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Figure 1: Segment of the Pacific Ocean: volume renderings of the particle distributions visualize attracting (blue) and repelling (red) struc-
tures. There are two attracting and two repelling closed stream lines.

Abstract

We present a method for the detection and visualization of closed
stream lines topologically acting as sources or sinks in uncertain 2D
and 3D vector fields. For their detection, we apply a Monte Carlo
simulation which generates particle distribution functions repre-
senting sinks and sources. We show that in the uncertain case there
is no structural difference between critical points and closed or-
bits. This allows the application of critical point extractors to closed
stream lines as well. We show applications for some synthetic and
real world examples.
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1 Introduction

The representation of uncertainty is one of the most challenging
topics in visualization [Johnson 2004]. A lot of approaches have
been published for a variety of different data classes. Flow data is
a special case, because uncertainty is transported within the flow.
Therefore it has to be analyzed globally. To the best of our knowl-
edge, there are only a few publication that treat this topic. In [Otto
et al. 2010] a topological analysis of 2D uncertain vector fields is
presented that describes the computation and visualization of sink,
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source and saddle distributions. In [Otto et al. 2011] this con-
cept was extended for uncertain 3D vector fields. In this work we
consider closed stream lines. In vector fields without uncertainty,
closed stream lines are topological features that are missing in most
topological visualizations of vector field topology, because of their
non-local properties. For uncertain vector fields there has been no
solution described yet.

In this paper we show that closed stream lines can be found as
global features, in particular as sink and source distributions. For
this we extend the approaches presented in [Otto et al. 2010] and
[Otto et al. 2011] for the detection of closed stream lines. This re-
sults in scalar fields, which represent the probability distributions
of sinks and sources, respectively. The final visualization is done
by volume renderings of these scalar fields. The aim of this paper
is the detection of closed orbits, we do not investigate other features
like saddles, boundary switches and vortices.

2 Related work

The articles [Griethe and Schumann 2006; Johnson and Sanderson
2003; Pang et al. 1997] give an overview of existing uncertainty
based visualization approaches. Uncertainty has been considered
in different fields of visualization, like isosurface [Djurcilov et al.
2002; Grigoryan and Rheingans 2002; Rhodes et al. 2003; Brown
2004] and information visualization [Streit et al. 2008]. [Maddah
et al. 2007; Schultz et al. 2007] proposes probabilistic fiber tracking
in DT-MRI visualization. This work relates to our approach but
considers different data classes.

Some solutions exist for visualizing local uncertainty. Examples for
this kind of visualization are glyphs [Lodha et al. 1996; Wittenbrink
et al. 1995], the reaction diffusion model [Sanderson et al. 2004],
cross advection and error diffusion [Botchen et al. 2005], and addi-
tional color schemes [Botchen et al. 2006]. All of these techniques
show the effect of the uncertainty locally or for a very short inte-
gration time. They do not show the effect on the global features of
the vector field.



An approach for a global analysis of uncertain vector fields is pre-
sented in [Otto et al. 2010]. It is an integration based approach that
results in particle density distributions, which represent the proba-
bility distributions of sinks and sources. An extension of this ap-
proach for uncertain 3D vector fields is presented in [Otto et al.
2011]. The main contribution of this paper is the application of the
saddle and boundary switch connectors approaches [Theisel et al.
2003; Weinkauf et al. 2004] to uncertain 3D vector fields. In this
paper we will show that based on these two approaches an analysis
of attracting and repelling closed orbits in uncertain vector fields
can be done.

Closed stream lines in vector fields without considering uncertainty
have been considered in [Wischgoll and Scheuermann 2001]. This
approach works on 2D vector fields. This approach has been ex-
tended to 2D time dependent vector fields [Wischgoll et al. 2001]
and to 3D vector fields [Wischgoll and Scheuermann 2002]. These
approaches are based on a tracking of streamlines. These methods
work on the cells of the data grid by finding cell cycles and ana-
lyzing stream lines of their boundary vertices. [Theisel et al. 2004]
present a grid-independent approach to 2D closed stream line ex-
traction.

