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Abstract—Characteristic curves of vector fields include stream, path, and streak lines. Stream and path lines can be obtained by a
simple vector field integration of an autonomous ODE system, i.e., they can be described as tangent curves of a vector field. This
facilitates their mathematical analysis including the extraction of core lines around which stream or path lines exhibit swirling motion,
or the computation of their curvature for every point in the domain without actually integrating them. Such a description of streak
lines is not yet available, which excludes them from most of the feature extraction and analysis tools that have been developed in
our community. In this paper, we develop the first description of streak lines as tangent curves of a derived vector field – the streak
line vector field – and show how it can be computed from the spatial and temporal gradients of the flow map, i.e., a dense path line
integration is required. We demonstrate the high accuracy of our approach by comparing it to solutions where the ground truth is
analytically known and to solutions where the ground truth has been obtained using the classic streak line computation. Furthermore,
we apply a number of feature extraction and analysis tools to the new streak line vector field including the extraction of cores of swirling
streak lines and the computation of streak line curvature fields. These first applications foreshadow the large variety of possible future
research directions based on our new mathematical description of streak lines.

Index Terms—Unsteady flow visualization, streak lines, streak surfaces, feature extraction.

1 INTRODUCTION

Flow fields play a vital role in many areas. Examples are burning
chambers, turbomachinery and aircraft design in industry as well as
blood flow in medicine. A common approach to visualize flows in
real-world experiments is to continuously release dye or smoke from a
constant position into the flow and examine its behavior: vortices can
be observed as patterns of swirling flow. The resulting dye or smoke
structures are streak lines, streak surfaces or streak volumes depending
on whether the dye has been released from a point, line, or surface.

Recently, streak surfaces have gained attention in the visualization
community and a number of contributions have been made to use them
in interactive applications [3], compute them with high accuracy and
surface quality [14], and to render them in a smoke-like manner to
mimic real-world smoke experiments [32]. A generalized notion of
streak lines has been used to explore flow features [38]. Level set
methods have been applied to interactively visualize streak lines, sur-
faces and volumes using the dye metaphor [36, 5]. Adaptive streak
line computation schemes on contemporary graphics hardware have
been explored in [6]. These approaches have proven that streak lines
and surfaces are valuable visualization tools for unsteady flows.

There is a clear difference in how we can handle streak lines (and
surfaces) in contrast to stream lines and path lines. Whereas all three
types of characteristic curves find their applications in integration-
based visualization methods, it is only for stream and path lines that
we can compute derived properties such as their curvature [28, 35]
without actually integrating them. This gives rise to a number of fea-
ture extraction methods for stream and path lines: Sujudi and Haimes
proposed a scheme to extract centers of swirling flow [27]. Peikert
and Roth formulated the idea of Sujudi/Haimes using the Parallel Vec-
tors operator and presented a fast and robust extraction technique [17].
Bauer et al. [1] and Theisel et al. [29] proposed different algorithms to
track these centers over time in unsteady flows. Weinkauf et al. [34]
extended this idea to path lines.

All these feature extraction and analysis methods describe the prop-
erties of stream and path lines by employing mathematical formula-
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tions that are purely based on the vector field and its derivatives. The
integral curves themselves are not required. This is due to the fact that
we can describe stream and path lines of an unsteady flow as tangent
curves of certain vector fields (Section 2). However, this is not yet the
case for streak lines and therefore, these feature extraction and analysis
methods cannot be used to explore their properties.

This paper aims at extending the range of applicable techniques for
streak lines by introducing the – to the best of our knowledge – first
description of streak lines as tangent curves of a derived vector field
(Section 3). We call this new vector field the streak line vector field:
for a 2D time-dependent flow this turns out to be a 4D vector field,
and for a 3D time-dependent flow it is a 5D vector field. We explore
its properties and give a parametrization of streak lines that allows to
uniquely address every single streak line in space-time.

The computation of the streak line vector field involves the spatial
and temporal derivatives of the flow map and requires a dense path
line integration. We carefully study the accuracy of our approach by
comparing the streak lines obtained with our method to streak lines
computed using analytic solutions and the classic streak line compu-
tation scheme (Section 4).

We present two applications of the streak line vector field. First, an
interactive streak line and surface explorer which allows to investigate
the space of all streak lines in a different way than it was possible
before, including their visualization using LIC-like images (Section
5). Second, we apply and extend feature extraction methods to extract
cores around which streak lines exhibit swirling motion as well as to
analyze their velocity magnitude and curvature (Section 6).

Notation We consider a n-dimensional (n = 2,3) time-dependent
vector field v(x, t) over the domain D×T where D⊆ IRn is the spatial
domain and T is a time interval. We write derived (n+1)-dimensional
variables with a bar like p̄, and derived (n+2)-dimensional variables
with a double bar like ¯̄q. All vectors throughout the paper are column
vectors, we often omit the explicit ()T notation.

2 CHARACTERISTIC CURVES OF VECTOR FIELDS

Let IEn be the n-dimensional Euclidean space. A curve L ⊂ IEn is
called a tangent curve of a n-dimensional vector field v(x), if for all
points p ∈ L the tangent vector of L coincides with v(p). Tangent
curves are the solutions of the autonomous ODE system

d
dτ

x(τ) = v(x(τ)) with x(0) = x0. (1)

For all points x ∈ IEn with v(x) 6= 0, there is one and only one tangent
curve through it. Tangent curves do not intersect or join each other.



(a) Tangent curves of s̄
correspond to the stream
lines in v. See eq. (6).

(b) Tangent curves of p̄
correspond to the path
lines in v. See eq. (5).

(c) Streak lines (gray
tubes) as intersections of
a path surface (red) with
t = const. hyperplanes.

Figure 1. Characteristic curves of a simple 2D time-dependent vector
field shown as illuminated field lines (stream and path lines) or gray
tubes (streak lines). The red/green coordinate axes denote the (x,y)-
domain, the blue axis shows time. From [30] with permission.

