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ABSTRACT

The Finite Time Lyapunov Exponent (FTLE) has become a
widespread tool for analyzing unsteady flow behavior. For its com-
putation, several numerical methods have been introduced, which
provide trade-offs between performance and accuracy. In order to
decide which methods and parameter settings are suitable for a par-
ticular application, an evaluation of the different FTLE methods is
necessary. We propose a general benchmark for FTLE computa-
tion, which consists of a number of 2D time-dependent flow fields
and error measures. Evaluating the accuracy of a numerically com-
puted FTLE field requires a ground truth, which is not available
for realistic flow data sets, since such fields can generally not be
described in a closed form. To overcome this, we introduce ap-
proaches to create non-trivial vector fields with a closed-form for-
mulation of the FTLE field. Using this, we introduce a set of bench-
mark flow data sets that resemble relevant geometric aspects of La-
grangian structures, but have an analytic solution for FTLE. Based
on this ground truth, we perform a comparative evaluation of three
standard FTLE concepts. We suggest error measures based on the
variance of both, the fields and the extracted ridge structures.

1 INTRODUCTION

Understanding the complex flow behavior in unsteady flows is still
a challenging task with a large number of ongoing research activi-
ties. An established tool for analyzing flow data is the Finite Time
Lyapunov Exponent (FTLE). It measures the rate of convergence
or divergence between neighboring flow particles over a finite time
interval. Features in the resulting scalar field, most importantly its
ridges, have been shown to be in close relation to the definition
of Lagrangian Coherent Structures (LCS) described by Haller [8].
Thus, they are a good candidate for compact topological represen-
tation of time-dependent flow fields.

Due to intensive research activities, a variety of numerical FTLE
computation schemes have emerged: the classic FTLE method de-
scribed by Haller et al. [6, 7], methods using frequent renormal-
ization by relocating sampling particles after specified reseeding
criteria [15], or a localized method relying on the Jacobian to com-
pute a FTLE value using a single path line [10], to mention a few.
A more detailed overview is given in Section 2. All approaches
share the common goal of computing the same quantity, but differ
fundamentally in computational aspects.

The increasing number of computational methods raises the need
for finding a common basis to compare different approaches. As
FTLE has been suggested to be a relative measure [7], the abso-
lute and exact values are argued to play a secondary role during
primary evaluation and visual examination of the resulting scalar
fields. However, as soon as additional (automated) post-processing
is applied (such as feature extraction and subsequent flow segmen-
tation), the accuracy of obtained values and their derivatives be-
comes increasingly important. Especially ridge extraction proce-
dures have to rely on geometric properties and exact positions of
potentially delicate FTLE features.

It is the goal of this paper to propose a benchmark for the evalu-
ation and comparison of different methods for the numerical com-

putation of FTLE. The obvious first choice for this would be an
estimation of the error order of different FTLE schemes. Such an
approach is very common for estimating the accuracy of numerical
line integrators and has been applied to modern integration schemes
[9]. However, deviations in the FTLE computation appear not to be
dominated by the error of numerical line integration, but rather by
the gradient estimation of the flow map.

We are not aware of an analytical estimation of approximation
order for methods computing the flow map gradient. Instead, we
propose an experimental evaluation, i.e., the comparison of differ-
ent FTLE schemes on a set of well-chosen example fields. The
fundamental problem with this (and perhaps the main reason that
such an evaluation has not been carried out before) is the prob-
lem of missing ground truth: the definition of FTLE is based on
the concept of the flow map, which in general cannot be computed
exactly, but only approximated by a number of numerical integra-
tions. Hence, different FTLE computation schemes (i.e., numerical
approximation methods) can only be compared against each other,
but not against a non-approximative ground truth. To overcome
this, we make the following contributions:

• We present a general approach to create non-trivial vector
fields with a closed-form flow map using the concepts of mir-
roring and deformation (Section 3).

• We propose basic error measures to compare different numer-
ical FTLE computation schemes (Section 4.2). All error mea-
sures are based on closed-form flow maps and evaluate the
scalar FTLE values, as well as the resulting ridge structures.

