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Abstract
This paper proposes a vector field visualization approach that extracts and visualizes grouped regions of static
3D vector fields of similar curvature behavior. These regions are argued to ease the recognition of regions of
potential interest and accelerate the general exploration process of vector fields. Our approach detects regions of
similar geometric stream properties such as integral curvature and visualizes them by means of compact cluster
boundaries. To supplement existing approaches our method combines information on relevant scales to extract
meaningful semantical aspects of the overall field structure. For proof of concept we illustrate our results based
on real and synthetic data sets.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Flow Visualization

1. Introduction & Motivation

The visualization of vector fields has become an important
and challenging topic among many research disciplines. To
explore such vector fields, convenient visualization tools are
crucial. Especially for the 3D case common 2D approaches
share the problem of increasing visual clutter for higher data
complexity. To address this problem, expressive 3D methods
are required taking the complex local and global information
of the underlying data into account. Approaches dedicated to
the 3D case can be grouped into two major areas: The first
branch focuses on critical points, motivated by the theory
of classical Vector Field Topology introduced by Helman et
al. [HH91]. The second branch utilizes integral structures to
communicate transport information within the vector field.
On the one hand, both families of techniques are convenient
to visualize mathematical properties of the vector field. On
the other hand, they are intended to visualize the abstract
relation between regions of similar flow behavior, but not
the regions themselves. Thus, in many practical settings one
of two things is required: either additional information about
the importance of the displayed structural information or an
experienced user to interpret the resulting visualizations.

We present an alternative approach to visualize semanti-
cally coherent regions of static 3D vector fields. Each region
describes a subset of the field combining global as well as
local information. The results can be used directly to en-
rich existing visualization techniques. Thus, our approach

is intended to be the first step of a multistage visual anal-
ysis which allows the identification of regions of interest re-
ferring to Schneiderman’s Mantra: overview first, zoom and
details on demand [Shn96]. However, in this work we will
focus on the visualization of those regions themselves. To
obtain this structural grouping, our concept is based on the
analysis of the integral curves on different scales to further
estimate the global flow behavior. The geometrical compar-
ison of similar regions is done by considering the bending
energy along a curve. Regions of similar flow behavior are
summarized to clusters of similar meaning and visualized
appropriately.

Our contributions are:

• definition of a characteristic scalar field that describes the
flow behavior of the vector field on relevant scales,

• extraction and visualization of semantical regions of this
scalar field (in our case: bending energy)

• a proof of concept also for real data sets.

Subsequently the paper is structured as follows: Section 2
provides an overview about previous work related to ours
followed by section 3 explaining the details of our concept.
The application chapter of section 4 presents a proof of con-
cept. Finally, section 5 closes with concluding remarks about
the presented technique and gives an outlook to future exten-
sions.
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2. Related Work

Reducing the amount of information of vector fields remains
a challenging topic. One classical approach is vector field
topology [HH91] focusing on the classification of critical
points. Based on this, advanced concepts as saddle connec-
tors [TWHS03] and boundary switch connectors [WTHS04]
can be used to convey structural information in an abstract
manner. The resulting visualizations allow for an analysis by
experienced users about the complete structure of the vector
field. An overview about recent advances in this field is pre-
sented by Pobitzer et al. [PPF∗10].

In contrast a direct way to represent the transport behav-
ior of a vector field is to use integral flow quantities such as
stream lines or path lines. The resulting structures are use-
ful to capture local/global information depending on an in-
tegration time τ. Although such representations allow an in-
terpretation of the transport behavior at one certain domain
point, visualizing the structure of larger regions rapidly leads
to visual clutter. Thus, a number of approaches exist to re-
duce this amount of visual information by choosing intelli-
gent seeding patterns as shown in [TB96,FZBH05,VKP00].