Hence, tangent curves uniquely describe the directional information
and are therefore an important tool for visualizing vector fields. The
tangent curves of a steady vector field v(x) are called stream lines. A
stream line describes the path of a massless particle in v.

In a time-dependent vector field v(x, t) there are four types of char-
acteristic curves: stream lines, path lines, streak lines and time lines.
We concentrate on the first three for the rest of this paper. In a space-
time point (x0, t0) we can start a stream line (staying in time slice
t = t0) by integrating

d
dτ

x(τ) = v(x(τ), t0) with x(0) = x0 (2)

or a path line by integrating

d
dt

x(t) = v(x(t), t) with x(t0) = x0. (3)

Path lines describe the trajectories of massless particles in time-
dependent vector fields. The ODE system (3) can be rewritten as an
autonomous system at the expense of an increase in dimension by one,
if time is included as an explicit state variable:

d
dt

(
x
t

)
=

(
v(x(t), t)

1

)
with

(
x
t

)
(0) =

(
x0
t0

)
. (4)

In this formulation space and time are dealt with on equal footing.
Path lines of the original vector field v in ordinary space now appear
as tangent curves of the vector field

p̄(x, t) =
(

v(x, t)
1

)
(5)

in space-time. To treat stream lines of v, one may simply use

s̄(x, t) =
(

v(x, t)
0

)
. (6)

Figure 1 illustrates s̄ and p̄ for a simple example vector field v. It
is obtained by a linear interpolation over time of two bilinear vector
fields.

The above space-time formulations for stream and path lines are
powerful mathematical tools that facilitate the analysis of spatio-
temporal features. Theisel et al. [30] use these formulations to develop
tools for stream line and path line oriented topology. Weinkauf et al.
[34] devise a criterion for finding the centers of swirling path lines by
exploiting (5). Furthermore, the space-time formulations for stream
and path lines allow them to introduce a unified notation of swirling
motion in steady and unsteady flows.

Such a powerful formulation is not readily available for streak lines
as we will see in the following.

A streak line is the connection of all particles set out at different
times but the same point location. In an experiment, one can observe
these structures by constantly releasing dye into the flow from a fixed
position. The resulting streak line consists of all particles which have
been at this fixed position sometime in the past. Considering the vector
field p̄ introduced above, streak lines can be obtained in the following
way: apply a path surface1 integration in p̄ where the seeding curve
is a straight line segment parallel to the t-axis, a streak line is the in-
tersection of this path surface with a hyperplane perpendicular to the
t-axis (Figure 1c).

Streak lines fail to have a property of stream and path lines: they
are not locally unique in space-time, i.e., for a particular location and
time there is more than one streak line passing through. As we show in
the following section, we need a (n+2)-dimensional space to achieve
this property for streak lines. Also note, that streak lines coincide with
stream and path lines for steady vector fields v(x, t) = v(x, t0) and are
described by (1) in this setting.

3 STREAK LINES AS TANGENT CURVES

The constructive description of streak lines as intersections of certain
stream surfaces with a hyperplane is not suitable to examine their prop-
erties in a mathematical framework. In the following we develop a de-
scription of streak lines as tangent curves of a derived vector field that
lends itself to mathematical analysis and leads to novel approaches for
feature extraction as we will see in later sections.

3.1 Flow maps and their derivatives
To describe streak lines, we use the concept of flow maps and its
derivatives. The flow map φ : D→ D describes the spatial location
of a particle seeded at (x, t) and integrated over a time interval τ , de-
noted as φ τ

t (x) = φ(x, t,τ). As a side note, the computation of Finite
Time Lyapunov Exponents (FTLE) [9, 7, 20] is essentially based on
the consideration of the (spatial) gradient of φ . In fact, ∇φ τ

t (x) =
∂φ

∂x
is a n×n matrix describing the behavior of particles sent out in a small
spatial neighborhood of x.

For the consideration of streak lines, we additionally need the tem-
poral partial derivative ∂φ

∂ t of φ which describes the behavior of par-
ticles sent out in the same spatial location but slightly before or after
(x, t). To study its properties, we compute the (n+ 1)-dimensional
flow function φ̄ of p̄ which is defined as

φ̄ : D×T → D×T , φ̄(x, t,τ) = φ̄
τ
t (x) =

(
φ τ

t (x)
t + τ

)
. (7)

Then the gradient of φ̄ can be expressed as the (n+1)×(n+1) matrix

∇φ̄(x, t,τ) =
(

∇φ
∂φ

∂ t
0 .. 0 1

)
. (8)

The fact, that the last component of p̄ is 1, ensures that the last line of
∇φ̄ is (0, ..,0,1).

3.2 Description of Streak Lines
We formulate the main property:

Theorem 1 Given a time-dependent vector field v(x, t) and its corre-
sponding flow map φ τ

t (x), every streak line of v is a tangent curve of
the (n+2)-dimensional vector field

¯̄q(x, t,τ) =

 (∇φ τ
t (x))

−1 · ∂φ τ
t (x)
∂ t + v(x, t)

0
−1

 (9)

and vice versa. We call ¯̄q the streak line vector field. It is defined in
the domain D×T ×ϒ with τ ∈ ϒ.