• We introduce a set of 2D unsteady test vector fields with
closed-form flow maps, covering a set of crucial geometric
ridge effects, that occur with the evaluation of FTLE fields for
real-world flows (Section 4).

• The application of our error measures to these test vector
fields constitutes our benchmark. We conduct an extensive
parameter study for three FTLE schemes: classic FTLE [6],
FTLE with reseeding [4, 15], and Localized FTLE [10] (Sec-
tion 5).

2 RELATED WORK

In practical settings, FTLE has become a standard tool to observe
the separating behavior within unsteady flows. It has been used to
describe flow behavior on planetary surfaces [3, 14], the movement
of jelly fish [11, 26], and turbine separation analysis [21], to name
a few (see Peacock et al. [17] for further applications). To describe
FTLE in a formal way, we consider an unsteady vector field v(x, t).
Its flow map φ τ (x, t) = φ(x, t,τ) is defined as the location of a par-
ticle seeded at (x, t) after a path line integration of v over a time
interval τ . In other words, φ maps the start point of a path line inte-
gration to its end point. The computation of FTLE is based on the
spatial gradient of the flow map φ :

∇φ(x, t,τ) =
∂φ(x, t,τ)

∂x
. (1)

From this, we compute the values

µi = ln
√

λi(∇T ∇) , (2)



with ∇ = ∇φ and λi denoting the i-th eigenvalue of the symmetric
matrix ∇T ∇. We finally obtain the FTLE value as

FTLE(x, t,τ) =
1
τ

max{µ1,µ2} . (3)

All examined methods use the formulas (1)–(3) to compute the
FTLE value. The particular differences consist in how these meth-
ods approximate the flow map φ and its gradient ∇φ . In the follow-
ing, we discuss three common FTLE computation methods, which
will later be evaluated using our benchmark. At the end of this
Section, we give a short overview of further FTLE schemes.

2.1 Classic Method C-FTLE
The classic FTLE method [7] uses uniformly spaced particles to ap-
proximate the flow map: a path line integration is started from every
grid point, while the flow map gradient is computed using central
differences on the mapped points w.r.t. the original grid. Figure 1
(left) shows a conceptual sketch of this method. Obviously, the grid
resolution h is a crucial parameter for this scheme, since the flow
map gradient is approximated using adjacent grid points. Further-
more, the particles of adjacent grid nodes might diverge strongly
during integration, which may also lead to less accurate approxi-
mations of the local separation rate. As stated by Haller [7], this
method is designed to allow for qualitative statements about the
separation behavior in one cell rather than obtaining specifically ac-
curate values at the grid vertices. This leads to the assumption, that
higher sampling rates generally reduce deviations resulting from
the finite difference gradient approximation scheme. In our para-
meter study (Section 5), we examine the influence of the following
parameters:

• h - the size of a uniform grid cell in x, y, and z-direction, where
small values indicate a high sampling resolution. H

• τ - the length of the integration TAU

2.2 Reseeding Method R-FTLE
Since the problem of approximating the flow map gradient by finite
differences is well known, in practice, renormalization strategies
are applied during the FTLE computation. In general, these meth-
ods aim at a better local approximation of the flow map gradient
while maintaining the sampling resolution. In addition to starting
a tracer path line for each grid point, four auxiliary particles are
seeded in close vicinity to this point, as illustrated in Figure 1 (mid-
dle). They are used to approximate the flow map gradient. If the
distance between the tracer and its auxiliary particles exceeds a cer-
tain threshold, the auxiliary particles are reseeded close to the cur-
rent position of the particle from the grid point as described, e.g.,
by Nese et al. [15]. For every reseeding step, the current flow map
gradient has to be evaluated and accumulated using the previously
computed matrices. Note that in the 2D unsteady case R-FTLE re-
quires five times as many path line integrations as C-FTLE.

In addition to h and τ from above, we consider the following
parameters in our study for R-FTLE:

• ε1 - the distance between grid vertex and auxiliary particles
for both: initial seeding and reseeding HEPS1

• ε2 - the threshold that triggers reseeding (ε1 < ε2) HEPS2

For ε1 = h and ε2 = ∞ C-FTLE and R-FTLE yield the same re-
sult. Further, we consider the auxiliary points to be reseeded along
the main principle directions (x,y) of the original grid. Although
the mathematical background of such renormalization strategies has
been well defined (see, e.g., [15]), we are not aware of detailed in-
vestigations regarding the practical impact of this procedure to the
resulting FTLE fields.

