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Abstract
We present an approach to extract and visualize vortex structures in uncertain vector fields. For this, we generalize
the concepts of the most common vortex detectors to uncertain vector fields, namely the λ2-criterion, Q-criterion,
and the concept of parallel vectors at the example of the method by Sujudi and Haimes. All these methods base on
the computation of derivatives of the uncertain vector field which are uncertain fields as well. Since they generally
cannot be computed in a closed form, we provide a Monte Carlo algorithm to compute the respective probability
distributions. Based on this, uncertain versions of vortex regions and core structures are introduced. We present
results of our approach on three real world data sets in order to give a proof of concept.

1. Introduction

The analysis of flow fields plays a vital role in many compu-
tational fluid dynamics (CFD) applications. As the amount
and complexity of CFD data rapidly increases, this raises a
need for an efficient and a reliable analysis. Additionally,
for many applications not only the amount and complex-
ity is increasing, but also the possibilities how data can be
acquired and analyzed for one specific case. For instance,
because today’s computational power, it has become feasi-
ble to perform multiple simulation runs with slightly vary-
ing parameters resulting in a series of similar vector fields.
The same problem holds for experimental data acquisition
with measurement errors. This introduces the need to man-
age and process multiple flow fields describing one and the
same phenomenon. Each field has an associated reliability
which can be captured by the concept of uncertainty. In the
certain setting the extraction of flow features is a complex
task, but becomes even more challenging for such uncertain
flow data. The extraction of specific features such as topol-
ogy of uncertain vector data has been discussed by Otto et
al. [OGHT10] and Schneider et al. [SFRS11]. What is still
missing is the treatment of vortices in uncertain flow fields.

Following this, we present a method to define a uniform
description of common vortex methodologies for uncertain
vector fields acquired as a series of flow fields for the same
phenomenon. Having this, we can directly compare resulting
structures, distributions, and deviations, as well as certainty
at which vortex structures are created or appear in specific
locations. For our analysis of uncertain fields we will fo-
cus on two main directions: the extraction of vortex cores

by means of well defined geometric line structures and the
definition of vortex regions which resemble whole areas of
distinct rotational behavior. The main contributions of this
paper are:

• We generalize the definition of vortex regions and cores
to uncertain vector fields.

• We propose a different model of uncertainty that uses cor-
relations to the probability distributions of the neighbor-
hood. This uncertainty model enables us to compute all
vortex extractors by the same Monte Carlo method.

• Finally, we test our method for some real-world data sets
and discuss the results.

2. Related work

As mentioned in the previous section, vortex-related features
play a central role in the analysis of vector fields. This re-
flects the amount of literature and approaches existing on
this subject. Among CFD applications a set of common stan-
dard tools has been settled. Those methods can be grouped
into two main categories:

• Region-based vortex criteria that define a characteristic
scalar field in which closed subsets define distinct re-
gions of vortical behavior. Regarding this, there are the Q-
criterion defined by Hunt et al. [HWM88] and the λ2 cri-
terion by Hussian et al. [JH95]. In addition to this, physi-
cally inspired definitions are given by analyzing vorticity
magnitude (e.g. described by Zabusky et al. [ZBP∗91]),
and helicity of the underlying flow field (e.g. as done by
Degani et al [DLS90]).
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• Vortex-core-line-based approaches define binary criteria
that describe the location of centers of vortical fluid mo-
tion. Such approaches are the Parallel Vectors (PV) op-
erator described by Roth and Peikert [RP98], the Sujudi
and Haimes vortex core extractor [SH95], and the lo-
cal pressure minima method by Banks et al. [BS94]. In
fact, most of the methods falling into the second cate-
gory can be generalized by a Parallel Vectors descrip-
tion as shown by Peikert et al. [PR99]. Among those ap-
proaches Weinkauf et al. [WSTH07] presented a detec-
tor for centers of swirling particle motion, and Sahner
et al. [SWH05] a Galilean invariant detection method-
ology. A scale-space approach is presented by Bauer et
al. [BP02].

One subclass of those approaches deals with tracking core
line features in order to describe the temporal evolution of
vortex structures over time, e.g. Theisel et al. [TSW∗05]. As
mentioning all existing approaches on this topic is out of the
scope of the paper, we refer to the overview about core line
based methods is presented by Jiang et al. [JMT04].