1Note, that the extraction algorithms for path surfaces are commonly known
as “stream surface algorithms” [10, 26, 8, 23].
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Figure 2. Definition of the vector field w(x, t,τ),
which is the main ingredient of the streak line
vector field ¯̄q.
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Figure 3. Straightforward, but costly way for
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Figure 4. Computing w(x, t,τ) with a single path
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We show it only for the 2D time-dependent case, but it easily extends
to 3D. Consider a seeding line as shown in Figure 2 which gives rise
to a streak line at the time t. Given a point (x0, t) on the streak line, we
find its seeding location in space-time by integrating p̄ over the time
interval τ until we reach the point (xc, t + τ) on the seeding line:2

(xc, t + τ) = φ̄(x0, t,τ). (10)

The streak line passing through (x0, t) is created by seeding particles at
xc at different times, i.e., on the seeding line. As already established,
an integration of p̄ starting from (xc, t + τ) passes through (x0, t). To
see how the streak line evolves, we seed another particle at (xc, t+τ−
ε) for a small |ε| > 0 and integrate p̄ until we reach the time t in the
point (x1, t):

x1 = φ
−τ+ε
t+τ−ε (xc) = φ

−τ+ε
t+τ−ε (φ

τ
t (x0)). (11)

To come from x0 to x1 by a vector field integration, we define the
two-parameter-dependent vector field w : IR4→ IR2

w(x, t,τ) = lim
ε→0

φ
−τ+ε
t+τ−ε (φ

τ
t (x))−x
ε

. (12)

In order to continue the streak line through (x0, t) and (x1, t), we start
the integration of another particle at (xc, t + τ − 2ε) and integrate p̄
until we reach the time t in the point x2:

x2 = φ
−τ+2ε

t+τ−2ε
(xc). (13)

Assuming a single Euler integration step,3 we get

x1 = x0 + ε ·w(x0, t,τ) (14)
x2 = x1 + ε ·w(x1, t,τ− ε). (15)

From this we can formulate the desired 4D vector field ¯̄q, with the
property that streak lines of v are tangent curves of ¯̄q:

¯̄q(x, t,τ) =

 w(x, t,τ)
0
−1

 . (16)

2The illustration in Figure 2 assumes negative τ-values, since it shows the
part of the streak line that has been seeded at earlier time steps. The general
concept works also for positive τ-values, which describe the part of the streak
line seeded at future time steps.

3We use the Euler integration step here only as a mathematical tool to de-
duce the formula, which is justified since ε → 0. This is unrelated to our
practical computations, which are carried out using a Runge-Kutta integration
scheme of 4th order with adaptive step size control.

It remains to show how to compute w, which will lead us to equation
(9) from theorem 1. A straightforward, but costly way is to integrate p̄
from (x, t) over the time interval τ until xc, and then integrating back
from (xc, t + τ − ε) until we reach the time t again (Figure 3). This
involves two consecutive path line integrations.

A less expensive alternative – with a single path line integration – is
to integrate in p̄ from (xc, t+τ) to (x, t) while taking care of the direc-
tion r̄0 = (0,0,−1)T . Figure 4 gives an illustration. We know that the
change of the direction at a certain point is described by the Jacobian
of the vector field. Given a point (xi, ti) and a direction vector r̄i there,
the new point (xi+1, ti+1) and the new direction r̄i+1 are obtained (in
Euler integration) as

(xi+1, ti+1) = (xi, ti)+δi p̄(xi, ti) (17)
r̄i+1 = r̄i + δi ∇p̄(xi, ti) · r̄i (18)

= (I3 + δi ∇p̄(xi, ti)) · r̄i (19)

where I3 is the 3×3 unit matrix and δi is the current step size. Given
the path line from (xc, t + τ) to (x, t) as a polygon (x0, t0), ...,(xn, tn)
with (x0, t0) = (xc, t + τ) and (xn, tn) = (x, t), we compute

r̄0 = (0,0,−1)T

r̄1 = (I3 +δ0 ∇p̄(x0, t0)) · r̄0

r̄2 = (I3 +δ1 ∇p̄(x1, t1)) · r̄1

...

r̄n = (I3 +δn−1 ∇p̄(xn−1, tn−1)) · r̄n−1

=
0

∏
i=n−1

(I3 +δi ∇p̄(xi, ti)) · r̄0 (20)

with δi = ti+1− ti. Note that r̄0, ..., r̄n all have a constant third compo-
nent of −1 which is due to the fact that the last line of ∇p̄ is always
(0,0,0). Finally, we get

w̄(x, t,τ) = r̄n + p̄(x, t). (21)

Note that the last component of w̄ is 0, since the last components of r̄n
and p̄ are −1 and 1 respectively. This is to be expected since a streak
line lives in a t = const. hyperplane. Removing the last component
gives almost the desired w, but as a last step, note that ∏

0
i=n−1(I3 +

δi ∇p̄(xi, ti)) corresponds to the gradient of the flow map (cf. [13]):

0

∏
i=n−1

(I3 +δi ∇p̄(xi, ti)) = ∇φ̄
−τ
t+τ (xc) =

(
∇φ̄

τ
t (x)

)−1
. (22)
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Figure 5. Integration of a streak line using the streak line vector field ¯̄q. The data set is a 2D unsteady flow behind a cylinder (explained in Section
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This yields the desired w as used in equation (9) from theorem 1:

w(x, t,τ) =

(
1 0 0
0 1 0

)
·
(
∇φ̄

τ
t (x)

)−1 ·

 0
0
−1

 + v(x, t)

= (∇φ
τ
t (x))

−1 · ∂φ τ
t (x)
∂ t

+ v(x, t). (23)

3.3 Properties of the Streak Line Vector Field
3.3.1 Streak Line Parametrization
Parametrization is a well-studied concept for curves and surfaces,
meaning to find an injective map from a subset of IR2/IR3 to
a curve/surface. This map allows to uniquely address every
curve/surface point.

For streak lines, the problem of parametrization has a simple solu-
tion: every point (x, t) ∈ D×T can be assigned with a unique streak
line and vice versa, i.e., it is a bijective map. We define: given a point
(x0, t0) ∈ D×T , the streak line S(x0, t0) is constructed as follows: do
a path surface integration of p̄ starting from {x0}×T in forward and
backward direction until it leaves the domain D× T ,4 then intersect
the resulting surface with the plane t = t0. See Figure 6. Alternatively,
S(x0, t0) can be computed using ¯̄q as explained in the next section.

Note that, considering the classic streak line computation scheme,
one might be tempted to address a streak line by the earliest point
(x0, tmin) on the seeding line and a time span α for the integration.

4More precisely, it suffices to integrate forward from {x0}× {t < t0} in
D×{t < t0} and backward from {x0}×{t > t0} in D×{t > t0}, since all other
path lines will not cross the plane t = t0.