2.3 Localized Method L-FTLE
In theory, the highest accuracy in terms of approximation of the
flow map gradient can be achieved by reseeding after every integra-
tion step. This concept leads to an approach named localized FTLE
(L-FTLE) proposed by Kasten et al. [10]. This method uses a single
path line for each grid point and evaluates the Jacobian (first order
derivative of the flow) after every integration step or with at a fixed
sampling distance d along the path line. The Jacobian matrices are
accumulated along the particle trajectory resulting in a close ap-
proximation of the flow map gradient around the grid vertex. This
procedure uses just as many path line integrations as C-FTLE, but
additionally requires the evaluation of J. This may be a potential
drawback due to extra computational effort or numerical errors in
the evaluation of derivatives, especially in applications using non-
uniform grids (e.g. as described by Lekien et al. [12]). Kasten et
al. further propose an acceleration technique exploiting the spatial
coherence of separation along path lines. In our analysis we will
focus on the first-mentioned approach without additional speed-up
optimizations. Figure 1 (right) illustrates the concept. In addition
to h and τ , we consider the following parameter in our study:

• d - fixed sampling distance of the Jacobian matrices are accu-
mulated along path line HSAMP

2.4 Further Extensions to FTLE Computation
The above-mentioned methods are explicitly analyzed and com-
pared as part of our study. Additionally, this Section will give an
overview of advances to the FTLE evaluation with respect to its
computational aspects. Adaptive methods subdivide the sampling
grid near interesting features such as FTLE ridges. A set of suitable
criteria has been presented by Sadlo and Peikert [20] and Lekien
et al. [12]. In order to speed up computation, Garth et al. [5] con-
sider the computation of FTLE fields of 3D time-dependent flows
on intersection planes. The approximation of FTLE deformation
tensors can also be extended to general unstructured grids as shown
by Lekien et al. [12]. Fuchs et al. [4] present an approach to in-
terpret integration time τ as a scale space parameter, while Sadlo
et al. [21] determine a minimal integration time in order to en-
sure material properties. Both methods allow for selecting suitable
intervals for τ considering the strength of the resulting ridge struc-
tures. With increasing integration time, the number and complexity
of the resulting FTLE structures increases as well. Thus, filtering
extracted ridge structures becomes important, as shown by Pobitzer
et al. [19]. Hierarchical methods take a different approach: they
consider shorter integral path segments rather than the complete
τ-domain to obtain approximations of FTLE. One such method is
presented by Hlawatsch et al. [9] replacing the costly particle in-
tegration by a less accurate but faster segment interpolation. This
allows shifting the computationally expensive integration into a pre-
processing phase, but comes at the cost of an inherent error in the
final scalar field due to the interpolation scheme. Recently, Leung
et al. [13] proposed an Eulerian approach to compute FTLE. Again,
the expensive integration within the field is substituted by solving a
system of non-linear equations for every grid point.

2.5 Comparing and Evaluating FTLE Methods
Considering the variety of methodologies, it is a non-trivial task
to compare and assess results of numerical methods for the com-
putation of FTLE: until now, there has been no ground truth data,
so only a comparison between approximate results is possible. Our
work fills this gap through the generation of non-trivial vector fields
with a closed-form representation of FTLE. There exists of course
a number of well-known benchmark data sets in the literature. Ex-
amples are the Double Gyre (Quad Gyre) flows proposed by Shad-
den [24], the forced pendulum (e.g. as used by Kent [11]), or the
Arnold-Beltrami-Childress (ABC) flows (see, e.g., [25]). Although
these flows are given analytically, neither their flow map nor the



Figure 1: Conceptual representation of three different FTLE computation schemes: C-FTLE, R-FTLE, and L-FTLE (from left to right).

flow map gradient are available in a closed form, which limits their
use as ground truth. In fact, the flow map and its gradient can only
be formulated in a closed form for very simple analytic flows. In
the work of Olcay et al. [16] a ridge-based comparison is presented
including an error scheme that is created by PIV measurements.
However, only the most prominent ridge structures have been con-
sidered by geometric approximation and were used for comparison.
Hlawatsch et al. [9] present a profound error order analysis between
their hierarchichal approach and classic FTLE considering a direct
comparison of the resulting ridge structures.