3 Uncertain vector field topology

This section reviews the theory of the topology of uncertain 2D vec-
tor fields that was presented in [Otto et al. 2010]. For the extraction
of closed stream lines we give a definition of uncertain vector fields
and concentrate on the extraction of sink and source distributions.
Our approach considers only closed stream lines with a sink and
source like character. The concepts of the extraction of sinks and
sources are directly applicable for 3D uncertain vector fields [Otto
et al. 2011].

3.1 Uncertain vector field

An uncertain vector field is generated by multiple measurements
or simulations of one flow phenomenon. Instead of assigning a
single vector to a point in the domain, a finite number of different
vectors characterizes the probabilistic local behavior of a flow. This
is interpreted as a probability distribution, which is represented by
a 4D scalar field.

Definition 1 An uncertain 2D vector field in the domain D is a 4D
scalar field ρv(x,y ; u,v) with

• (x,y) ∈ D and (u,v) ∈ R
2

• ρv(x,y ; u,v)≥ 0

•

∫ ∞
−∞

∫ ∞
−∞ ρv(x,y ; u,v) du dv = 1.

The value ρv(x,y ; u,v)dudv denotes the probability that at the loca-
tion (x,y) the vector field has some value in the range [u,u+du]×
[v,v+dv].

3.2 Integration of particle distributions

In contrast to certain vector fields we cannot integrate stream lines
in uncertain vector fields. Instead, a particle seeded in such a field
will not move to a unique location, because the particle has different
probabilities to move to various locations. Therefore, we have to
integrate particle distribution functions. For this we define a 2D
scalar field p(x,y; t) that represents the particle distribution, which

will be integrated in an uncertain vector field. This scalar field has
to fulfill the following properties:

• p(x;y;t)≥ 0 for all (x;y) ∈ D and t ≥ 0

•

∫ ∫

D p(x,y;t) dx dy ≤ 1 for all t ≥ 0.
(We use ≤ instead of = because particles may leave the do-
main during integration.)

The value p(x,y; t)dxdy denotes the ratio of particles in [x,x+dx]×
[y,y+dy] in relation to the initial number of particles in D at t = 0.

To consider the transport of particles in an uncertain vector field
ρv, we use the infinite domain D = R

2 to avoid boundary effects.
The particle distributions are represented by virtual particles with-
out inertia. The particles are transported within a time interval δ t
that is short enough to assume they are moving on a straight line.
At time t +∆t the number of particles in an infinitesimal volume
dxdy at some location (x,y) is the sum of the numbers of particles
in cells dr ds at all locations (r,s) times the probabilities that they
are transported from (r,s) to (x,y) in time ∆t, i.e., they experience a

velocity ((x− r)/∆t,(y− s)/∆t)T . These probabilities are given by

ρv(r,s; x−r
∆t

, y−s
∆t

)d( x−r
∆t

)d( y−s
∆t

). After division by the cell volumes
we have dxdy = dr ds. This yields the following expression for the
transport of particle densities:

p(x,y;t +∆t)

=

∫ ∫

D
p(r,s;t)ρv(r,s;

x− r

∆t
,

y− s

∆t
)d(

x− r

∆t
)d(

y− s

∆t
)

=
1

∆t2

∫ ∫

D
p(r,s;t)ρv(r,s;

x− r

∆t
,

y− s

∆t
)dr ds

This expression defines a unique integration starting from a given
initial particle distribution function.

3.3 Sink and source distributions

For the extraction of sinks and sources we have to start a stream
line integration from every point (r,s) ∈ D represented by an initial
particle distribution function p(x,y; t0) = δ (x− r,y− s). In uncer-
tain vector fields, stream lines, sinks, sources and critical points are
represented by particle distribution functions. Nevertheless, we still
use the terms stream line, sink, source and critical point to refer to
these concepts.

Definition 2 The particle density function p0(x,y) is a critical
point distribution of ρv if for a stream line integration starting at

p(x,y;t0) it holds
∂ p
∂ t

= 0.

Note that every linear combination of a given number of critical
points p1(x,y), ..., pn(x,y) of ρv is a critical point as well. Formally

∑n
i=1 αi pi is a critical point for any 0≤α1, ...,αn ≤ 1 and ∑n

i=1 αi ≤

1. The sum of all αi can be less than one, because particles might
leave the domain.

This leads to a continuum of critical points. For the topological
analysis we need a set of linearly independent critical points. We
call these sets spanning source and sink sequence.

