D scalar fields of the CSP calculations with a grid resolution of 500×500, color coded distribution of the pressure and of the temperature. (b) The
resulting CSPs. (c) The CSPs with critical (green) and boundary curves (dark green). (d) The corresponding CMs. (e) The CMs with critical lines
(green) and boundary curves (dark green)

showing how the spatial domain morphs into the data domain can be
used. The advantage of the concept is that an animation is a natural
way to visualize relations because in everyday life the user is surroun-
ded by a lot of animations and therefore accustomed to interpret them.
Some of these animation aspects for visualizations have been investi-
gated by Tversky et al. [14].

The animation process from the spatial to the data domain is real-
ized as follows: the spatial domain is covered by a (e.g., regular) grid
G. Each point xg = (xg1 ,xg2 ,0)T ∈ G corresponds to a data domain
point ξg = (ξg1 = τ1(xg),ξg2 = τ2(xg),d = det(D(τ)(xg))T ∈Mξ ,d of
a mesh Mξ ,d . Note that this mesh is equivalent to the mesh Mξ ,d in-
troduced in Section 3.1.2. The animation is defined by moving each
point xg of the data domain linearly to the corresponding point ξg of
the spatial domain. In other words: the backwards running animation
unfolds the mesh – which represents the data domain – over the spa-
tial domain and vica versa. All points whose last coordinate is zero
over the whole animation are zero-crossings of that mesh Mξ ,d and
consequently discontinuities, as explained in Section 3.1.2.

To visually enhance this method, any mesh vertex should be colored
with the corresponding density contributions, e.g., as vertex color. Fur-
ther, an alpha blending might be used to avoid confusions of the user
due to visual occlusions. Figure 8 presents a sequence of images of
such an animation.

Finally, to complete the L&B discussion a last linking tool should
be mentioned. Instead of linking manually selected areas in both do-
mains to each other we can use a density threshold σmax to link el-
ements automatically: all elements x in the spatial domain and all el-
ements ξ in the data domain can be selected and highlighted, which
fulfills:

(σ(τ(x)) > σmax) ∧ (σ(ξ )all ≤ σmax).

The intention is that no element x of the spatial domain can contribute
a density value σ(τ(x)) to any element ξ of the data domain whose
total density value σall(ξ ) is smaller than this contribution. That is due
to the superposition characteristics mentioned in Equation (5). Hence,
the L&B relation for this case is that only elements in both domains
are selected that do not map to each other.

Fig. 8. Observing the evolution of discontinuities between spatial and
data domain by use of animations. (left-right) An image strip of differ-
ent animation time steps is presented for a top view (up) as well as for
a dutch angle view (down). The discontinuities and zero-crossings, re-
spectively are shown in yellow and the mesh is visualized as wire frame.

3.4.3 Discontinuities in Data Sets

We apply the approach described above to the “north sea” data set and
to the “Hurricane Isabel” data set. The “north sea” data set contains
flow information of the North Sea in the German Bight on 10/17/2008.
We used the topmost 2D slice of that 3D flow because that data set is
dominated by its horizontal components and can be considered as 2D
vector field. The “Hurricane Isabel” data set is a model of a tropical
hurricane (09/06/2003-09/19/2003 North Carolina) which contains 3D
time-dependent information about different physical measurements,
like atmospheric pressure, cloud formation or temperature. We used
the variables pressure and temperature of time step 10 and slice 10
with a grid resolution of 500×500.

Figure 7 illustrates the resulting CSPs, critical and boundary curves
as well as a the CMs for both data sets. The CSPs have been built
on an Intel Core 2 Quad CPU (using a single core) with Linux OS
and 3.5 GB RAM with the original approach for n = m = 2 CSPs of
[2]. The interpolation has been done by RBFs of Gaussian type. The



additional computation time for the surface Sξ ,d is negligible because
the surface is a by-product of the CSP calculations. The computation
time of the critical and boundary curves did not exceed a half second
in our examples.

4 DISCONTINUITIES OF CASE n = 3 | m = 2

In this section we consider the case of a three-dimensional spatial do-
main and a two-dimensional data domain. That special case of n > m
is especially important for data sets of flow which often occur, e.g., in
oceanography, plasma or aerodynamic physics.

4.1 Discontinuity Model of the Mapping Function

Due to the different dimensionality of the spatial domain and the data
domain the discontinuities of this CSP case have a more complicated
character as such described in Section 3.1.