3 VECTOR FIELDS WITH CLOSED-FORM FLOW MAPS

Following the challenges outlined in the previous Section, we de-
scribe two novel approaches to construct non-trivial vector fields
with closed-form flow maps: domain deformation and mirroring.

3.1 Domain Deformation
Given is a time-dependent vector field v(x, t) in the spatial domain
D and the time domain T . The flow map of v is written as φv(x, t,τ).
Formulating this in space-time, we get

p̄(x, t) =
(

v(x, t)
1

)
, φ̄p̄(x, t,τ) =

(
φv(x, t,τ)

t + τ

)
.

We assume v of such a simple structure that we know φv in a closed
form (e.g., v is linear). From this, we want to construct a more
complex vector field w for which a closed-form flow map exists as
well. To get it, we define a differentiable map

α : D×T → D

which is a diffemorphism in its reduction to any t ∈ T . This means
that α is bijective and there is a unique inverse map β : D×T →D
with

β (α(x, t), t) = α(β (x, t), t) = x (4)

for any x ∈ D and t ∈ T . From this, we obtain the bijective maps
(as illustrated in Figure 2) in space-time:

ᾱ, β̄ : D×T → D×T

ᾱ(x, t) =
(

α(x, t)
t

)
, β̄ (x, t) =

(
β (x, t)

t

)
.

This gives for the gradients:

∇ᾱ =

(
∇α

∂α

∂ t
0...0 1

)
, ∇β̄ =

(
∇β

dβ

dt
0...0 1

)
where ∇α,∇β are the spatial gradients and ∂α

∂ t ,
∂β

∂ t are the time
derivatives. Then (4) gives

∇ᾱ(β̄ (x, t)) = ∇β̄
−1(x, t)

Figure 2: Creating a new vector field w by mapping the domain of v
by α.

and

∇α(β (x, t)) = ∇β
−1(x, t)

∂β

∂ t
(x, t) = −∇β (x, t) · ∂α

∂ t
(x, t).

Now we can construct w out of v,α,β by applying the domain de-
formation α to D. We start by describing w in its space-time for-

mulation q̄(x, t) =
(

w(x, t)
1

)
. We get

q̄(x, t) = ∇ᾱ(β̄ (x, t)) · p̄(β̄ (x, t))
= ∇β̄

−1(x, t) · p̄(β̄ (x, t)). (5)

This gives for w:

w(x, t) = (∇β )−1(x, t) ·
(

v(β (x, t), t)− dβ

dt
(x, t)

)
. (6)

Lemma 1 Let φw and φ̄q̄ be the flow maps of w and q̄ respectively.
They can be computed as

φ̄q̄(x, t,τ) = ᾱ(φ̄p̄(β̄ (x, t),τ)) (7)
φw(x, t,τ) = α(φv(β (x, t), t,τ), t + τ) (8)

The proof of Lemma 1 follows directly from applying elementary
differentiation rules to (7),(8) to τ which gives (5) and (6) respec-
tively. Lemma 1 has the following meaning: if the flow map of a
(simple) vector field is known in a closed form, and if the maps α ,
β are known in a closed form as well, the flow map of the (more
complex) flow field w is also known in a closed form.

3.2 Mirroring Concept
As already pointed out, in most cases it is not possible to define a
ground truth in a closed form. Thus, the main idea of this approach
is to construct a non-trivial vector field from an arbitrary input field,
which has a trivial flow map for a particular integration time: the
identity. We start with a complex vector field v(x, t) in the domain
D× [t0, t1], i.e., a closed form is not available. From this we con-
struct a new vector field w over the same domain as:

w(x, t) =
t1− t
t1− t0

v(x, t) − t− t0
t1− t0

v(x, t0 + t1− t) (9)



Figure 3: Steps to create a deformed ground truth field, where all
path lines end up at their originating position. In the ideal case the
FTLE value of every point equates to zero.

which is designed in such a way that its flow for an integration
over the time interval t1 − t0 is the identity (see Figure 3 for an
illustration).