Definition 3 Given an uncertain vector field ρv(x,y ; u,v), a se-
quence of sinks (p1(x,y), ..., pn(x,y)) is called spanning sink
sequence if p1, ..., pn are linearly independent and every sink
p(x,y) of ρv can be uniquely described as p = ∑n

i=1 αi pi with
0 ≤ α1, ...,αn ≤ 1 and ∑n

i=1 αi ≤ 1. Similarly, a sequence of
sources ( p̃1(x,y), ..., p̃m(x,y)) is called spanning source sequence
if p̃1, ..., p̃m are linearly independent and every source p̃(x,y) of ρv

can be uniquely described as p̃ = ∑m
i=1 βi p̃i with 0 ≤ β1, ...,βm ≤ 1

and ∑m
i=1 βi ≤ 1.



3.4 Implementation

To implement our approach we employ a Lagrangian Monte-Carlo
method. The initial particle density p0 is represented by a high
number of virtual particles without inertia that are advected inside
the uncertain vector field. This method is based on probabilistic
particle movements. Each particle is integrated by an “uncertain”
Euler method. For this a random vector is chosen based on the
probabilities that a particle moves from location (x,y) to any loca-
tion (u,v). These probabilities are stored in the uncertain vector
field ρ(x,y; u,v). In practice we assume Gaussian distributions to
model the uncertainty. Therefore, we have to store only a mean
vector field vm(x,y) and a tensor field T (x,y) containing the covari-
ance matrices. In order to speed up the computation, we imple-
mented the integration method in CUDA. In a first step we transfer
the uncertain vector field, the particle positions, and for each thread
a seed for its random generator into the video memory. Each par-
ticle is handled by its own thread. For each particle position the
uncertain vector field is trilinearly interpolated resulting in an av-
erage vector and a covariance matrix. Than a normally distributed
random vector is generated by using a Box-Muller transformation.
This random vector is modified by the covariance matrix. Finally
we update the particle position by adding the average vector and
random vector.

The local rate of change of the particle density is observed over
time. For this we count the number of particles inside the cells of a
uniform grid. The method terminates if this rate drops under a given
threshold. The resulting particle density of the forward integration
represents the whole spanning sink sequence and in backward di-
rection the spanning source sequence.

3.5 Visualization

Both spanning sink and source sequence are represented by a par-
ticle distribution function, that has to be visualized. In order to do
that, we use height maps in the 2D case with an underlying LIC of
the mean field, as proposed in [Otto et al. 2010]. In the 3D case
we choose volume renderings for the visualization of 3D particle
distribution functions. These volume renderings are generated with
linear transfer functions and specular lighting. In both cases attract-
ing structures are visualized in blue and repelling structures in red.

4 Uncertain closed stream lines

In this section we show that the extraction of closed orbits in uncer-
tain vector fields is conceptionally the same as extracting uncertain
critical points. To illustrate this, we use two analytic examples for
the 2D and 3D case. Then we show that the spanning sink and
source sequences contain all closed orbits which act topologically
as sink or source.

4.1 Synthetic examples

All of our examples assume Gaussian distribution functions in order
to model the uncertainty. Each uncertain vector field is represented
by a mean vector field and a tensor field containing the covariance
matrices.

Example 1 The first example illustrates the 2D case. It defines an
uncertain vector field over the domain D = [−2,2]× [−2,2]. The

Figure 2: Example 1: attracting closed orbit with a source in the
middle

mean vector field is given as

vm(x,y) =





y−x
(

√

x2 +y2 −1
)

−x−y
(

√

x2 +y2 −1
)





and the covariance matrix as

T (x,y) =

[

0.09 0
0 0.09

]

.

Example 2 In the 3D case we use a similar uncertain vector field
where the z-component is added. It is defined over the domain D =
[−2,2]× [−2,2]× [−2,2] with the mean vector field

vm(x,y,z) =









y−x
(

√

x2 +y2 −1
)

−x−y
(

√

x2 +y2 −1
)

−z+x









and the covariance matrix

T (x,y,z) =





0.16 0 0
0 0.16 0
0 0 0.16



 .