Let us consider an element ξ = (ξ1,ξ2)T of the data domain: the
component ξ1 is represented by an isosurface Sξ1

= τ−1(ξ1) and the
component ξ2 is represented by an isosurface Sξ2

= τ−1(ξ2) in the
spatial domain. Thus, the data domain element ξ in the spatial do-
main is represented by an intersection curve Iξ = Sξ1

⋂
Sξ2

. Figure 9
(a) demonstrates that the intersection curve is a (one-dimensional) iso-
line of a constant ξ and is embedded in the three-dimensional spatial
domain.

Unfortunately, no closed parametric definition of an isoline Iξ is
possible. Therefore, we propose to construct a vector field q(x) over
the spatial domain whose stream lines correspond exactly to the iso-
lines Iξ=τ(x): let ∇τ1(x) and ∇τ2(x) be the gradients of the mapping
τ(x) = (τ1(x),τ2(x))T which point in the direction of maximal slope
of ξ1 = τ1(x) and ξ2 = τ2(x), respectively. Then the cross product
q(x) = ∇τ1(x)×∇τ2(x) is the vector which points into the direction
where the slope of the corresponding domain element ξ = (ξ1,ξ2)T

has to be zero. This means, that the vector q(x) points in the direction
of the isolines pathway. Thus, the 3D vector field

q(x) = ∇τ1(x)×∇τ2(x) = ∇ξ1×∇ξ2 =




ξ1x2
ξ2x3

−ξ1x3
ξ2x2

ξ1x3
ξ2x1

−ξ1x1
ξ2x3

ξ1x1
ξ2x2

−ξ1x2
ξ2x1


 , (9)

with the partial derivations ξix j
, i, j ∈ {1,2}, is the desired vector field

where the stream lines correspond to the isolines Iξ=τ(x). Figure 9
(b-c) illustrates that.

Fig. 9. From isosurfaces to the vector field: (a) The intersection of iso-
surfaces Sξ1

= τ−1(ξ2) (red) and Sξ2
= τ−1(ξ2) (blue) yields the inter-

section curve (orange) which represents the isoline ξ = (ξ1,ξ2)T in the
spatial domain. (b) The isoline (left, orange) with blue colored tangential
vectors of q(x) (right). (c) Blue colored 3D vector field q which contains
the stream lines of corresponding isolines.

The integration time tIξ of a stream line in q(x) is infinite or dis-
appears at the same location x as the density contribution σ(Iξ ) of
the corresponding isolines would do (see Equation (4)). Thus, we can
use the integration time tIξ within the vector field q to define different
cases of discontinuities.

Center Discontinuity Figure 10 (a) illustrates that a closed iso-
line Iξ in the spatial domain might shrink to an isolated point while
varying ξ in the data domain. For that case the integration time tIξ

of the corresponding stream line is constant in a first order approxima-
tion. But when the isoline disappears, the integration time tIξ as well as
the corresponding density value σ(Iξ ) gets suddenly from a constant
value to zero (see Figure 10 (b)). We denote the isolated point as cen-
ter discontinuity because of its center behavior in the vector field q(x):
||q(x)|| = 0 ∧ Re(λ1) = Re(λ2) = 0 where λi are the eigenvalues of
the Jacobian D(q) [15].

Fig. 10. Center Discontinuity: (a) Isoline (orange) shrinks to an isolated
point while varying the isosurfaces of ξ1 (red) and ξ2 (blue): the isolated
point where the isoline disappears is the center discontinuity (green). (b)
Illustration of that isoline evolution (right) and the corresponding vector
field q colored in blue (left).

Saddle Discontinuity As Figure 11 (a) shows, a closed isoline
Iξ in the spatial domain might split while varying ξ in the data do-
main. For that case, the integration time tIξ of the corresponding
stream line gets infinite as well as the corresponding CSP density
value σ(Iξ ). Figure 11 (c) depicts this. We denote the split point
as a saddle discontinuity because of its saddle behavior in the vector
field q: ||q||= 0 ∧ Re(λ1)≤ 0≤ Re(λ2).

Furthermore, the isoline which belongs to a saddle discontinuity
separates two center discontinuities, as Figure 11 (c) depicts.

Fig. 11. Saddle Discontinuity: (a) An isoline (orange) splits while vary-
ing the isosurfaces of ξ1 (red) and ξ2 (blue): The split point is a saddle
discontinuity (green). (b) Illustration of that isoline evolution (right) in
contrast to the corresponding vector field q colored in blue (left). (c)
Isoline of a saddle discontinuity (purple) separates two center disconti-
nuities (additional green points).