The classic computation scheme will then go through a series of other
streak lines until it reaches the addressed streak line in tmin +α . How-
ever, this describes only the part of the streak line that can be accessed
in forward integration, but it misses the part that can only be reached
by backward integration (Figure 7).

To see that backward integration makes indeed sense for streak
lines, consider a steady vector field: here, streak lines coincide with
stream lines for which the notion of backward integration is very well
accepted.

3.3.2 Seeding, Integration and Projection
The streak line vector field ¯̄q(x, t,τ) can be used as follows to integrate
the streak line S(x0, t0):

1. Seed at (x0, t0,0). This uniquely addresses the streak line as de-
scribed in the previous section.

2. Integrate ¯̄q in forward and backward direction. Since the inte-
gration will stay in t0, it suffices to keep the n+ 1-dimensional
subspace D×ϒ in memory.

3. Project the resulting tangent curve into IRn by removing its t and
τ coordinates.

Figure 5 illustrates this by showing the integration in D×ϒ and D×T
for a 2D unsteady flow behind a cylinder.

3.3.3 Performance of Computing Streak Lines
Integrating a streak line in ¯̄q amounts to a simple tangent curve inte-
gration, which has a time complexity of O(n) with n being the number
of sample points on the streak line. The classic streak line computa-
tion method, on the other hand, amounts to a path surface integration,
which has a time complexity of O(n2). Hence, our new method allows
to obtain streak lines5 significantly faster and therefore, it lends itself
to a new interaction metaphor: the interactive exploration of the space
of streak lines. We will discuss this in more detail in Section 5.

This is not to say that the classic approach could not be used to
explore streak lines, but integrating ¯̄q is simply faster and we feel,
that it also introduces a new viewpoint on the whole issue of interac-
tive streak line and surface visualization. Of course, we pay for the
lower time complexity with higher memory costs and the time for pre-
computing ¯̄q as detailed in Section 4.

5This is also true for streak surfaces in 3D time-dependent flows: the new
method amounts to a stream surface integration, the classic method to a stream
volume integration.



3.3.4 Streak Surfaces
Streak surfaces are a set of streak lines seeded from a curve in D.
They are typically computed by constantly releasing particles from
the seeding curve and integrating all released particles along the flow
field. During integration the distance between neighboring particles
may become too large/small due to diverging/converging flow behav-
ior, which requires the insertion/removal of particles including an up-
date of the mesh connectivity to stay within given resolution and qual-
ity constraints. In principal, the whole surface has to be checked for
its compliance with the constraints after every integration step. Only
recently, a number of solutions have been presented to deal effectively
and efficiently with this problem [32, 14, 3].

Given our new streak line vector field, we are able to compute the
streak surfaces of v as stream surfaces of ¯̄q. Hence, algorithms origi-
nally designed for stream/path surfaces [10, 26, 8, 23] can now be ap-
plied to compute streak surfaces. The advantage is that one only needs
to check the front line of the stream surface for insertion/removal of
tracers during integration. Figure 12 from Section 5 shows an exam-
ple.

3.3.5 Relation between FTLE and Streak Line Vector Field
Equation (23) shows that there is no obvious relation between FTLE
and streak lines: FTLE is focusing only on the spatial gradients of φ

while the streak line vector field also uses their time derivatives. To
see that this is indeed a difference, consider the example vector field
v(x, t) = (cos(t),sin(t))T . It has a zero flow map gradient

∇φ ≡
(

0 0
0 0

)
(24)

while the time-derivative has the following closed form solution,
which is generally non-zero

∂φ τ
t (x)
∂ t

=

(
cos(τ)
sin(τ)

)
. (25)

4 IMPLEMENTATION AND EVALUATION

4.1 Implementation
We discuss the implementation here only for the 2D time-dependent
case, but it extends to 3D in a straightforward fashion. We com-
pute the streak line vector field on a nx × ny × nT × nτ 4D grid,
where (nx,ny,nT ) denotes the grid resolution of the original flow and
nτ = nT , as follows:

1. For every grid point (xi,yi, ti,0) of ¯̄q, seed 6 path lines in an ε-
neighborhood (xi± ε,yi, ti,0), (xi,yi± ε, ti,0), (xi,yi, ti± ε,0).

2. Integrate these path lines using p̄ until they leave the domain
D×T .

3. Intersect these path lines with every time step t j and compute w
as given in (23). Assign the result to the grid point (xi,yi, ti,τ j)
where τ j = ti− t j . If one of the path lines left the domain before
reaching t j, denote this grid point to be invalid (e.g., assign ze-
ros). This applies in particular to all boundary grid points since
some of their seeds are already outside of the domain.

It suffices to save the first two components of ¯̄q (which correspond
to w) and add its constant third and fourth component later on-the-fly
during streak line integration.

4.2 Numerical Accuracy
We evaluated the accuracy of the streak line integration in ¯̄q using a
2D and a 3D flow around a cylinder as well as an analytic vector field.
The analytically given, linear 2D time-dependent vector field

v(x, t) =
(

−(1− t)y− ty
(1− t)(x− y)+ t(x− y−1)

)
(26)

Figure 8. 2D cylinder data set. Visual comparison between the inte-
grated streak line (green) and the ground truth (white). Their point-wise
distance is plotted in Figure 9a, their Hausdorff distance in 9b ( ).

contains a focus critical point moving along the x-axis. Since it is of
such a simple nature, we can find a closed solution for ¯̄q:

¯̄q(x, t,τ) =


−1− y− e

τ

2
( 1

3 sin( τ

2

√
3)
√

3+ cos( τ

2

√
3)
)

x− y− t− 2
3 e

τ

2 sin( τ

2

√
3)
√

3
0
−1

 , (27)

which we use to compute the ground truth for the streak lines. Fur-
thermore, we compute ¯̄q using the algorithm described above (not by
sampling (27)) with different grid resolutions and compare a streak
line integrated in this field to the ground truth. We consider the
domain D = [−2.5,2]2 and T = [0,−10] and seed the streak line
at (1.5,1.5,0,0). The blue line ( ) in Figure 9a shows the dis-
tance to the ground truth for a grid resolution with a voxel size of
dx = dy = dtau = 0.1 (45×45×100 grid points). More precisely, we
show the relative spatial distance with respect to the diagonal of the
spatial bounding box, i.e., the absolute distance to the ground truth di-
vided by the length of the diagonal. This distance is plotted over the
integration time τ = [0,−8], which has been normalized in the plot to
the interval [0,1]. As it is evident in Figure 9a, the error stays around
and below 10−4 even for this rather coarse resolution. This shows
that our computation scheme for ¯̄q produces reliable results. Note that
the slight decrease of the distance with higher τ-values is due to the
attracting nature of the focus critical point.