One effective method for conveying the flow structure is
the Line Integral Convolution (LIC) presented by Cabral et
al. [CL93]. An extension to 3D has been presented by Rezk
et al. [RSHTE99, SLB04]. Those methods, encode transport
information of a vector field in advected random patterns,
which is a very effective method for the 2D case. Further-
more, LIC methods can be extended to 3D surfaces using
embedded 2D vector fields [LGSH06]. A further approach
to identify seeding areas is to use high-level user input as
shown by Schroeder et al. [SCK10]. The evaluation can be
additionally supported using measures that correlate to the
semantical flow behavior (e.g. FTLE [Hal01] or accumu-
lated acceleration [KHNH11]).

The motivation of the mentioned methods is to identify
regions of similar flow behavior. Finding and grouping rel-
evant clusters in flow data imposes two main challenges:
First, reasonable measures have to be found to define a base
for clusterization. Second, the resulting structures have to be
brought into correlation with the underlying flow data. One
crucial parameter determining reasonable flow field cluster-
izations based on measures is the integration time τ. Griebel
et al. [GPR∗04] present an multi-scale approach combining
segmentations on different integration time scales. Further-
more, Preusser et al. [PRHT09] show, how to use the anal-
ysis of partial differential equations for clustering of vector
fields. A local segmentation approach for linear vector fields
is presented by Chen et al. [CBL03]. Another method incor-
porating global and feature related information is presented
by Li et al. [LCS06].

One geometric approach via streamline clustering is pre-
sented by Roessl et al. [RT11]. Their clustering approach
forms an additional parameter space with the aid of the
Hausdorff distances. Clustering is done in parameter space
and back-projected onto streamlines. This results in a col-

ored representation of groups of stream lines. Similarly, the
concept of Streamline Predicates proposed by Salzbrunn et
al. [SS06] allows to define sets of similar stream lines by us-
ing combined boolean predicates based on predefined scalar
quantities. Both approaches deliver scalar values that are
constantly defined along every stream line. Thus, cluster-
ing on stream line segments would require to limit the do-
main of interest. A continuous clustering based on a ad-
vected anisotropic energy functional is presented by Garcke
et al. [GPR∗00]. They use a flow guided clustering to define
seeding patterns for 2D and 3D flows.

3. Approach

Our goal is to visualize clusters according to the curvature
of the vector field. For this, we introduce a curvature-based
characteristic scalar field of the vector field that captures
both local and global properties. Hence, a single cluster rep-
resents a certain region within the vector field where the flow
behavior is similar in terms of the our scalar measure (e.g.
bending energy) over a specified integration range.

Given a static 3D vector field v = v(x) : R3 → R3 by

v(x) =

u(x)
v(x)
w(x)

 ; x =

x
y
z

 ; u,v,w,x,y,z ∈ R

with the streamline s(t) ∈ R3 defined through

∇s(t) = v(s(t)) ; t ∈ [−∞,∞] ∈ R.

A segment of streamline pxs,τ(t) is a certain part of a stream-
line defined by

pxs,τ(t) := s(t) ; t ∈ [0,τ] ; s(0) = xs

whereas xs is the start point of the segment. Parameter τ ∈R
steers the range of the considered part of the streamline. Fig-
ure 1 illustrates the steps of our approach that are necessary
to generate our cluster-based visualization:

1. Characteristic Scalar Field: The approach calculates a
scalar field s = s(v) : R3 → R that is characteristic con-
cerning the curvature behavior of the vector field (Sec-
tion 3.1). This step needs to be done just once per vector
field and is considered to be performed as a pre-process.

2. Clustering: A clustering of the scalar field s is applied
while the average cluster size can be steered via a param-
eter α ∈ R (Section 3.2). Each resulting cluster groups a
region of similar curvature behavior.

3. Rendering: For render purposes each cluster is associ-
ated with a 3D mesh. Furthermore, a semantical classifi-
cation is applied such that the color of the mesh conveys
information of the flow behavior (Section 3.3).