4.1.1 Critical Curves

The set of the center as well as the saddle discontinuities form closed
lines (unless they intersect the boundary) within the vector field q, so-
called feature lines [12, 15]. Therefore, we can define critical curves
of a CSP as the feature lines of q that will be mapped from the spatial
domain onto the data domain (Figure 12).

Fig. 12. Critical Curves: (left) a center feature line (green) is the union
of adjacent center discontinuities (green points); a saddle feature line
(red) is the union of adjacent saddle discontinuities (red points); (right)
mapped feature lines form critical curves in the data domain; isolines
are orange colored.

4.1.2 Detection of Critical Curves

To detect the critical curves we have to detect the feature lines of the
vector field q first. That feature lines are structures of zero points in
q with q(x) = 0, as already seen in Section 4.1. From Equation (9)
it follows that the zeros of q(x) correspond to the locations where the
gradients of ξ = τ(x) are parallel:

q = 0 ⇔ ∇ξ1||∇ξ2.

Detecting parallel vectors is a well-discussed issue by Peikert and Roth
[10]. Based on that, Theisel et al. [13] proposed a concept of feature
flow field (FFF). A FFF f(q) of such a 3D vector field q is also a 3D
vector field in which a feature line of q(x) corresponds to a stream line
of f(q(x)).

Detecting the feature lines of q is now an integration task in f start-
ing at f(q(x) = 0). In practice, this integration task in an FFF is
numerically unstable. That is because on the one hand we are mostly
not able to start exactly at a point f(q(x) = 0), on the other hand the
integration would lead away from the feature line due to the intrin-
sic integration error of the standard integrators. Therefore, Weinkauf
et al. [15] discussed a concept of stable FFF (SFFF) that solves this
stability problem: the approach enriches the environment of a stream
line in f (which represents a feature line in q) with an attracting prop-
erty. In other words: the feature lines attract (massless) integration
particles onto them. An integration that starts close to f(q(x) = 0) is
successful anyhow. This is illustrated in Figure 13 (a-b). SFFFs are
defined (among other) for 3D vector fields that are the result of a cross
product. The vector field q(x) is such a field (see Equation (9)) and
therefore we can use a SFFF h(q(x)) to detect the feature lines of q(x)
by stable integration. The SFFF h(q(x)) is defined as a weighted blen-
ding between the FFF f(q(x)) and the attracting vector field g(q(x))
as follows:

h(q(x)) = f(q(x))+
α g(q(x))
||f(q(x))|| ,

with

f(q(x)) =




det(qy,qz,a)
det(qz,qx,a)
det(qx,qy,a)


 with a =

{
∇ξ1 if ||∇ξ1|| ≥ ||∇ξ2||
∇ξ2 else

and

g(q(x)) =




det(qz,qx,a)det(q,qz,a)−det(qx,qy,a)det(q,qy,a)
det(qx,qy,a)det(q,qx,a)−det(qy,qz,a)det(q,qz,a)
det(qy,qz,a)det(q,qz,a)−det(qz,qx,a)det(q,qx,a)


 .

The qi are the partial derivatives of the i’th component of the vector
field q(x) and the parameter α steers the strength of the described
attracting effect.

Fig. 13. Critical Curves for m = 3 | n = 2 case: (a) Level-sets of mag-
nitude close to zero of a vector field q. It contains all feature lines of
q. (b) A screenshot of one time step of a particle integration flow ani-
mation in the SFFF h(q) with 5000 randomly seeded particles (red). It
can be seen that the particles are attracted to the feature lines and re-
produce the structure of that level-set. (c) Critical curves (green) in the
corresponding CSP for the vector field q of sub image (a). The charac-
teristics of the level-set structures can still be recognized in the structure
of the critical curves.

4.1.3 Critical Curves Detection Algorithm
We will give a brief overview of the critical curves detection algorithm.

1) Seedpoints: Boundary points with q(x) = 0 are seedpoints of fea-
ture lines that intersect the boundary. Closed feature lines be-
come feature lines that intersect a boundary by recursively divid-
ing the vector field q(x) with an octree scheme.

2) Integration: Forward and backward integration within the SFFF
h(q(x)) starting at the seedpoints delivers the feature lines fl , l =
1, ...,s.

3) Mapping: Generates critical curves of the CSP by mapping the fea-
ture lines fl from the spatial domain to the data domain.

Furthermore, the critical curves can be classified in center or saddle
critical curves by using the Jacobian analysis mentioned in Section 4.1.
Figure 13 (c) shows an example of critical curves for a data set which
is described in Section 4.4.