In Figure 9b we computed the relative Hausdorff distance (with re-
spect to the diagonal of the spatial bounding box) between the inte-
grated streak line and the ground truth for different resolutions of ¯̄q.
We used voxel sizes between dx = dy = dtau = [0.05,0.5]. The x-axis
in Figure 9b reflects them as normalized resolution Res= 1− d−dmin

dmax−dmin
,

where 0 corresponds to the coarsest and 1 to the finest resolution. As
expected, the Hausdorff distance to the ground truth decreases with
increasing resolution and already medium resolutions yield satisfying
results.

We found that ε , i.e., the perturbation around the grid point for the
flow map computation, greatly influences the accuracy of the streak
line vector field. Our first approach was to seed the path lines (step 1
of the algorithm) only at the grid points and use neighboring path lines
to compute the flow map. While this reduces the costs for the dense
path line integration by a factor of 6, it leads to less accurate results.
In general, we use a value for ε that is about an order of magnitude
smaller than the voxel size. This yields reliable results even for long
streak line integrations and allows to use the same grid resolution for
¯̄q that the original data set is given in – as shown in the following.

The green lines ( ) in Figure 9 represent a simulated data set
of a 2D time-dependent flow behind a cylinder (simulated using the
Free Software Gerris Flow Solver [18]). A visualization is shown in
Figure 10. We computed the ground truth using the classic streak line
computation scheme, i.e., by intersecting a path surface of very high
resolution with a t-hyperplane. In Figure 9a we plotted the distance
to the ground truth for the original grid resolution (see also Table 1)
over the integration time τ = [0,−2]. While the distance grows with
longer integration times, the error stays below or around 10−3. This
is also evident in the visual comparison between the integrated streak
line and the ground truth (Figure 8).
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Figure 9. Evaluation of the numerical accuracy and pre-computation times using the analytic test case from (26) ( ), the 2D cylinder data set
( ), and the 3D square cylinder ( ). The dots ( ) represent the resolutions used in Figure 9a and correspond to the original resolutions
for the cylinder data sets. The values on the x-axes have been normalized to [0,1] as described in the text.

We also computed the Hausdorff distance for resolutions of ¯̄q with a
voxel size in the interval [3 ·10−3,3 ·10−2], which is below and above
the original voxel size of 8 · 10−3 (Figure 9b). It turns out that even
coarser resolutions yield results below 10−2.

The red lines ( ) in Figure 9 represent the 3D time-dependent
flow around a confined square cylinder (visualized in Figure 12). This
is a direct numerical Navier Stokes simulation by Simone Camarri
and Maria-Vittoria Salvetti (University of Pisa), Marcelo Buffoni (Po-
litecnico of Torino), and Angelo Iollo (University of Bordeaux I) [4]
which is publicly available [11]. It is an incompressible solution with
a Reynolds number of 200 and the square cylinder has been posi-
tioned symmetrically between two parallel walls. The flow has pe-
riodic boundary conditions in spanwise direction.

To evaluate the accuracy of our computations, we used an integra-
tion time τ = [0,−18] (yielding a streak line which is 1.7 times longer
than the diagonal of the spatial bounding box) and voxel sizes in the
interval [0.09,0.25] (original voxel size is 0.13). The results are plot-
ted in Figures 9a-b and show low error values similar to the other data
sets.

4.3 Memory Requirements
Assuming the time-dependent vector field v(x, t) with nT time steps
requires the amount of memory M, then the streak line vector field ¯̄q:

• takes the same amount of memory M if we stay within a given
time step t0, which allows to explore all streak lines in that time
step,

• requires nT ·M memory to cover all time steps.

For all the data sets used in this paper, we found it sufficient to use the
same resolution for ¯̄q that the original data set is given in, i.e., it yields
reliable results even for long streak line integrations (see also Section
4.2). We sample ¯̄q on a uniform grid in our current implementation.
However, as discussed in Section 4.1, the streak line vector field is not
defined for high τ-values in some parts of the domain, since the path
lines left them earlier during the computation of ¯̄q. Hence, it might
be beneficial to use adaptive meshes such as an octree to represent ¯̄q.
This would reduce the memory costs without sacrificing the accuracy.
Table 1 shows the memory required to store the streak line vector field
for the 2D and 3D cylinder flows.

4.4 Time for Computing the Streak Line Vector Field
Computing ¯̄q for a time step of the 2D cylinder data set shown in Fig-
ure 10 took 52 seconds single-threaded on a laptop with an Intel Core
2 Duo T9550 (2.66GHz). Doing the same for a 3D time-dependent
flow around a squared cylinder shown in Figure 12 took 160 minutes
wall clock time. The times for computing all time steps are detailed
in Table 1. The time for computing ¯̄q increases linearly with the num-
ber of grid points, since the algorithm integrates and evaluates a single
path line for every grid point. Since the number of grid points has an
exponential relation to the resolution (voxel size), we see exponential

Table 1. Time and memory needed to compute and store ¯̄q. The first
row for a data set represents ¯̄q for a single time step, the second row for
all time steps.