4.2 Detection

In section 3.3 we showed that sinks and sources of uncertain vector
fields are detected by integration of particle distributions until they
converge. It turns out that attracting and repelling closed stream
lines can be found with this scheme as well. In uncertain vector
fields, closed stream lines with attracting and repelling character are
also represented by unique critical distributions. These distributions
act analogously to ordinary sink or source distributions, because
they attract and repell neighboring particles. The main difference
is the cyclic movement of particles inside the critical distribution.
However, this fluctuation does not influence the shape of the critical
distribution, because the particles converge to an asymptotic cyclic
distribution. In figure 2 such a particle distribution is shown based
on the synthetic example 1.

In order to find such a particle distribution, the integration has to be
started at some location that is affected by the closed stream line.
The shape of the initial particle distribution is not important. Fig-
ure 3 illustrates an integration started from a Delta Dirac function
p0 = δ (1,0,0). The integration uses the uncertain vector field de-
fined in example 2. During the first integration steps the particle



t = 0 t = 50

t = 100 t = 500

t = 1000 t = 3000

Figure 3: Example 2: volume rendering of the particle density dur-
ing the integration of one uncertain stream line started at location
(1,0,0).

t = 5 t = 10

t = 20 t = 40

Figure 4: Example 2: volume rendering of the particle density dur-
ing the integration of one uncertain stream line started from a uni-
form particle distribution.

Figure 5: Topology of the uncertain 2D vector fields generated by
the PIV measurement of a flow in a tube. Attracting features are
visualized in blue, repelling features in red.

distribution moves along the path of the closed orbit. With increas-
ing integration time the particle distribution converges to the distri-
bution of the closed orbit. A faster convergence is achieved by a
uniform initial particle distribution as shown in figure 4. The rea-
son for the faster convergence is that the particle distribution does
not need to expand from a single point, and the closed orbit acts
attracting to all particles in this field. Therefore, they only move to
the closed orbit and stay there.

5 Results

In this section we demonstrate the detection of closed orbits in un-
certain vector fields. We apply our method to some real world ex-
amples, like PIV measurements and simulations of oceanic flows,
and a synthetic example. All results were created with an Intel
Q6600 with 8GB RAM and an Nvidia Geforce 460 GTX with 1
GB VRAM.

5.1 Flow in a tube

The first data set is a PIV measurements that consists of 240 snap-
shots of a slice of a flow in a tube. The measurements are taken
from a flow with constant velocity of 4m/s. The timing for the
measurements are 190µs and the uptake rate 3,3Hz. We used the
240 single 2D velocity fields to generate an uncertain 2D vector
field. The uniform data grid has a resolution of 83×67.

Figure 5 shows the resulting uncertain topology. It contains one
repelling closed stream line, two sinks and two sources. Figure 6
illustrates the topology of the mean vector field of all 240 measure-
ments, containing five sinks, nine sources and eleven saddles. In
comparison the uncertain topology contains less critical structures.

For the computation of the particle distributions representing at-
tracting and repelling structures, we generate a uniform initial dis-
tribution with 100 particles per grid cell, with a total of 556100
particles. The computation time for this example is about 25 min-
utes.



Figure 6: Visualization of topology with underlying LIC of the
mean vector field of all PIV measurements. Sinks are blue colored,
sources red colored and saddles yellow colored.

5.2 Segment of the Pacific Ocean

The second example is based on a flow simulation of the oceans.
Here we have got a data set of the global ocean system with average
velocity fields of each month over one year. The whole data set
has a resolution of 360×180×40. It contains hundreds of critical
structures, therefore we picked only a very small segment of the
Pacific Ocean in order to show some examples of closed stream
lines. The region of interest has a resolution of 28×22×6.

Figure 1 shows some volume renderings of the sink and source dis-
tributions of this data set. There are two attracting and two repelling
closed stream lines. We adjusted the range of the linear transfer
functions to the density of particles on closed stream lines, because
there the particles density is much smaller than in the region of real
sink and source distributions.