Lemma 2 φw(x, t0, t1−t0) = x for any x∈D if the integration does
not leave D.

Proof: (9) gives w
(
x, t0+t1

2 +∆t
)
=−w

(
x, t0+t1

2 −∆t
)

for 0≤ ∆t ≤
t1−t0

2 . From this it follows φw
(
y, t0+t1

2 ,−τ
)
= φw

(
y, t0+t1

2 ,τ
)

for
any y ∈ D and 0 ≤ τ ≤ t1−t0

2 . Let y = φw
(
x, t0, t1−t0

2
)
. Then it

holds:

φw(x, t0, t1− t0) = φw

(
x, t0,

t1− t0
2

)
+φw

(
y,

t0 + t1
2

,
t1− t0

2

)
= y+φw

(
y,

t0 + t1
2

,
t1− t0

2

)
= x. (10)

Note that although φw(x, t0, t1−t0) = x, the value of φw(x, t0,τ) can
attain extreme values for 0 < τ < t1− t0. By construction path lines
of the resulting vector field are symmetrical around t0+t1

2 . To in-
crease complexity and create additional structural variance within
the resulting vector field, we can apply an additional domain defor-
mation. This deformation has to guarantee to end up at the initial
position (e.g., a 360◦ rotation over the integration domain [t0, t1]).
The resulting flow field is asymmetric, but still guaranteed to yield
the identity flow map.

4 BENCHMARK: DATA SETS AND ERROR MEASURES

In the analysis of real flows, one is mainly interested in the behavior
of ridges in the FTLE fields [6, 16, 20, 21]. Hence, our goal is
to design test vector fields that resemble crucial properties of such
structures. For real flows, the following effects can be observed for
FTLE ridges:

• FTLE ridges tend to be rather sharp and get sharper with in-
creasing integration time. Also, an increasing integration time
leads to less flux across the ridges [23].

• FTLE ridges can move towards each other and can in fact
come very close to each other with increasing integration
time. A good FTLE method should be able to cope with this
effect.

In practice, many ridge structures are of far more complex nature,
as their properties result from turbulent flow interaction and super-
position of such effects. Our benchmark is designed to provide a
reasonable abstraction from real flows, which is of course much
simpler but parametrizes and imitates relevant geometric ridge ef-
fects. Focusing on such properties allows for clear statements for
every FTLE method about the possible ridge extraction quality.

4.1 Data Sets
Considering the above mentioned effects and methods described in
Section 3, we propose three 2D time-dependent data sets for our
benchmark. Every data set is associated with a field-specific shape
parameter p0 which is used to create families of vector fields for
every proposed example field. We propose a benchmark consisting
of three data sets: P0

Deformed double gyre. We start with the well-known double
gyre presented in [24], which has a simple analytic form but no
closed-form flow map. Setting t0 = 0 and p0 as specifc parameter,
applying (9) at first gives a new field w with the identity flow map
for τ = p0−0. On top of this we apply a domain deformation with:

α(x, t) =

(
(x−1) · cos(γ)− (y−0.5) · sin(γ)+1
(x−1) · sin(γ)+(y−0.5) · cos(γ)+0.5

)
β (x, t) =

(
(x−1) · cos(−γ)− (y−0.5) · sin(−γ)+1
(x−1) · sin(−γ)+(y−0.5) · cos(−γ)+0.5

)
with γ = 2π

t−t0
p0−t0 creating a new field wgyre which still has the iden-

tity flow map for any integration from t0 to p0. Thus, during our
evaluation p0 is always set to the same value as τ . The superim-
posed deformation additionally rotates the vector field around the
origin, while the angle is 0 at t0 and 2π at t1. The resulting field
is illustrated in Figure 4. The additional deformation is intended to
decrease error reduction due to symmetry effects along the τ axis
as described in Section 3.2.

Figure 4: The top image shows path lines of the original field in the
x,τ plane and the bottom plot for the mirrored and deformed field.
Note that path lines of the latter field are non-symmetric and guaran-
teed to end up at their original position in the x,y plane.