4.2 Discontinuity Model of the Boundary
The boundary box of the 3D spatial domain is also a source for differ-
ent discontinuities in the data domain, so-called boundary curves.
Figure 14 depicts two cases of such boundary curves that are explained
in the following.

Box Edge Boundary Curve By mapping the edges of the box
that bounds the 3D spatial domain onto the data domain, the box edge
boundary curves arise in the data domain. These curves are compar-
able to the 2D boundary curves introduced in Section 3.2. The box
edge boundary curves are curves in the data domain where the density
from one side of the curve to the other side might suddenly disappear.

Boundary Switch Boundary Curve The stream lines of q(x)
run either out of the boundary box or are completely embedded into it.
Thus, there are stream lines of q(x) which hit the boundary in exactly
one boundary switch point. These boundary switch points partition the
boundary into segments, the so-called boundary switch curves [16].
They divide the boundary into inflow and outflow areas. Inflow areas



Fig. 14. Boundary curves in the data domain generated by mapping the
box edges and the boundary switch curves onto the data domain.

are areas on the boundary where the stream lines flow into the boun-
dary box and at outflow areas they flow out of the box. The behavior
of outflow and inflow changes suddenly at the boundary switch curves
(BSC) and therefore it is a discontinuity structure (see Figure 15 (left)).
Further, the BSCs starts (or ends) on a box edge or are closed and they
are free of self-intersections, as Figure 15 (right) depicts.

Fig. 15. Boundary Switch Curves: (left) Boundary switch points of
stream lines of q(x) (blue arrows) form a boundary switch curve (red).
(right) Boundary switch curves (red) on a boundary face either start/end
(blue points) on a box edge or they are closed.

4.2.1 Boundary Switch Boundary Curve Detection
Within a BSC a vector of the vector field q(x) is parallel to the corres-
ponding boundary face. Let n be the normal of a boundary face, then
a BSC on that face is defined as

q(x) n = 0.

That equation defined a 2D scalar field b(γ) for a given 2D boun-
dary face because two of the three components of q(x) drop out. Here,
γ = (γ1,γ2)T is an element of the local 2D coordinate system of that
boundary face. A BSC is a zero isoline of that scalar field b(γ) and can
be detected as an integration over the stream lines of the corresponding
co-gradient (− ∂b

∂γ2
, ∂b

∂γ1
)T , starting at points with b(γ) = 0.

4.2.2 Boundary Switch Boundary Curves Detection Algorithm
We will give a brief overview of the boundary switch boundary curve
detection algorithm.

1) Seedpoints: Boundary edge points with b(γ) = 0 are seedpoints of
a BSC intersecting the boundary edges. Closed BSCs become
BSCs that intersect a boundary edge by recursively dividing the
boundary faces with a quadtree scheme.

2) Integration: Forward and backward integration within the co-
gradient (− ∂b

∂γ2
, ∂b

∂γ1
)T starting at the seedpoints delivers the

BSCs bl, l = 1, ....,s.

3) Mapping: Generates boundary switch boundary curves of the CSP
by mapping the BSCs bl from the spatial domain to the data do-
main.

4.3 Analysis
In this section we investigate the limitations and consequences of crit-
ical as well as boundary curves of the case n = 3 | m = 2 with respect
to the CSP.

4.3.1 Limitations
For degenerated input data the critical curves may become critical
surfaces similar to the n = m = 2 case as already discussed in Sec-
tion 3.3.1. We assume structurally stable (smooth) mapping functions
as input data.

Additionally, the detection algorithms of Section 4.1.3 and 4.2.2 are
only able to detect those closed feature lines as well as closed BSCs
which intersect the boundary and the boundary edges, respectively one
time during the recursion (otherwise no seedpoints are detected). Fur-
thermore, the standard integrators produce an integration error. In con-
trast to that, other numerical effects are negligible. Thus, we use the
SFFF concept to weaken numerical errors and to get a stable integra-
tion.

