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Abstract In many cases, feature detection for flow visualization is structured in two
phases: first candidate identification, and afterwards filtering. With this paper, we
propose to use the directional information contained in theFTLE computation in
order to filter thefinite-time Lyapunov exponents(FTLE) field. Thereby we can fo-
cus on those separation structures that delineate flow compartments which develop
into different spacial locations, as compared to those thatseparate parallel flows of
different speed.
We provide a discussion of the underlying theory and our related considerations. We
derive a new filtering scheme and demonstrate its effect in the context of several se-
lected fluid flow cases, especially in comparison with unfiltered FTLE visualization.
Since previous work has provided insight with respect to thestudied flow patterns,
we are able to provide a discussion of the resulting visible separation structures.

1 Introduction

The concept of flow plays a central role in many fields. Classical application fields
are the automotive and aviation industry. The visualization of data gained from the
simulation or measurement of such processes is relevant forthe domain users, as vi-
sualization has the potential to ease the understanding of complex flow phenomena.

For a good overall understanding of the flow, the identification of areas with co-
herent flow behavior has proved to be useful. For steady flow, methods based on
vector field topology, as introduced to the visualization community by Helmann and
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Hesselink [16], provide an expressive segmentation of the flow. In the case of un-
steady flow, a comparable theory is not readily available, even though a number of
promising approaches and methods have been worked out in thepast years. We refer
to Pobitzer et al. [23] for an overview of topology-based methods for the visualiza-
tion of unsteady flow.

One of the promising directions leading to a semantic segmentation of unsteady
flow are so-calledLagrangianmethods. These methods focus on the motion of
massless particles in the flow. The most prominent methods are related tofinite-
time Lyapunov exponents(FTLE). Haller [12, 13] shows the relation of FTLE to
Lagrangian coherent structuresand its application to flow data.

Roughly speaking, the (maximum) FTLE gives the maximum separation rate for
nearby particles over a certain time-period. When interpreting separation structures
extracted from the FTLE field, such as ridges, this concept ofseparation, has to be
kept in mind: Apart from the separation due to differences inflow directions, FTLE
will also detect separation due to differences in flow magnitude. We illustrate this
with a simple thought experiment:

We consider two particles that travel on straight parallel lines with constant ve-
locity, but the one velocity being twice the other velocity.At a certain time, these
particles have a certain distance from each other. The distance between the particles
increases monotonically (due to the different particle velocities), but their paths re-
main parallel, nonetheless, leading the particles into thesame area, eventually (but
at different times). Fig. 1 illustrates this situation.

This causes, for example, that a shear layer is a region with high FTLE values.
More generally, regions of particles with parallel path butdifferent speeds will show
this behavior. A separation concept that is not sensitive tosuch differences in speed
would therefore define particles as “staying close” if theirpaths stay nearby. This
concept of vicinity is calledPoincaŕe or orbital stability. Formally, a path line is
Poincaŕe if for any givenε > 0, there is aδ > 0 such that a particle with starting
distancedelta to the path line stays in theε-tube around it. For further details we
refer to Jordan and Smith [18]. Although well known in theory, the definition of
Poincaŕe stability does not provide an intuitive quantification of distance (since it
would require to compare every single point on one path to allpoints on the other
path).

From the above mentioned thought experiment we infer that separation resulting
from differences in the velocity magnitude, occurs along the lines, i.e., in direction
of the flow vector, while separations due to differences in flow direction will occur
at an angle to the flow direction. The analysis of the deformation gradient tensor
builds on the assumption of a linear mapping between the difference of the particle
positions before and after advection by the flow and assumes hence that the distance
between particles is locally describable by straight lines[21]. Hence, our consider-
ations are valid for arbitrary path lines, as long as the general assumptions for the
FTLE analysis are fulfilled.