Data set
Resolution Comp. Time Memory

(spatial) ×τ× t in minutes in MB

Cylinder 2D
(338×100)×250×1 0.87 64.5

(338×100)×250×250 217 16125

Square Cylinder 3D
(192×64×48)×102×1 160 688.5

(192×64×48)×102×102 16320 70227

curves in Figure 9c depicting the computation times for different reso-
lutions. Since most of the time is spent with computing the flow map,
it seems reasonable to apply faster approximation schemes such as the
one discussed in [2]. We leave it to future work to investigate this in
detail.

5 EXPLORATION OF STREAK LINES AND SURFACES

Our approach lends itself to a new interaction metaphor: given a
spatio-temporal seeding location (x0, t0), the so-defined streak line
can be computed more or less instantly, whereas the classic approach
requires to develop the streak line over the one-parameter family of
streak lines defined by {(x0, tmin) . . .(x0, t0)} in forward integration
and {(x0, t0) . . .(x0, tmax)} in backward integration. See also Section
3.3.3. Hence, our approach allows for a faster exploration of the space
of streak lines. Figures 10a-b show 5000 forward and backward in-
tegrated streak lines of the 2D time-dependent flow behind a cylinder.
They have been computed in under a second in the τ-interval [0,±2.5].
The pre-computation time for ¯̄q is 52 seconds (see Table 1). To com-
pute the same set of streak lines with the classic approach requires 167
minutes. This clearly demonstrates one of the advantages of integrat-
ing streak lines in ¯̄q.

Figure 10 shows a part of the domain away from the cylinder where
the well-known von Kármán vortex street is well developed. The
stream lines of the same time step do not reveal the patterns of the
vortex street in the original frame of reference (Figure 10c), but they
do after removing the ambient part of the flow (Figure 10d).6 Figure
10e shows an overlay of the LIC texture and the forward integrated
streak lines. It clearly shows, that the structures formed by the streak
lines match with the von Kármán vortex street.

Figure 11 shows a LIC visualization of the first two components
of ¯̄q at different τ-values for the cylinder data set. These two com-
ponents correspond to w (Equation (23)). Note that the LIC does not
show streak lines, but rather the local direction of the streak lines at a
given τ . One can think of the depicted lines as being built up of in-
stantaneous streaklets. The vortices of the von Kármán vortex street
are revealed by this: longer integrated parts of a streak line roll up in

6The path lines of this flow do not reveal the vortex street, neither in the
original frame of reference nor with removed ambient part. Furthermore, they
do not stay in a time step. Therefore, we left them out of this comparison.



(a) 5000 forward integrated streak lines. (b) 5000 backward integrated streak lines.

(c) Stream lines in the same spatial domain and at the
same time step as the streak lines.

(d) Stream lines with removed ambient flow reveal
the von Kármán vortex street.

(e) The patterns of the streak lines match with the
von Kármán vortex street.

Figure 10. Streak lines and stream lines of a time step in the 2D time-dependent flow around a cylinder. The streak lines are rendered such that
they become less opaque the closer they get to their seeding position at τ = 0.

τ = 0 τ = 0.7 τ = 2.5

Figure 11. With increasing τ, the first two components of ¯̄q visualized using LIC reveal the von Kármán vortex street of the cylinder data set.

Figure 12. Two streak surfaces in the
flow behind a square cylinder; inte-
grated forward and backward starting
from the gray lines. Streak surfaces of
a 3D flow intersect each other just as
streak lines do in 2D.

Figure 13. Streak line core
(red) of the vector field (26) in
the center of spiraling streak
lines (gray). Shown is the do-
main D×ϒ at t = 0.

the vortices of this flow as shown in e.g. Figure 8. Hence, the streak
lines have a stronger rotational behavior for larger τ-values, which is
encoded in w (the only non-constant components of ¯̄q) and exposed
in the LIC visualization of Figure 11. Note that following (23), w
corresponds to v(x, t) for τ = 0, which is also evident in the LIC visu-
alization (compare with Figure 10c).

Figure 12 shows two streak surfaces in the flow around the square
cylinder. They have been integrated in forward and backward direc-
tion from the depicted seeding lines. The computation time for one of
them was one second once the 4D time-slice D×ϒ had been loaded
into main memory. Since the streak surfaces show their most intricate
structures the longer they have been integrated, the classic approach
would require much longer computation times to yield the same re-
sult. But more importantly, when using the streak line vector field, the
user is able to manipulate the seeding line and gets almost instant feed-
back in the form of a fully developed streak surface. This way, our new
approach provides an interesting, orthogonal alternative to the classic
variant: whereas the classic computation scheme focuses on showing
the evolution7 of streak surfaces, the streak line vector field provides
quasi-instant results at any given time step.8

7In the sense of a series of streak surfaces similar to Figure 7.
8Note, however, that our approach can be used to visualize the evolution as

well: apply a sequence of integrations in ¯̄q from (x0, tmin) to (x0, t0). Similarly
for backward integration. The computational effort is similar to the classic
variant; except that our approach requires a long pre-processing time and comes
with high memory costs. Hence, when showing the evolution of streak surfaces
is the primary focus, the classic variant comes with a smaller footprint.

6 FEATURE EXTRACTION AND ANALYSIS FOR STREAK LINES

The description of streak lines as tangent curves of a derived vector
field allows us to apply feature extraction and analysis tools to streak
lines that were previously only available for stream and path lines. In
the following we show how to extract cores around which streak lines
show a spiraling behavior, and we analyze the velocity magnitude and
curvature of streak lines by computing derived scalar fields.

6.1 Cores of Swirling Streak Lines
Areas where characteristic curves of a flow exhibit a spiraling behavior
are of great interest since they are usually associated with important
flow features such as vortices. Sujudi and Haimes developed a method
of 3D steady flows to extract core lines around which stream lines
swirl [27]. The Parallel Vectors operator is often used to extract these
features [17]. For 3D time-dependent flows, one may track these core
lines over time [1, 29], which yields surfaces in the 4D space-time
domain. However, since the motion in unsteady flows is governed by
path lines, it seems reasonable to investigate their swirling motion as
done by Weinkauf et al. [34]. This yields surfaces in the 4D space-
time domain, too.