3.1. Characteristic Scalar Field

One core aspect is the calculation of a scalar field that en-
codes aspects of the flow behavior of the vector field. The
term “characteristic” indicates that a region within the scalar
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Figure 1: Steps of our visualization technique. To ease understanding all diagrams are illustrated two-dimensional.

field corresponds to a region of the vector field with a spec-
ified semantical behavior. For instance, a core of swirling
motion or a laminar flow region might be bounded by such a
region. Similar approaches often use multi-scale strategies in
order to detect those regions, whereas the scale itself param-
eterizes the approach. Thus, the problem of finding an opti-
mal scale size is outsourced to the user. Instead, we propose
an automatic construction of a characteristic scalar field by
considering the optimal scale for semantical relevant struc-
tures by intrinsic properties. The challenge remains to define
a measure that describes the field on different scales by a sin-
gle real number. One prominent geometrical measure encod-
ing topological information is curvature. Applied to stream-
lines, the integral curvature describes its bending energy.
This measure has already been successfully applied for the
structural analysis of vector fields [The98,WT02,KHNH11].
Using curvature and the integral definition of bending en-
ergy, we can model a smooth transition between local and
global semantical structures.

Let bxs(τ) : R3 → R be the bending energy in arc-length
parameterized segment of a streamline pxs,τ(t) given by

bxs(τ) =
1

2 π

∫ τ

0
κ(pxs,τ(t)) dt

with the curvature defined as

κ(pxs,τ(t)) =
||pxs,τ

˙(t)× pxs,τ
¨(t)||

||pxs,τ
˙(t)||3

,

the outer product (.× .), and the first and second deriva-
tives pxs,τ

˙(t)/pxs,τ
¨(t). The bending energy bx(τ) is defined

for each space point x of vector field v(x) as a function over
a segment of a streamline. The length of this segment can
be controlled by τ. Hence, this function describes the flow
behavior of a streamline starting at x over different scales of
τ in a geometrical sense.

Having this in mind, the question arises which scale is
the best one? Considering a space point x, we consider τ as
the best scale which distinguishes the streamline in parts of
different flow behavior. This is illustrated in Figure 2 (a,b,c).
In order to detect such relevant values of τ we analyze the
corresponding bending energy functional over τ.

Figure 2 (d) illustrates the bending energy bx(τ) for a cer-
tain range of τ ∈ [τa,τb] and according to an space point x.
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Figure 2: Flow behavior of streamlines. (a-b) The red point
marks the position where the flow behavior changes along a
certain streamline. (c) An set of streamlines can be used to
distinguish regions of similar flow behavior. (d) A streamline
and their relations. (e) Bending energy bx(τ) as function of
τ and space point x. (e) First derivation of the bending en-
ergy bx ˙(τ) where τe marks an extrema of this function, which
corresponds to a turning point mentioned in (a-b). Note: the
2D images (a-c) are projections from 3D space by what the
perception of such turning points is not intuitive.

This function has constant monotonic behavior (Fig. 2 (e)).
The flow changes at extrema of the first derivative of the
bending energy function (Fig. 2 (f)), which are given by

dbx(τE)

dt
= Extrema ⇔ d2bx(τE)

dt dt
= 0.

This statement corresponds with the turning point of the
bending energy function. As there might be more than one
extrema we define a set τE . To describe the flow behavior in
the environment of space point x, the first change of the flow
behavior is of interest is given by τe := min(τE).

The characteristic scalar field s(x) is now given by the
bending energy at the first change of the flow behavior:

s(x) =
{

bx(τe) if τe ∈ R,
∞ else,

whereas the boundaries of the considered τ interval are given
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by τa = −∞ and τb = ∞. Note, that s(x) is infinite where
no τe is defined for a certain x. This is equal to the case of
not having a change within the flow behavior.

Using real data the quality of the structure in the scalar
field s(x) is strongly influenced by the level of noise. Thus,
additional noise handling is required. In order to distinguish
multiplicative noise from the actual data and to restrict the
range of the values in s(x) our approach applies a log-
transformation given by: s(x)log = ln(s(x) + 1). Note, that
this operation preserves the relational order in between the
corresponding values. Further, we apply a basic noise filter-
ing by means of a median filter [KP94] Φ = Φ3×3×3 and a
kernel size of 3×3×3: s(x)log = Φ(s(x)log).