Sine ridge data set. This 2D unsteady field describes a sine-
shaped ridge of arbitrary sharpness and is created by path lines di-
verging from the x = 0 axis. We start with a trivial field

vsine(x, t) =
(

x(x−1)(x+1)
1

)
with

φvsine(x, t,τ) =

(
x√

x2+(1−x2)e−2τ p0

y+ τ

)
as closed-form flow map.

Using the domain deformation with:

α(x, t) =
(

x+ sin(y)
y

)
, β (x, t) =

(
x− sin(y)

y

)
,

(6) gives the desired vector field w with the closed-form flow map
(8). In this case, the parameter p0 controls the rate of separation
over τ in terms of a scaling of the resulting vectors (or “sharpness”
of the ridge) as shown in Figure 5.



Figure 5: Sine ridge: Path line plot and resulting FTLE fields. The
last two images show the effect of increasing the integration time
and convergence towards the sine ridge structure (from left to right:
τ = 0.1,0.5,1.0).

Spiral focus ridge: This data set is designed to evaluate the
effect of approaching ridges. We start out with the trivial field

vspiral(x, t) =
(

0
x

)
and φvspiral(x, t,τ) =

(
x

y+ x · τ

)
.

As domain deformation we use

α(x, t) =
(

x · cos(γ)− y · sin(γ)
x · sin(γ)+ y · cos(γ)

)

β (x, t) =
(

x · cos(−γ)− y · sin(−γ)
x · sin(−γ)+ y · cos(−γ)

)
with γ = p0

1+|x2+y2| . The angle of the deformation depends on p0

and controls the winding number of the resulting ridge shaping a
Fermat’s spiral. The resulting ridges are created by a shear motion
along the deformed main axis as illustrated in Figure 6.

Figure 6: Spiral focus: Influence of the parameter p0 (Upper row:
path line plot, Bottom row: resulting FTLE field for p0 = 4,8,12).

4.2 Error Measures

In order to evaluate the results of our study we introduce two error
measures:

First, we define a field error measure which reflects the quality
of the actual FTLE values. This is achieved by directly comparing
given FTLE values against ground truth. We define the distance
between scalar fields as the L2 error GT_L2_N0

LGT
2 =

√
1
n

n

∑
k=1

(f(k)− f(k)gt )
2 ,

where f denotes the computed field and fgt denotes the given ground
truth (which equals zero when using the mirroring technique de-
scribed in Section 3.2).

Second, we introduce a ridge-based error. To measure the accu-
racy or suitability of a FTLE computation scheme for a subsequent
ridge extraction, we compare the ridges extracted from the FTLE
ground truth with those of the numerically obtained FTLE field.
For our comparison we use ridges from a high-resolution sampling
of the ground truth field (including ground truth partials). Note that
we discretized only the domain, while ground truth values, FTLE,
and its derivatives are independent of the sampling resolution.

In our study we used the height ridge definition by Eberly [2].
Thus, we indirectly consider the quality of first and second deriva-
tives of the computed FTLE fields. We refer to Peikert and Sadlo
[18] for a concise treatment regarding the extraction and its param-
eters; alternative methods are discussed in Schindler et al. [22].

The comparison of two sets of ridge lines is accomplished by
considering the respective point sets s1 and sgt and evaluating a
suitable geometric distance:

Given two point sets as sample locations on a ridge, we compute
their Hausdorff distance [1] RE_HAUSD_D12

dH(s1,sgt) = max
{

dh(s1,sgt),dh(sgt ,s1)
}

with the one-directional distance RE_HAUSD_D1

d1(s1,sgt) = sup
{

dh(x,s1)|x ∈ sgt
}
. (11)

For our results presented in Section 5 we used the 1-sided distance
d1 from the ground truth to the extracted ridge. This way we ex-
plicitly penalize gaps in the extracted ridge structures, but poten-
tially accept lower error values if the extraction result contains out-
liers (e.g., due to numerical noise or discontinuities in the resulting
derivative fields). In addition to those error measures we measured
the required computation time for every method. Although, timings
heavily depend on computational resources and efficient implemen-
tation, they become of special interest when optimizing the perfor-
mance of specific methods or evaluating the qualitative impact of
speed-up techniques mentioned in Section 2.4. TIMING
Besides method-specific parameters and timings we considered the
differences between a direct evaluation of the analytic equations
and prior resampling of the vector fields (analytic and discrete set-
ting). Note that we also used closed formulas for evaluating first
order derivatives in the analytic setting. FLAG