In this section we want to extend the same idea to streak lines and
extract cores around which they show spiraling behavior. Since the
geometry of streak lines is governed by the motion of particles, a spi-
raling behavior of streak lines indicates the presence of a vortex. For
a 2D time-dependent flow, we have to expect surface structures in the
4D domain of the streak line vector field. For a 3D time-dependent
flow, it will be volumes in 5D. Our derivation here follows the basic
principles of [34] and for the sake of brevity we refer the interested
reader to that paper for background information and a more detailed
reasoning.

We consider the eigenanalysis of the gradient of the streak line vec-
tor field ¯̄q, which is a (n+2)× (n+2) matrix

∇ ¯̄q(x, t,τ) =

 ∂w
∂x

∂w
∂ t

∂w
∂τ

0 .. 0 0 0
0 .. 0 0 0

 . (28)

It has two eigenvalues of 0 with the corresponding eigenvectors ¯̄et ,
¯̄eτ . The remaining n eigenvalues are the eigenvalues of ∂w

∂x , its corre-
sponding eigenvectors are (ei,0,0)T where ei are the eigenvectors of
∂w
∂x . Now we treat the cases n = 2 and n = 3 separately.



(a) Path lines approaching the attrac-
tor (yellow curve).

(b) Stream (green) and path line cores
(blue) do not match the attractor.

(c) Streak line core (red curve and sur-
face) matches the attractor.

τ = 0 τ =−1.5

τ =−2.3 τ =−2.9

τ =−4.6 τ =−9

(d) With decreasing τ , the streak line
core converges. View from top.

Figure 14. The cores of swirling streak lines (red) detect the attractor (yellow) in the Beads Problem flow in contrast to the core lines of stream
(green) and path lines (blue). The streak line core is a 4D surface shown in (c) together with its intersection at τ =−9, which is a line in space-time
that matches the attractor of this flow.

6.1.1 2D Time-Dependent Flows (n = 2)
In this case we get for the two eigenvectors corresponding to the 0
eigenvalues

{ ¯̄et , ¯̄eτ}=


−det(wt ,wy)
−det(wx,wt)
det(wx,wy)

0

 ,

−det(wτ ,wy)
−det(wx,wτ )

0
det(wx,wy)


 . (29)

We search for all locations (x, t,τ) where ( ¯̄q, ¯̄et , ¯̄eτ ) are linearly de-
pendent and the remaining two eigenvalues of ∇ ¯̄q have imaginary
parts. This corresponds to the coplanarity operator in [34] and reads
component-wise

λ1

w1
w2
0
−1

+λ2

−det(wt ,wy)
−det(wx,wt)
det(wx,wy)

0

+λ3

−det(wτ ,wy)
−det(wx,wτ )

0
det(wx,wy)

= 0. (30)

By setting λ1 = λ3 det(wx,wy) we can eliminate the fourth component,
and the reformulation reads

λ2

−det(wt ,wy)

−det(wx,wt )

det(wx,wy)


︸ ︷︷ ︸

a

+λ3

−det(wτ ,wy)

−det(wx,wτ )

0

+det(wx,wy)

w1

w2

0


︸ ︷︷ ︸

b

= 0. (31)

This is a 3D Parallel Vectors problem [17]. The reformulation a||b is
equivalent to the coplanarity of the vector fields ¯̄q, ¯̄et , ¯̄eτ , and hence
a||b is satisfied exactly at the cores of swirling streak lines. With this
reformulation at hand we can use the powerful extraction techniques
available for the Parallel Vectors operator.

6.1.2 3D Time-Dependent Flows (n = 3)
In this case we get

{ ¯̄et , ¯̄eτ}=



−det(wt ,wy,wz)
−det(wx,wt ,wz)
−det(wx,wy,wt)
det(wx,wy,wz)

0

 ,


−det(wτ ,wy,wz)
−det(wx,wτ ,wz)
−det(wx,wy,wτ )

0
det(wx,wy,wz)


 . (32)

We consider the 3 remaining eigenvalues of ¯̄q which do not belong to
{ ¯̄et , ¯̄eτ} and consider only regions where two of them are imaginary.

Let ¯̄e3 be the only remaining non-imaginary eigenvector. Then we
search for all locations (x, t,τ) where ( ¯̄q, ¯̄et , ¯̄eτ , ¯̄e3) are linearly depen-
dent and the remaining two eigenvalues of ∇ ¯̄q have imaginary parts.
A reformulation using the PV operator and an actual implementation
of this case are left for future work.

6.1.3 Examples for 2D Time-Dependent Flows

Moving Focus We consider the vector field (26) which we al-
ready used in Section 4 to evaluate the accuracy of computing ¯̄q.
For this, we have as stream line cores (i.e., locations where v = 0)
x(t) = (t,0)T and as path line cores (i.e., locations where ∇p̄ · p̄ || p̄)
x(t) = (−1+ t,−1)T . The closed solution for the streak line vector
field ¯̄q from (27) leads us to the core of swirling streak lines in this
flow:

x(t,τ) = e
τ

2

( 2
3 sin( τ

2

√
3)
√

3+2cos( τ

2

√
3)−1+ t

− 2
3 sin( τ

2

√
3)
√

3+2cos( τ

2

√
3)−1

)
. (33)

This makes it obvious, how different the streak line core is compared
to the cores of stream and path lines. Figure 13 shows the streak line
core in the center of swirling streak lines.

Beads Problem Wiebel et al. [37] reported of a biofluid dynamic
model where neither classic visualization methods such as LIC or path
lines, nor feature extraction methods such as vector field topology or
FTLE where able to detect an apparent attractor in the flow, i.e., a
point in the flow where particles aggregate. Wiebel et al. used particle
density to extract the attractor. Since the simulation is not available to
us, we use an analytic variant [16] of this flow which exhibits similar
properties:

v(x,y, t) =
(
−(y− 1

3 sin(t))− (x− 1
3 cos(t))

(x− 1
3 cos(t))− (y− 1

3 sin(t))

)
. (34)

Since this is a time-periodic flow, the attractor can be found using the
method of Shi et al. [25]. It is a path line with the following para-
metric description: x(t) = 1

3 (sin(t)+ cos(t),−cos(t)+ sin(t))T . We
computed ¯̄q using our numerical method in the domain D×T ×ϒ =
[−2,2]2× [0,2π]× [−9,0] with a resolution of 502×100×100. From
this we computed the cores of swirling streak lines and found the fol-
lowing: with decreasing τ , the streak line cores converge to the attrac-



(a) Velocity magnitude of the streak lines between τ = (−3,3).