However, we focus on uncertain flow data given as a fam-
ily of similar vector fields. In general the notion of uncer-
tainty has become increasingly popular among many com-
putational applications. The concept of uncertainty itself is
already widely spread in the fields of data visualization,
(e.g. for the topic of isosurfaces [DKLP02, GR02, RLBS03,
Bro04]) and information visualization (e.g. [SPB08]). An
approach for scalar fields that is methodically similar to this
work is presented in [PWH11]. They extract isosurfaces of
uncertain scalar fields by using correlated Gaussian distribu-
tions of scalar values. A general overview about uncertain
data analysis is presented by Griethe et al. [GS06]. More re-
cently it has been introduced into the field of flow analysis.
Here we can identify two subcategories taking different per-
spectives on the definition of uncertainty:

• Local approaches describe uncertainty as a feature that
can be evaluated at a point inside the vector field, with-
out considering its long-term integral behavior. Sander-
son et al. [SJK04] describe patterns of uncertainty using a
reaction-diffusion model, while Botchen et al. [BWE05]
introduce a texture-based visualization technique repre-
senting local reliabilities by cross advection and error dif-
fusion. The same authors used additional color schemes
to emphasize uncertainty [BWE06]. Another approach is
presented by Zuk et al. [ZDG∗08] using bidirectional vec-
tor fields to illustrate the impact of uncertainty.

• In contrast, global approaches propagate the informa-
tion how reliable a certain velocity information is within
the flow field. Such global approaches have been pre-
sented by Otto et al. for the 2D case [OGHT10], 3D
flow fields [OGT11b], and the extraction of special flow
features as closed orbits [OGT11a]. In addition to this
time-dependent Lagrangian features has been proposed by
Schneider et al. [SFRS11] and a glyph-based visualization
by Hlawatsch et al. [Hla1 ].

Considering the mentioned approaches, we already have a
set of methods to describe feature extraction in the uncertain
setting. However, we are not aware of an adequate approach
for vortex detection for such data.

3. Uncertain vector fields

In contrast to certain vector fields an uncertain vector field
does have multiple vectors or error measures defined at each
point in the spatial domain. This results in a distribution of
vectors at each location in an uncertain vector field. In Otto
et al. [OGHT10, OGT11b] a definition for a 2D and 3D un-
certain vector field is given by a 2n-dimensional (n∈ {2,3})
scalar field ρ(x ; v) that describes the transfer from every
location x ∈ D to each location v ∈ Rn. This field has the
following properties:

• ρ(x ; v)≥ 0,
•
∫

ρ(x ; v)dv = 1.

where ρ denotes the probability that at the location x the vec-
tor field has some value in the range v+ dv. For a bounded
domain the last condition is relaxed such that the integral can
be less than or equal to one.

In physics, many phenomena are modeled with Gaussian
distributions. Following this, we assume that ρ has the form

ρ(x ; v) = N (m(x),C(x)) (1)

=
1

2π
√

det(C)
e−

1
2 (v−m)T C−1(v−m)

where m ∈ Rn is the mean vector field and C ∈ Rn×n is the
covariance matrix field.

Technically, our input data are multiple flow data sets over
the same regular grid. At the grid point xi, j , we have the m
velocity vectors vi, j,k for k = 1, ...,m obtained from multiple
measurement or simulation. For them we compute the best
fitting Gaussian distribution

ρ(xi, j,v) = N (mi, j,Ci, j) (2)

where mi, j = 1
m ∑

m
k=1 vi, j,k and Ci, j = 1

m ∑
m
k=1(vi, j,k −

mi, j)(vi, j,k −mi, j)
T . Then (1) is obtained by applying a

piecewise bilinear interpolation of mi, j and Ci, j respectively.

In order to compute vortex structures, the usual way is to
compute derived fields from the velocity field which con-
tains its derivatives. In the uncertain case, the derived fields
are uncertain fields as well. To compute them, two problems
have to be solved:

1. Even if the original field has a Gaussian distribution, the
derived fields are not Gaussian. Moreover, the derived
fields generally do not have closed form solutions.