The resulting scalar field s(x)log encodes the relevant
structures of flow behavior. The next step is to group/cluster
regions within the resulting scalar field.

3.2. Clustering

Concerning the clustering, literature provides a variety of ex-
plicit clustering approaches, e.g., an adaptive region growing
as described by Fan et al. [FZBH05]or k-means clustering by
Kanungo et al. [KMN∗02]. Unfortunately, most techniques
need to be seeded for instance by predefining the number of
centroids. The choice of the seeding parameters significantly
influences size, number, and shape of the generated clusters.
Besides, the choice which clusters are really semantical rel-
evant would remain ambiguous after the clustering. Further
clustering methods as the stable Mean Shift approach pre-
sented by Comaniciu et al. [CM02] depend on estimating
the density gradient in the feature space. This approach can
be applied in any dimension and relies on adequate selec-
tion of sampling resolution and -kernels. However, this re-
quires the expensive local detection of critical points within
the feature-gradient vector field.

To avoid those seeding constraints and integration opera-
tions within the feature domain, our approach uses an im-
plicit clustering that is caused by semantic dependencies.
This can be done with the aid of the density function

P = P(s(x)log) ∈ [0,1] : R→ R.

This function describes the probability of occurrence of a
certain bending energy value of the characteristic scalar field
s(x)log. Referring to image processing, we assume that the
variance of the bending energy within one semantical cluster
is smaller than between them (Fig. 3 (a-b)).

Hence, the minima smini ; i = 1, . . . , l of the density func-
tion P(s(x)log), with

smini := P(s ˙(x)log) = 0∧P(s ¨(x)log)> 0,

distinguish l − 1 adjacent clusters C j; j = 1, . . . , l − 1 from
each other. Figure 3 (c) illustrates this. To handle bound-
ary effects the largest and smallest scalar values of s(x)log
are minima per definition. A single cluster C j of the den-
sity function is bounded by the minima smini and smini+1 :
C j := s(x)log ∈ [smini ,smini+1 ].

As illustrated in Figure 3 (d-f), the number of clusters
C(α) depends on the number of adjacent minima that form a
cluster. This number can be controlled by a threshold α ∈R:
the approach merges adjacent clusters whose boundary min-
ima satisfy the condition

|di|< α ∈ [snr,max(s(x)log)] ; di = smini − smini+1 ,

with the signal-to-noise ratio snr ∈ R of the difference of
adjacent minima given by

snr =
1

l−1 ∑l−1
i=0 |di|√

1
l−1 ∑l−1

i=0 (|di|− 1
l−1 ∑l−1

i=0 |di|)2
.

The number of clusters C(α) decreases non linear with α.
Therefore, threshold α should be larger than the signal-to-
noise-ratio in order to avoid an unmanageable large number
of clusters and noise artifacts.

The back projection of the resulting clusters onto the vec-
tor field’s space (Fig. 3 (e)) reveal the actual semantical
grouping (Fig. 3 (f)). Note, that this back projection requires
a connected component analysis on the resulting clusters.
We use the term space cluster in order to distinguish be-
tween the cluster in the vector field and the clusters of the
density function. Although all space clusters are potentially
meaningful for a visualization purpose we suppress those
clusters with a small volume. Therefore, the approach uses
only those space clusters with the largest volume which form
together at least 90% of the volume of the vector field.

3.3. Rendering

For the final visual presentation our approach calculates
a representing mesh per cluster. To obtain this mesh the
voxel raster (which numerically represents a cluster) is re-
sampled onto a higher resolution to reduce numerical arti-
facts. Afterwards, the re-sampled voxel raster is morpholog-
ical smoothed [HSZ87] and a mesh structure is constructed
by using a classical marching cube approach, which repre-
sents the hull of the cluster. Subsequently, the resulting mesh
is smoothed using Laplacian filtering.