5 BENCHMARK RESULTS

In this Section we present our evaluation study comparing all meth-
ods and measures on the proposed vector fields. In our study we
focused on the examination of the following aspects of the FTLE
computation: Behavior with increasing resolutions (H), integration
times (TAU), field complexity (P0), differences between analytical
and discrete computations (FLAG) and a relative comparison be-
tween the considered methods (C−FT LE,L−FT LE,R−FT LE).
Our computations have been parallelized using eight QuadCore
CPUs with 2,7GHz and 6GB RAM each. Overall, we computed
approximately 28,400 FTLE fields on varying resolution (502 up
to 2,0002 pixels) in about 4,200 hours pure computation time. All
FTLE computations were done using the Amira1 framework, with
CPU implementations of classic FTLE and FTLE with reseeding.
For the localized FTLE we used the original implementation by
Kasten et al. [10]. After computing the FTLE field we obtained a
set of measures for each field, such as computation time (T IMING),
FTLE field error as L2 norm (GT _L2_N0) from eq. 11, ridge-based
error (RE_HAUSD_D1) by eq. 11, as described in Section 4.2. The
computation of the analytical ground truth fields was done using
the Maple computer algebra system. The respective scripts are in-
cluded in the accompanying material.

1www.amira.com



Figure 7: Ridge extraction samples for C-FTLE on the sine ridge (top) and spiral focus (bottom) test field. Yellow ridges have been extracted
from the ground truth (GT) fields at the highest resolution available. The leftmost image shows the ridge error plots of Figure 10 and 12.

5.1 Deformed double gyre
To analyze the properties of the vector field constructed by the
methods described in Section 3.2 we correlated the integration time
TAU and the resolution H and plotted it against the L2 norm error in
a sampling subspace (shown in Figure 8). The resulting error sur-
faces are apparently smooth, indicating that the error is not dom-
inated by numerical artifacts but rather reflects method-inherent
properties. Looking at the sampled subspace, R-FTLE and L-FTLE
show a similar behavior, as with increasing sampling resolution and
small τ the resulting error is reduced. In this setting, C-FTLE per-
forms better than the other methods, but the field error increases
with higher TAU and high resolutions.

If a smaller subspace of the sampling space is considered, C-
FTLE and R-FTLE show the same error behavior, which is consis-
tent with the computation methodology, as after an EPS2 renormal-
ization is triggered (for TAU ∈ [8,11]).

Figure 8: Double gyre deformed: Plots for the field error in local
color scale. The top picture shows the resulting field error in depen-
dence of resolution H and integration time TAU .

A detailed plot of the method-specific parameters of L-FTLE and
R-FTLE against the GT _L2_N0 error in Figure 9 shows a clear

correlation between these parameters and the resulting error to the
ground truth. Both graphs indicate suitable settings for both param-
eters for this field type and emphasize that choosing correct param-
eter ranges is crucial to obtain reliable flow map gradient approxi-
mations.

Figure 9: Double gyre deformed: Influence of the reseeding sam-
pling distance HSAMP and reseeding trigger distance EPS2 on the
resulting field errors.

5.2 Sine Ridge
For the sine ridge we plotted the ridge error against integration time
and resolution, while color coding represents the 1-sided Hausdorff
distance from Equation 11. Due to the point-based discrete com-
parison the resulting error field is not necessarily smooth anymore
as shown in Figure 10. All methods give better results with increas-
ing sampling resolution, while C-FTLE performs better on lower
resolutions. R-FTLE and L-FTLE give better results on high res-
olutions and long integration times, while the average field error
is less dependent of H. Figure 10 also shows a direct compari-
son between the results obtained for vector fields discretized before
evaluation and using a purely analytical description for the field and
its derivatives. Except additional computation time due to deriva-
tive approximations, for the considered settings the error behavior
remains similar in both cases.