2. When computing the uncertain velocity gradient it has to
be considered that the distributions at adjacent grid points
are correlated.

c© 2012 The Author(s)
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a) b)

Figure 1: Uncertain velocity and acceleration at grid point (60,50) of the PIV data set using uncorrelated Gaussian distribu-
tions. a) sample vectors vi, j,k as red dots and marginal density distribution as red curves; uncorrelated Gaussian reconstruction
and marginal density distribution as green point cloud and curve; b) sampled acceleration and marginal distribution as red
point cloud and curves; Monte Carlo sampling of acceleration by using uncorrelated Gaussian at grid points as green point
cloud and curves: the red and green curves do not coincide.

We explain and illustrate both problems at an example: the
computation of the uncertain acceleration field. In the cer-
tain case, acceleration is given as a = Jv, where J is the Ja-
cobian matrix. In the uncertain case each component of J is
a 1D probability distribution function for which we assume a
Gaussian distribution. However, after the multiplication with
the uncertain vector field ( which is also a Gaussian distri-
bution), another kind of distribution function results. It is a
product distribution which is computable in a closed form
for only a few special cases [Cra34]. In fact, only for zero
means the product distribution is described by a modified
Bessel function of the second kind. In general, the uncertain
acceleration cannot be written in a closed form.

To illustrate this, we consider a part of the PIV data set
that will be fully introduced later in section 6.3. Here, it
is sufficient to mention that at each grid points 1024 ve-
locity vectors were measured, i.e., m = 1024, and that we
consider the grid point (i, j) = (60,50). Figure 1a consists
of 5 parts. The one in the middle shows the (end points of
the) vectors vi, j,k for i = 1, ..,1024 as red dots where the
median is moved to the image center. This red point cloud
already gives an impression of the distribution of vi, j,k. Us-
ing a binning technique, the marginal distributions can be
shown as red curves on the boundaries of Figure 1a (mid-
dle). Note that due to the rather low number of samples,
the red curves look non-smooth. Nevertheless, their gen-
eral shape can be observed. By applying (2) we have com-
puted the Gaussian distribution field at the grid point. We
visualize it by a Monte Carlo approach, i.e. by comput-
ing a large number (here 100,000) of green random sam-

ple points of the distribution as well as the marginal dis-
tributions as green curves. The image clearly shows that
a Gaussian distribution is indeed a suitable choice at the
considered grid point: the densities of the red and green
points are clearly correlated, and the red and green curves
are rather similar. The remaining 4 images in Figure 1a show
the same for the grid points (i−1, j),(i+1, j),(i, j−1), and
(i, j+ 1) respectively. Figure 1b shows the uncertain accel-
eration at (i, j) in the following way: for k = 1, ...,m, we
compute ai, j,k = Ji, j,kvi, j,k where the Jacobian is estimated

by central differences Ji, j,k =
(

vi+1, j,k−vi−1, j,k
2 dx ,

vi, j+1,k−vi, j−1,k
2 dy

)
and dx,dy are the grid resolutions. Then ai, j,k are drawn
as red dots in Figure 1b. By binning, the two red curves
show the marginal density distributions of ai, j,k. They clearly
show that their distributions are not Gaussian (problem 1
above). The green point cloud is produced by a Monte
Carlo approach in the following way: for h = 1, ...,100000,
we consider random sample vectors ṽi, j,h, ṽi−1, j,h, ṽi+1, j,h,
ṽi, j−1,h, ṽi, j+1,h obeying the Gaussian distributions at the
respective grid points. From them, we compute the ran-
dom acceleration vectors as ãi, j,h = J̃i, j,hṽi, j,h with J̃i, j,k =(

ṽi+1, j,k−ṽi−1, j,k
2 dx ,

ṽi, j+1,k−ṽi, j−1,k
2 dy

)
. Again, every ãi, j,h is shown

as a green dot, and the green curves show the marginal dis-
tribution of ãi, j,h. The green curves again indicate a non-
Gaussian distribution. Moreover, the red and green curves
do not coincide, meaning that the chosen model of comput-
ing the Jacobian is not appropriate (problem 2).