(b) Curvature of the streak lines between τ = (−1.5,1.5).

(c) Forward integrated FTLE field (T+ = 3) of the same time step.

Figure 15. Derived scalar fields of the streak lines of the 2D time-
dependent flow around a cylinder (gray tube). Shown is the domain
D×ϒ for a fixed time step. Two parts of the domain are not defined
(front-left and back-right), since the path lines left the domain during the
computation of the streak line vector field ¯̄q. The images to the right are
close-ups.

tor.9 In other words, our new method is able to detect the attractor
reliably in contrast to various other feature extraction methods. Figure
14 shows the streak line core together with the attractor, as well as the
cores of swirling stream and path lines. The latter two methods are
clearly off the attractor, i.e., do not detect it. We omit the FTLE field
since it is, interestingly, constant for this flow and does not reveal any
features at all.

We believe that this is a very promising result, since the Beads prob-
lem is considered to be one of the major test cases for a successful
approach to an unsteady flow topology. However, it has to be left to
future investigations whether or not this extends to other challenging
flows and streak line cores can serve as a basis for an unsteady flow
topology.

6.2 Derived Scalar Quantities

For every point in the (n+2)-dimensional streak line vector field there
is one and only one streak line through it. This allows to define derived
scalar fields describing streak line properties just by considering the
derivatives of ¯̄q. Integrating the streak lines themselves is not required.

A simple derived scalar field is the velocity magnitude of streak
lines, which is simply given as |w|, i.e., as the magnitude of the first
two components of ¯̄q. Note that we have to omit the other two compo-
nents of ¯̄q, since they are not invariant under domain scaling. Figure
15a shows a volume rendering of |w| for the 2D time-dependent cylin-
der flow. The revealed structures bear a high similarity to the streak
lines themselves (compare to Figure 10a).

The curvature of stream lines [28, 35] has proven to be a useful
tool for vector field visualization: it approaches very high values in
the proximity of critical points and together with stochastic seeding
algorithms this emphasizes turbulent regions [33]. The curvature of
path lines – among other scalar fields – has been used by Shi et al. [24]
to select application-relevant path lines within an interactive brushing
and focus+context visualization.

9Note that streak line cores of a 2D time-dependent flow are 4D surfaces.
Hence, we have to intersect them along τ to get a line in space-time.

To define the curvature of streak lines, we need their first and second
derivatives. Since they are tangent curves of ¯̄q, their first derivative is
¯̄q itself by definition. Their second derivative is the acceleration vector
of the streak line vector field. Again, we omit the last two components
of ¯̄q to be invariant under domain scaling, and yield

κ2(w) =
det(w,∇w ·w)

‖w‖3 , κ3(w) =
‖w × ∇w ·w‖
‖w‖3 (35)

for n= 2 and n= 3 respectively. Figure 15b shows a volume rendering
of the streak line curvature in the cylinder data set. While the curvature
structures differ from the magnitude, the rolling up of the vortices in
the von Kármán vortex street can clearly be observed.

The FTLE field of this flow is shown in Figure 15c. It reveals the
vortices in a similar fashion as the velocity magnitude of the streak
lines. FTLE is an important tool for the feature-based analysis of flows
and has already been considered as a candidate for an unsteady flow
topology [21]. Note, however, that the FTLE field for the Beads Prob-
lem is constant and does not reveal any features.

7 CONCLUSIONS AND FUTURE WORK

We presented the – to the best of our knowledge – first description of
streak lines as tangent curves of a derived vector field. This is based on
a formulation of the streak line vector field using spatial and temporal
derivatives of the flow map. The evaluation of our numerical computa-
tion of the streak line vector field has proven that an integration in this
new vector field yields streak lines with high accuracy. Furthermore,
we have given a parametrization of streak lines that allows to address
every streak line by its unique seeding point in space-time.

This novel mathematical description opens the gates to a number of
visualization and analysis tools that have been developed in our com-
munity, but were previously only available for stream and path lines.
Not surprisingly, streak lines and surfaces can be computed almost
instantly with our new streak line vector field. As shown in Section
5, this gives rise to a new interaction metaphor for integration-based
streak line visualization methods. Furthermore, we extended known
feature extraction and analysis tools to work with streak lines. We have
given the first mathematical characterization of cores around which
streak lines exhibit swirling motion and have shown that these new
cores differ significantly from the cores of stream and path lines. This
allowed us to find the attractor in the Beads Problem flow. Finally, we
used the streak line vector field to derive scalar fields describing im-
portant properties of streak lines such as their velocity magnitude and
curvature.

We already mentioned a number of possible future research direc-
tions throughout the paper. Most importantly, the role of streak line
cores for an unsteady flow topology has to be investigated in detail.
The practical issues around their extraction for 3D time-dependent
flows deserve attention as well.

A number of algorithms are available [31, 12, 15, 19] to create
evenly-spaced stream line visualizations. Is something similar also
possible for streak lines? A first approach to this has been presented
in [22]. The new streak line vector field should make it at least sim-
pler to generate visualizations where a set of streak lines is selected
for minimal overlap but maximal coverage.

Finally, one out of four characteristic curves is left: time lines. Can
they be represented as tangent curves? One has to consider the fol-
lowing fact: streak lines coincide with stream and path lines for steady
vector fields, but time lines do not. In particular, the seeding curve for
a time line can be of arbitrary shape. This might be the major obstacle
that has to be tackled first in order to do for time lines what we did in
this paper for streak lines.
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