5.3 Spiral Focus
Our last example represents the most elaborate FTLE field in our
study (see Figure 6) in terms the computation time, approximation
of derivatives and ridge complexity. Again, we plotted relative res-
olution against integration time and evaluated the resulting ridge



(a) Sine ridge:C-FTLE shows increasing field quality with higher
resolution, while ridge quality decreases with higher TAU . Especially
R-FTLE is less affected by TAU .

(b) Spiral focus:Comparison for resolution H. L-FTLE performs
worse for long integration times, due to complex derivatives of the
spiral focus example.

Figure 11: Averaged curves for both error measures among all samples. Thick lines indicates the mean values obtained by all samples, while
the transparent area shows the range of values. Note, that smaller relative resolution H values denote higher sampling densities.

Figure 10: Sine ridge: H plotted against TAU , while color encodes
the resulting ridge error for analytic and discrete field evaluation. C-
FTLE performs better on lower resolutions, while the main character-
istic is similar for all methods.

error shown in Figure 12. Although similar error characteristics as
in the previous example becomes apparent, especially the localized
method performs worse. The reason for this are the more com-
plex derivatives of the FTLE field, while L-FTLE relies on frequent
evaluation and accumulation of those. This becomes problematic
for longer integration times (compare Figure 11b for τ = 10 and
τ = 20). (Additional figures are provided with the accompanying
materials for this paper.)

5.4 Benchmark Summary
In summary, classic FTLE (C-FTLE) performed well for our test
cases for shorter integration times, has no additional parameters
and is well suited to obtain overviews about separating structures.
However, it only offers an inaccurate approximation of the flow
map gradient, thus especially for longer integration times the FTLE
field-based error (GT _L2_N0) as well as the ridge-based error

Figure 12: Spiral focus: Resolution H plotted against TAU , color
coding the resulting ridge error. Especially L-FTLE performs worse
than in the sine ridge example in figure 10.

(RE_HAUSD_D1) grows, while the rate of this growth depends on
the properties of the underlying field (Figure 11). We found that
just increasing the resolution shows only slow convergence against
an exact solution for the given ground truth examples (Figure 8).
In comparison the localized FTLE (L-FTLE) requires an additional
parameter (HSAMP) during computation and a reliable approxima-
tion of local first order derivatives. We showed in our examples,
that for suitable parameter settings (see Figure 9) and reasonable
estimation of derivatives, L-FTLE performs better than C-FTLE,
especially for long integration times and high resolutions, as shown
in Figure 11. This is especially important if exact spatial FTLE
ridges for high τ values are required. FTLE with reseeding (R-
FTLE) represents a trade-off between both above-mentioned meth-
ods with respect to our proposed error measures. Main drawbacks
are the higher computational effort and the additional parameters
(EPS1,EPS2).

6 CONCLUSIONS

We presented a benchmark framework to evaluate FTLE compu-
tations and provided an detailed evaluation study for three se-
lected FTLE Methods: classic FTLE, FTLE with renormaliza-
tion/reseeding and localized FTLE in Section 2. This includes the



Figure 13: Double gyre deformed: FTLE field error plots for TAU = 10,H = 0.01 and P0 = 10. Note that the field error has a clear peak at the
original ridge location, thus largest FTLE approximation deviations occur close to regions of high separation.

mirroring and deformation concept to evaluate FTLE field devia-
tions on arbitrary vector fields and a general approach to construct
non-trivial vector fields with closed-form flow maps. This allows
for the exact computation of ground truth for FTLE and FTLE
ridges. Based on this, we conducted extensive comparison of three
standard FTLE methods using our benchmarking framework.

Using the above-mentioned techniques, we provide a common
basis for future FTLE methods, their parameters and extensions, to
be compared, tested, and evaluated against each other. This allows
detailed analysis, even for fundamentally different approaches,
such as Hierarchical FTLE [9] or Eulerian approaches [13], in terms
of error behavior, optimal parameter settings, and practical applica-
bility. Furthermore, the proposed benchmark workflow can be used
to optimize and/or debug existing FTLE modules, determine and
quantify the impact of novel extensions or filtering modules. In our
study we mainly concentrated on 2D time-dependent flows. The
proposed general method for constructing benchmarks can be sim-
ilarly applied to 3D time-dependent data.
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