Our approach to overcome the problems 1 and 2 men-
tioned above is to use a Monte Carlo approach together with

c© 2012 The Author(s)
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a) b)

Figure 2: Uncertain velocity and acceleration at grid point (60,50) of the PIV data set using correlated Gaussian distributions.
a) sample vectors vi, j,k as red dots and marginal density distribution as red curves; correlated Gaussian reconstruction and
marginal density distribution as blue point cloud and curve; b) sampled acceleration and marginal distribution as red point
cloud and curves; Monte Carlo sampling of acceleration by using correlated Gaussian at grid points as blue point cloud and
curves: the red and blue curves coincide.

a correlated estimation of the Jacobian. Monte Carlo meth-
ods [KW86] are a standard approach to solve probabilis-
tic problems. For considering the correlation between adja-
cent grid points, we do a simultaneous Gaussian fitting at a
grid point and its neighbors. Instead of considering the n-
dimensional vectors vi, j,k, we consider the 5n-dimensional
vectors v̄i, j,k = (vi, j,k, vi−1, j,k, vi+1, j,k, vi, j−1,k, vi, j+1,k)

T

for k = 1, ...,m. For them, we apply a 5n-dimensional Gaus-
sian fitting

ρ(xi, j, v̄) = N (m̄i, j, C̄i, j) (3)

where m̄i, j is the 5n-dimensional median and C̄i, j is the
5n× 5n covariance matrix. Note that (3) contains both the
distributions of the velocity and Jacobian at (i, j).

Figure 2 illustrates the application of (3) to the same ex-
ample as in Figure 1. Figure 2a shows the vectors v̄i, j,k as
points distributed over the 5 adjacent grid points; the red
curves denote the marginal distributions. The Gaussian dis-
tribution is computed by (3) and is shown by the blue point
cloud and the blue curves. The coincidence of the red and
blue curves show the correctness of the assumption of Gaus-
sian distribution of v̄i, j,k. Figure 2b shows the uncertain ac-
celeration. The red point clouds and curves are identical to
Figure 1b. The blue point clouds and curves show the distri-
bution of the acceleration by using (3). Here we can clearly
see the coincidence of the red and blue curves, which means
that our correlated Gaussian model correctly reproduces the
uncertain acceleration (the green curves show the result of
the uncorrelated distribution from Figure 1b for compari-
son.)

So far, we have an approach which can correctly deal with
uncertain derived fields containing only the velocity and the
Jacobian. Fortunately, many common vortex concepts fall
into this category. We are now ready to discuss them in de-
tail.

4. Vortex detection in uncertain vector fields

At first, we want to define a vortex in an uncertain vector
field. Even in the certain case several definitions exist. In
general, it is described by a swirling motion of a fluid around
a core line [RC91, Por97]. In the uncertain case such a well
defined core line does not exist. Here we have to deal with
density distribution functions that express the movement of
particles inside the flow. For the movement of such parti-
cle density functions we can only compute probabilities that
particles of this distribution move around a core line. The
core line itself is not a distinct line structure. We can com-
pute such a line only for one sample of the uncertain vector
field. The overall result is a probability for the existence of a
vortex core in a small region.

Now we consider the results of vortex detectors. There
are two categories: line-based and region-based vortex cri-
teria. In the certain case vortex core line detectors gener-
ate a binary decision whether there is a core line at a cer-
tain location or not. Vortex region extractors compute scalar
fields that describe the strength of the vortical motion. Level
sets on this fields are defined representing vortical structures.
For the computation of vortical structures in uncertain vector
fields the types of resulting fields change. Computing vortex

c© 2012 The Author(s)
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Figure 3: (left) Scheme of the support regions for discrete
vortex core line computations in 3D space. The cell we want
to evaluate is colored black. (right) Scheme of the support
region of vortex region.

cores of such fields results in a probability for the occurrence
of a vortical motion at a given location. For uncertain vortex
region detectors the result is a 1D density distribution func-
tion describing the probabilities of values representing the
strength of vortical motion at every location.

We will adapt Q and λ2 criteria as examples for vortex re-
gions and the method proposed by Sujudi and Haimes using
the Parallel Vectors operator, as an examples for vortex cores
detectors, to uncertain vector fields.

4.1. Vortex cores

One famous method to compute vortex core lines is the Par-
allel Vectors operator [RP98]. The general approach is to
find two derived vector fields of the vector field v that are
parallel where a vortex core line exists. The Parallel Vectors
operator is able to express a lot of vortex core line crite-
ria [PR99]. We will consider the method proposed by Sujudi
and Haimes [SH95]. This method searches points of zero
curvature. It can be computed by using the Parallel Vectors
operator of the vector field v and its acceleration field a, be-
cause zero curvature exists where the acceleration field is
parallel to the original vector field a ‖ v.