4.3.2 Contributions of the Spatial Domain to the Data Domain
Due to the superposition characteristic mentioned in Equation (5) there
are a number of isolines Iξi

; i = 1, . . . ,k in the spatial domain that map
to the same data domain element ξ = τ(Iξi

). The number k of these
isolines is the extension of the concept of contribution number intro-
duced in Section 3.3 for the n = 3 |m = 2 case. The following question
arises: are we able to detect the contribution number k(ξ ) for a chosen
data domain element ξ ? Unfortunately, in general we are not. This is
due to the fact that the BSCs have demonstrated that an isoline does
not need to be closed but might be split in the spatial domain. If we
consider some split isoline parts in the spatial domain, we are not able
to decide whether they belong to one isoline or to different isolines.
Thus, we are not able to count the contribution number k(ξ ) (see Fig-
ure 16). Therefore, it is ambiguous how to define a contribution map
for that n = 3 | m = 2 case. But even if we cannot detect the value of

Fig. 16. Contribution Number Indetermination Issue: The contribution
number k(ξ ) of a split isoline (orange) cannot be detected.

the contribution number, the following statements about its monotone
behavior in the data domain are possible, with respect to Section 4.1
and 4.2.
- At a center feature line the corresponding isoline disappears, thus the
contribution number has to change by one crossing a center critical
curve.
- At a saddle feature line the isoline splits from one to two isolines,
thus the contribution number also has to change by one crossing a
saddle critical curve.
- At a BSC the isolines start to split, thus the contribution number
changes crossing a boundary switch boundary curve.
Further, it follows that the contribution numbers for case n = 3 |m = 2
have to be a piecewise constant function and change the value only at
the mentioned curves.



Fig. 17. Discontinuity application synthetic (up) and “Hurricane Isabel” (down) data set: (left-right) CSP, CSP with boundary switch boundary curves
(BSBC) (white), CSP with BSBC (white) and box edges boundary curves (green), CSP with BSBC (white) and box edges boundary curves (dark
green) and Critical Curves (green).

4.3.3 Relations between Critical/Boundary Curves and CSPs

Figure 18 shows a comparison between edges of a CSP (a) and boun-
dary and critical curves (b). It can be noticed that edges/discontinuities
of the image space of that CSP relate to critical as well as boundary
curves of the case n = 3 | m = 2.

That is why boundary and critical curves are structures where the
density has discontinuities. On the other hand, it has already been
shown that boundary and critical curves also correspond to constant
contribution number boundaries. Consequently, contribution number
boundaries also relate to edges of the image space of that CSP.

Fig. 18. Relation between CSPs and critical and boundary curves: (a)
Edges in a CSP detected with a canny [5] image process operation.
(b) Critical and boundary curves of the same CSP detected with the
described approaches.

4.4 Application

In this section we apply the approach of discontinuities to a synthetic
data set and to the “Hurricane Isabel” data set. The synthetic data
set contains random scalar fields over a 30× 30× 30 spatial domain,
which is re-sampled with a uniform grid cell spacing of 0.0135. The
computational time for the critical curves was 8 minutes and for the
boundary switch boundary curves it was 18 minutes. The “Hurricane
Isabel” data set has already been introduced in Section 3.4.3. We used
the variables pressure and temperature of time step 10 with a grid res-
olution of 500× 500× 95. The computational time for the critical
curves was 5 minutes and for the boundary switch boundary curves it
was 22 minutes.

Figure 17 illustrates the resulting CSPs and critical and boundary
curves for both data sets. The CSPs have been built with an exten-
sion of the idea in [3] for the 3D case. The interpolation has been done
with RBFs of Gaussian type. For the integration of the SFFF we used a
fourth order Runge-Kutta scheme and a strong attractor α = 80 value.
Additionally, we used 100 as the depth of the recursion to detect seed-
points for the critical curves and the boundary switch boundary curve.

Note that these computation times can be improved by modify the
attract factor α and the depth of recursion; but with more than 80%
of the computational time the evaluation of the RBFs is the bottleneck
of that approach. On the other hand, the computation times rather
depend on the number of discontinuities in the data set instead of the
number of records. The more discontinuities the more seedpoints will
be detected and the larger the computational time gets.

5 CONCLUSION AND FUTURE WORK

In this paper we introduced a discontinuity concept for continuous
scatterplots of the relevant cases of n = m = 2 and n = 3 | m = 2.
Additionally, we presented the contribution map for the case n = m =
2: a new visualization method for relations between the spatial domain
and the data domain, and we discussed useful linking & brushing tools.
Furthermore, we described detection algorithms for the mentioned dis-
continuities and applied them to real data sets to demonstrate the dis-
cussed approaches.

Our results show that discontinuities of the mapping function τ re-
late to discontinuities (edges) of the CSPs themselves and they bound
areas of constant contribution number (i.e. number of connected com-
ponents). This offers a deeper understanding of the underlying data
sets and improves the interpretation of CSPs.

The future step will be an extension of the discontinuity concept for
the time-dependent case and for continuous parallel coordinates [9].
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