Again, we used a uniform initial particle distribution with 100 par-
ticles per grid cell (a total of 369,600 particles). For counting
particles in buckets we choose denser grid with a resolution of
140×110×30. The computation time is about 40 minutes.

Furthermore, we use this example to analyze the stability of closed
orbits in uncertain vector fields. For this we artificially amplify the
uncertainty by factors of 2 and 4. Figure 7 shows results for dif-
ferent amplitudes of uncertainty. The left column shows the critical
structures and the right column shows volume renderings of a scalar
field s with

s =
maximal Eigenvalue o f covariance matrix

length o f mean vector
.

This gives an impression of the impact of the uncertainty to the
movement of particles in the uncertain vector field. For isovalues
s > 1 the uncertainty dominates the particle motion. We illustrate
this case with an isosurface is shown where s = 1.

While increasing the uncertainty an attracting closed stream line
and a sink distribution become weaker and finally disappear. How-
ever repelling structures hardly change, even if they exist in regions
where uncertainty dominates, like the the large repelling closed
streamline.

To consider the results the stability of critical structures of any type
are mainly effected by global uncertainty and not by the the local
uncertainty.

Figure 8: Uncertain Lorenz attractor

5.3 Uncertain Lorenz attractor

The last example is derived from the well-known Lorenz attractor,
which has no closed stream line in the strict sense. Here we want
to show that our method also works for uncertain strange attrac-
tors. We set up an uncertain vector field with the Lorenz attractor
as mean field:

vm(x,y,z) =





σ (y−x)
rx−y−xz

xy−bz



 .

with

T (x,y,z) =





0.16 0 0
0 0.16 0
0 0 0.16



 , σ = 28 , r = 10 and b =
8

3
.

This field is defined over the domain D = [−25,25]× [−25,25]×
[0,50]. Figure 8 shows the critical particle distribution which is
created by a forward integration of a uniform initial distribution
with 30 particles per grid cell (a total of 3750000 particles). The
algorithm converges after 250 integration steps, with a step size of
∆t = 0.02. The computation time is 42 seconds. Although the mean
field includes a strange attractor instead of a closed stream line, our
method still finds this structure.

5.4 Computation times

The computation times of the three examples differ significantly.
The last example with the highest number of particles and the
largest grid is the fastest. The main factor is the uncertain vector
field itself. Regions with low velocity and high uncertainty lead to
slow convergence and a high number of needed integration steps.
Another reason for long run times are strong differences in the ve-
locity field, because the integration step size has to be adapted to
the fastest regions in order to detect all features in these regions.

6 Conclusion

To the best of our knowledge, this is the first approach that considers
closed stream lines in the context of uncertain vector fields. In this



1× uncertainty

2× uncertainty

4× uncertainty

Figure 7: Segment of the Pacific Ocean with different amount of uncertainty: (left column) Volume renderings of the particle distributions
visualize attracting (blue) and repelling (red) structures. While the uncertainty increases, the big attracting closed stream line becomes weaker
until it disappears. (right column) Volume renderings of a scalar field s and an isosurface with s= 1. For the region where s> 1 the uncertainty
dominates the particle motion in the uncertain vector field.



paper we have shown that the method proposed in [Otto et al. 2010]
can be applied in order to detect closed orbits in uncertain 2D vector
fields. We also showed that this method can be extended to detect
attracting and repelling closed stream lines in uncertain 3D vec-
tor fields. Such attracting and repelling features are the asymptotic
result of an uncertain streamline integration represented by parti-
cle distributions. We demonstrated the functionality of this method
based on several examples. We have also shown that the stability
of such features mainly depends on the global uncertainty. Local
uncertainty cannot be taken alone to make statements about the sta-
bility of critical distributions. Furthermore, we have also shown
that other attracting and repelling structures like strange attractors
can be detected with this method.

One limitation of our method is that closed stream lines with saddle-
like behavior cannot be detected, because these structures are un-
stable under forward and backward integration. The extraction of
such structures will be a topic for future work. Other future goals
are the detection of vortex structures of uncertain vector fields, like
vortex cores and vortex regions, and the consideration of uncertain
unsteady vector fields.
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