We will apply this to Parallel Vectors operator to uncertain
vector fields. For this we have to compute the probability that
two uncertain vectors are parallel. A second condition of the
Parallel Vectors operator is that vortex cores only exist where
the Jacobian of the vector field has two imaginary Eigenval-
ues. In section 3 we have shown that this is not possible in a
closed form. Therefore, we use a Monte Carlo method that
calculates the probability of a vortex core line in a cell of
a uniform data grid. The support region for discrete vortex
core line computation is shown in Figure 3 (left). It contains
32 data points. Thus, every data point of the uncertain vector
field consists of a 96D mean vector and a 96× 96 dimen-
sional covariance matrix. We generate N samples of the un-
certain vector field. From these sample vectors we compute
the acceleration vectors as at the cell nodes. Vortex core lines
do not consist of isolated points where the vectors of both
fields are parallel, they are continuous lines that cross cells.
So we need to compute parallel vectors on the boundary of

each cell. As described by Roth and Peikert [RP98], we as-
sume linear interpolation on all triangles of the cell boundary
to get an analytic solution for the parallel vectors computa-
tion on the boundary. The probability for the occurrence of
a vortex core line inside the cell is the relative frequency of
the sampled Parallel Vectors operator on its boundary faces.
It is given by:

PSH =
1
N

N

∑
s=1

{
1 i f as ‖ vs ∧ #(λim(Js)) = 2
0 otherwise

(4)

with N as the number of samples. At least two faces have
to contain a vortex core that the cell is marked. The high-
dimensional Gaussian distribution described by equation (3)
is used to generate samples of the uncertain vector field in-
cluding vs. Using these samples Js and as are computed.

4.2. Vortex regions

Two of the most common vortex region detectors are the λ2
criterion [JH95] and the Q criterion [HWM88]. Both cri-
teria make use of the decomposition of the Jacobian J in
a symmetric part S = 1

2
(
J+JT )and an antisymmetric part

Ω = 1
2
(
J−JT ) .The λ2 criterion is defined by the second

largest Eigenvalue of the matrix S2 +Ω2 and the Q criterion
by 1

2
(
‖S‖2 +‖Ω‖2) .

To apply these criteria to uncertain vector fields we use a
Monte Carlo method that samples the uncertain vector field,
computes for each sample the Jacobian and the respective
criteria. In this case, we need a support region containing the
six direct neighbors of the node we want to evaluate and the
node itself (Figure 3(right)). Therefore, the uncertain vector
field is defined by 21D mean vectors and 21×21 covariance
matrices. This results in a 1D histogram of the distribution
of the criteria for each data point. The challenge is the visu-
alization. In the certain case vortical structures are enclosed
by level sets of the criteria. For the uncertain case we search
for a similar visualization. We can visualize the probability
that the Q criterion is larger and the λ2 criterion is smaller
than a certain threshold:

P(Q > t) =
1
N

N

∑
s=1

{
1 i f Qs > t
0 otherwise

(5)

P(λ2 < t) =
1
N

N

∑
s=1

{
1 i f λ2s < t
0 otherwise

(6)

with N as number of samples generated from the Gaussian
function described in equation (3), Qs and λ2s are the vortex
criteria based on these samples. The visualization shows the
probability that at a location with a probability P > 0 is en-
closed by a level set. If there is no uncertainty, our method
returns the same results as the approaches for vector fields
without uncertainty.

c© 2012 The Author(s)
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5. Implementation

We implemented our uncertain vortex framework in C# us-
ing the Task Parallel Library for parallelization. The input of
our method is a number of vector fields (measured or simu-
lated) describing the same flow phenomenon. These vector
fields are given on uniform grids. Using only one vector field
corresponds to the certain case. The results of our methods
are scalar fields that represent probabilities of vortex crite-
ria. All computations are done on a small local region and
are repeated multiple times. This makes our method easy to
parallelize using parallel for-loops.

For each local operation a support region is defined. For
these regions we generate multivariate Gaussian distribu-
tions of the input vectors. These distribution functions repre-
sent the uncertain vector field. Samples of such distribution
functions are created by a pseudo random generator. A uni-
formly distributed vector is generated (same dimension as
the mean vector of the Gaussian of the support region). To
this vector we apply a Box Muller filter that transforms it
into a Gaussian distribution. After that, we multiply it with
the Eigenvector matrix of the covariance matrix (Eigenvec-
tors are scaled by their Eigenvalues) and add the mean vec-
tor. Finally, we split the large vector into 3D vectors accord-
ing to the nodes of the support region.