In addition to this, we propose to encode characteristic
properties of the vector field onto the visual representation
of the mesh, to describe the trend of the field within a cluster.
For our application we distinguish three cases: a “laminar”
flow, a “vortex” flow, and “turbulent” flow. Note, that such
a “trend” just summarizes the major flow behavior. For in-
stance, a “laminar” cluster is dominated by laminar flow be-
havior. However, different flow behaviors can be part of this
cluster, too. This definition can be extended towards more
high level classifications that might become specifically use-
ful for different applications scenarios. In general, we as-
sume the complex eigenvalues λ1,2,3 of the Jacobian J(v(x))
[NJ99] to provide a reasonable description of the local flow
behavior. Thus, the imaginary parts give information about
the rotational behavior and the real part about the transla-
tional behavior. To decide which trend outweighs, our tech-
nique calculates for each space cluster Ci the mean/standard
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(a)

(b)

(c) (e) (f)(d)

Figure 3: Clustering pipeline: (a) Example of a complex vector field to be clustered. For illustration purpose just two dimensions
are visualized. (b) Density function P(s(x)log) of the characteristic scalar field s(x)log and (c) the minima in P (green). (d,e,f)
Overview about the relations between number of clusters C(α) and the chosen threshold α (down), the resulting clustering
within the density function (middle) and the final space clusters (up): the threshold α grows from (d) to (f). Note, that the final
clustering completely fills the vector field and the average volume of the space cluster increases with a growing threshold α.

=100 =500 =1000 =0;=0;=0;=0;(b) (c) (d) (e)(a) LIC =5;(f)

Figure 4: Comparison of different scalar fields of the bending energy with our characteristic scalar field:(a) underlying vector
field as line integral convolution visualization, (b,c,d) the scalar fields of the bending energy for different τs, (e,f) our charac-
teristic scalar field with different parameterization for α. The color coding corresponds to the resulting clusterization.

deviation – µi
ℜ, µi

ℑ, σi
ℜ, and σi

ℑ – of the imaginary parts and
the real parts of the eigenvalues by:

µi
ℜ =

1
Ψ

ψ

∑
j=0

max(|ℜ{λ1,2,3(v(x j))|}), (1)

σi
ℜ =

√√√√ 1
Ψ−1

ψ

∑
j=0

(max(|ℜ{λ1,2,3(v(x j))|})−µi
ℜ)

2. (2)

The mean µi
ℑ and standard deviation σi

ℑ for the imaginary
part of the eigenvalues is given by exchanging ℜ with ℑ
within Equation 1 and 2. In order to accelerate this calcu-
lation, a Monte-Carlo-Sampling is used with a representa-
tive subset of a number Ψ of cluster elements x j ∈Ci which
avoids considering all elements.

Using this, we assume the standard deviation σi (of a

certain cluster Ci) directly correlates with the probability is
Pc(σi) that a certain classification c has been chosen cor-
rectly. By using this statement – and under the assumption
of a the “law of rare events” – a maximum-likelihood esti-
mation reveals that class c is chosen correctly, concerning
the significance level of 0.1, if the condition σi > 2.9957·µ0
is fulfilled, with µ0 = median(σi).

Our classification of the major trend of the flow behavior
is given by the relations between these three features as il-
lustrated in figure 5. A cluster with large standard deviations
is orderless and is assumed to be “turbulent”. If the standard
derivation of the imaginary parts is large the flow is classi-
fied as general “vortex” behavior. In all other cases the clus-
ter is classified as “laminar”. This classification is mapped
onto the color of the mesh: turbulent → orange, laminar →
green, and vortex → blue. Finally, we provide a rendering
via recursive ray tracing, of the transparent meshes that rep-
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Figure 5: Decision Tree to classify the major trend of the
flow behavior for a certain cluster.

resents the cluster of similar flow behavior of the vector field
within their spatial context.