With this sample vector set we can compute all vortex cri-
teria. We repeat the sampling and the vortex criteria compu-
tation a few hundred times. For region-based vortex criteria
we count the number of sample sets with a vortex criterion
larger or smaller than a given threshold. Concerning vortex
core lines we count the number of sample sets for which the
Parallel Vectors operator returns true. The final result is the
relative frequency of the positive events.

6. Results

To test our approach we apply our methods to two real-world
examples, a flow around a cylinder and a flow field from a
climate simulation. All results are generated with a laptop
containing an Intel i7 2820QM with 4 cores and HT and
16GB RAM. All data sets were provided by domain experts,
who gave positive feedback on the results.

6.1. Flow around a cylinder

In this example we have got four simulations of a flow
around a cylinder with different Reynolds-numbers. The
Reynolds numbers are between 290 and 320 based on the
free stream velocity and the diameter of the cylinder. The
flow should be laminar at these Reynolds numbers, but
should already show three-dimensional structures. There-
fore, only three-dimensional configurations are retained. The
time-dependent computations have been performed for 100
seconds physical time. Every 50th time step (every second
physical time) is stored for further analysis. The numerical

computations have been performed using the open-source
software package OpenFOAM 1.6 using finite volume dis-
cretization. Block-structured grids are applied using 645,120
hexahedral elements refined at the cylinder wall. A constant
inlet velocity boundary condition is considered at the in-
let, pressure outlet at the outlet and symmetry conditions
are chosen for the top, bottom and side boundaries. No-slip
boundary condition is employed on the cylinder wall. The
size of the domain is selected at least 20 times the cylinder
diameter to eliminate the reflection on the boundaries.

We resampled the data set to a uniform grid of the do-
main [−1,11]× [−3,3]× [−3,3] with a resolution of 200×
100× 100. Then we applied our techniques to this data set.
As a helpful orientation all of our result images show LIC of
the corresponding mean field in the background. At first we
started with the region-based techniques illustrated in Fig-
ure 4. Here, from left to right the time steps 98 to 100 are
shown. The first row gives an overview of the uncertainty
in the data set. In the second row we illustrate the results
of our uncertain λ2 vortex detector. These images show iso-
surfaces for P(λ2 < −0.003) == 0.05 and 0.95. The next
two rows show analog results of the uncertain Q criterion
for P(Q > 0.003). Similar to the certain setting probabilities
for Q and λ2 level sets are correlated. Also regions of strong
uncertainty correlate with these level sets. Results of the Par-
allel Vectors operator are shown in Figure 5 for the same
time steps. In the volume renderings and cross-sections we
see the probabilities for the occurrence of vortex cores. The
extracted volumes where the probability for vortex cores is
larger than zero are much smaller than the volumes extracted
by the region-based methods. High probabilities only appear
at the vortex cores behind the cylinder. The rest of the ex-
tracted structures has a rather small probability, but larger
volumes.

For time step 100 we make a more detailed analysis. We
show a comparison of the λ2 and Q criteria to the input fields
(shown as colored isolines) and the mean field (black iso-
lines) in Figure 6. Regions with high probability correspond
to the average level sets and regions with lower probability
capture almost all regions of the level sets of the input fields.
In Figure 7 we compare our vortex core extractor with the
vortex cores of the input fields and the mean vector field.
Here, also the level set with 10% probability corresponds to
the vortex cores of the mean vector field, and the cores of the
input fields are almost captured by regions with less proba-
bility. The overall computation time for λ2, Q and vortex
cores is 3 hour and 40 minutes for each time step, using 200
samples for each data point.

6.2. Ocean essemble simulation

The ocean simulation data is part of the CMIP5 runs (Cou-
pled Model Intercomparison Project). The model itself is the
MPI-OM ocean model which was developed by the Max-
Planck Institute for Meteorology in Hamburg. The simula-

c© 2012 The Author(s)
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

m) n) o)

Figure 4: Cylinder data set: (a,d,g,j,m) time step 98, (b,e,h,k,n) time step 99, (c,f,i,l,o) time step 100, (a,b,c) volume rendering
of the maximal standard deviation, (d,e,f) isosurfaces of the probability field P(λ2 < −0.003) with iso values 0.05 and 0.95,
(g,h,i) cross section of the probability field P(λ2 < −0.003) at z = 0 (j,k,l) isosurfaces of the probability field P(Q > 0.003)
with iso values 0.05 and 0.95, (m,n,o) cross section of the probability field P(Q > 0.003) at z = 0.

c© 2012 The Author(s)
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a) b) c)

d) e) f)
Figure 5: Cylinder data set: (a,d) time step 98, (b,e) time step 99, (c,f) time step 100, (a,b,c) volume rendering of the of the
vortex core probability field, (d,e,f) cross section of this field at z = 0.