4. Applications

We present our results for different data sets in comparison
to streamline-based visualizations. All computations have
been done on a system with 3.5 GHz CPU, 8 GB RAM with
WIN XP OS.

4.1. Analytic case

Figure 4 shows a comparison between scalar fields with dif-
ferent integration times (b-c) and our characteristic scalar
field (d,e) (cf. Section 3). The data are visualized by Fig-
ure 4 (a). Concerning this example, the vortex core regions
are of special interest. Illustration 4 (b) shows that this re-
gions are well emphasized (orange) for smaller integration
times τ = 100. Unfortunately, with increasing τ = 500 or
τ = 1000 this regions loose importance due to the increasing
scale. This indicates that the choice of an appropriate inte-
gration time is ambiguous (cf. Section 3.1). In comparison,
our characteristic scalar fields (shown by Figure 4 (d,e)) con-
tains both mentioned regions (blue, violet/red). Note, that
our approach produces clusters around critical points (see
Figure 6). The clustering of our characteristic scalar field in
Figure 4 (e) is based on the threshold α = 0 which is lower
than the corresponding signal-noise-ratio. This results in a
higher number of small clusters and an increasing influence
of “salt and paper” noise. Therefore, the signal-to-noise-ratio
should be the lower boundary for the value of α (cf. Sec-
tion 3). In contrast, the clusterization of our characteristic
scalar field in Figure 4 (f) is based on the threshold α = 5
which is larger than the signal-to-noise-ratio.

4.2. Medical data sets

We applied our technique to two medical examples, sim-
ulating the blood flow in cerebral aneurysms. Biomedical
researchers and neuroradiologists are interested in a deeper
understanding of the correlation between the blood flow be-
havior and the aneurysm initiation, progression and the risk
of rupture [CL93]. The first aneurysm data set represents
an artificial aneurysm model consisting of a straight inflow
and outflow tube as well as sphere-like aneurysm sac (bot-
tom row figure 7). The second data set is a patient-specific
aneurysm derived from a computed tomography scan (top
row figure 7). The results of our method indicate a higher

cluster complexity close to the aneurysm sac, while our
classification indicates higher amount of rotational behav-
ior. This additional semantical information can be used to
further refine regions of special interest.

4.3. Technical data sets

The last two technical data sets contain one wing data set and
a simulation of a hydro cyclone. The wing data set represents
a simple model of the 3D flow around an airfoil and contains
a laminar inflow region producing a vortex region behind the
lower part of the wing as illustrated in Figure 8 in the bottom
row. The final data set was produced from a high-resolution
simulation of a hydro cyclone. Hydro cyclones are devices
for separating substances in liquid suspension. The device
is shown in Figure 8 top row and consists of an inflow area
where the fluid is injected under high pressure. Due to high
rotatory motion, the inflow area in the upper part is domi-
nated by a laminar flow behavior. The separation itself takes
place in the device’s center area. Our classification scheme
(Section 3.3) classifies the majority of clusters as rotatory
behavior (cf. the accompanying video).

5. Conclusion & Future Work

We present a novel approach to visualize vector fields using
a clustering based approach. Our approach emphasizes re-
gions in the flow (and relate to the topology) of the vector
field. Our approach includes the definition of a characteris-
tic scalar field based on the bending energy of the under-
lying vector field. This describes the integral behavior over
relevant scales, i.e., local and global scales within one com-
pact representation. This can be used to produce expressive
visualizations of semantically relevant regions. In addition
to this, we introduced a parameter to control the amount of
resulting clusters and applied our method to a set of exam-
ples, showing its practical application for specific visualiza-
tion goals.

For future research, our approach will be extended to ad-
ditional measures, that are known to contain semantical in-
formation, e.g., accumulated accelerations. Further, our ini-
tial effort to classify resulting structures can be extended
towards more specific questions regarding properties of the
vector field. This might include classifications for the rate of
separation or additional physical quantities within a cluster.
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