Figure 7: Cylinder data set time step 100: (left) vortex cores of the input vector fields , (middle) isosurfaces of P(aρ ‖ ρ)≥ 0.01
(light blue) and 0.1 (blue), (right) isosuface 0.1 (blue) with vortex cores of the mean vector field (orange).

Figure 6: Cylinder data set time step 100: (top) cross section
of the probability field P(λ2 <−0.003) and (bottom) P(Q >
0.003) at z = 0 compared with isolines of the input data.

tion was carried out on a tri-polar curvilinear grid with a
horizontal resolution of 1.5 degree at 40 height levels. Prior
to the analysis, the data was resampled to a rectilinear grid.
The data set consists of just three scalar variables (uko, vke,
wo) that describe the ocean currents. The simulation was
performed using an ensemble run, and all together, 10 en-
sembles with the monthly mean of the currents were used.

Clearly visible in all results (see Figure 8) is the Antarc-
tic circumpolar current, as well as the equatorial currents in
the Pacific ocean and the gulf stream and the north Atlantic
current in the Atlantic ocean. Especially the circumpolar cur-
rent which is rich on vortices is detected very well using all
criteria. With a higher resolution simulation, probably also
smaller features, such as the Kuroshio in Japan, and the Ag-
ulhas current at the south-eastern tip of Africa can be de-
tected. The overall computation time for this data set is 1
hour and 16 minutes using 200 samples per grid point.

6.3. Measured PIV data set

Here, we have got 1024 measurements of a flow around
a backward-facing step using particle image velocimetry

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 8: CMIP5 data set: (top) showing P(λ2 < −0.003)
, (middle) P(Q > 0.003) , and (bottom) the probability of
vortex cores .

(PIV). From the measurements 1024 2D vector fields were
reconstructed which are the input of our methods. All vector
fields have the dimension 105×103. Figures 9a and b shows
two examples of the input vector fields.

We applied the region-based vortex criteria to this data set.
Figure 9c illustrates the probability that the Q criterion has
a larger isovalue than zero, while Figure 9d shows the prob-
ability of the λ2 criterion for isovalues smaller than zero.
For comparison Figure 9e shows the Q criterion and Fig-
ure 9d the λ2 criterion of the mean vector field. The prob-
ability fields contain only values less than 100%. Also, the
results of the mean vector fields do not always correlate with
the probability fields. That means there are some configu-
rations that locally differ completely from the average field.
For example, the λ2 criterion of the mean field has some
large positive values above the step, while the probability
computed by our method shows clearly that there are values
smaller than zero. The overall computation time for this data
set was 8 minutes and 20 seconds. We used 10,000 samples
for each data point.

a) b)

c) d)
0

1

e) f)
-0.001

0.001

Figure 9: Flow around a backward facing step: (a) and (b)
are two examples of reconstructed vector fields of the PIV
measurements; (c) P(Q > 0), (d) P(λ2 < 0), (e) Q criterion
of the mean vector field, (f) λ2 criterion of the mean vector
field.

7. Conclusion and future work

To the best of our knowledge, we presented the first ap-
proach that considers vortex structures of uncertain vector
fields. We generalized the concepts of the λ2 criterion, the
Q criterion, and the Parallel Vectors operator at the exam-
ples of the method proposed by Sujudi and Haimes to vec-
tor fields with uncertainty. For this, we introduced an un-
certainty model that incorporates local correlation between
vector data of neighboring discrete data points, instead of a
purely local vector density distribution function.

In the future we plan to implement our techniques using
the GPU to increase the performance. This is not straight
forward, because a lot of input fields have to be managed in
the memory of the GPU. Finding other uncertainty models
that have correlated distribution functions in the support re-
gion is another future challenge. We also want to extend our
approach to more vortex criteria and other grid types.
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