The direction of the main separation can be found by analyzing the gradient
of the flow map(in a more general setting referred to as thedeformation gradient
tensor[21]). For this purpose we use thesingular value decomposition(SVD). We
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Fig. 1 Two particles traveling along straight parallel lines at different speeds: we see that the
particles separate in the direction of the movement, but their paths are at a fixed distance, and will
hence traverse the same regions.

show in section 3 that our approach is directly derived from the geometric approach
to FTLE provided by Haller [12]. The examination of the anglebetween this main
separation direction and direction of the path line gives usa measure for the spatial
separation that is represented by the respective FTLE values. Filtering the FTLE
field with this measure then yields the separation structures representing a separation
inspired by the Poincaré stability. One needs to be aware of this different stability
– and hence, separation – concept, and assess its meaningfulness in the case under
investigation.

Accordingly, the main contribution of this paper is a new filter, to be used as
a filtering step after the computation of FTLE values in unsteady flow fields, that
allows to focus on those regions within the flow that lead to spatial separation.

The remainder of this paper is structured as follows: First we discuss related
work. Then we introduce our proposed filtering approach, deriving it from the
known theory. In the subsequent section we present results from analyzing several
flow cases applying our filtering to four simple analytical examples, the well-known
“double gyre” example by Shadden et al. [27] and a data set produced from simu-
lation and demonstrate what results we can achieve. We then discuss computational
aspects of the estimation of the deformation gradient tensor and the extraction of the
main separation direction. Finally we discuss results and point out future work.

2 Related Work

The visualization of flow is an active research field. Topological methods were
first introduced to the scientific visualization community by Helman and Hes-
selink [16, 17] for both 2D and 3D steady flow fields, under the notation ofvector
field topology(VFT). Globus et al. [9] showed the practical relevance of VFT for
computational fluid dynamics data. For a detailed survey of VFT for two and three
dimensions we refer to Asimov’s tutorial [1].

From the theoretical point of view, the applicability of VFTfor unsteady flow
has been questioned, among others, by Perry and Chong [22]. They conclude that
classical VFT is only applicable to nearly steady fields. Later Shadden [27] and
Wiebel et al. [31] showed this failure of VFT by examples. Very recently, Fuchs
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et al. [6] proposed an extended critical point concept whichallows them to apply
vector field topology in the case of unsteady flow.

Theisel et al. [29] introduce flow topology based on path lines. Path lines are
the paths of massless particles, that are advected by the flow. Therefore, they are
inherently well suited to gain an understanding of unsteadyflows.

The seminal paper of Haller [12] introduces FTLE to the analysis of flow fields.
The concept ofLagrangian coherent structures(LCS) is discussed and its connec-
tion to FTLE is revealed. LCS are – to a certain degree – the unsteady analogon of
separatrices in VFT. In a follow-up paper [13], Haller showed that LCS correspond
to ridges of the FTLE field. Sadlo et al. [25] and Shi et al. [28]compare LCS to VFT
and conclude that the information conveyed by FTLE is only partial as compared to
VFT, missing out on, for example, vortices.

The standard algorithm for the computation of the FTLE field involves the seed-
ing of a large number of particles in the flow and the calculation of their path lines
(flow map). This is computationally challenging since it requires to perform a high
precision integration for every particle. Sadlo and Peikert [24] use adaptive mesh re-
finement in their ridge extraction to avoid unnecessary evaluations of the flow map.
As shown by Shadden [27], LCS are “nearly” material lines. This can be exploited to
speed up the algorithm. Sadlo et al. [26] present a method to extract LCS using grid
advection exploiting the temporal coherency of LCS. Lipinski and Mohseni [20]
present a ridge tracking algorithm for FTLE fields that uses both temporal and spa-
tial coherency of LCS and give an error estimator for difference between advected
ridge and actual LCS. Both approaches give great speed-up compared to the stan-
dard algorithm.

As the computation of ridges usually involves the computation of higher-order
derivatives, the computation will be sensitive to noise. Furthermore, some types
of solver used to simulate the flow may introduce discontinuities in higher-order
derivatives, such asspectral element methods[30].

Garth et al. [7] avoids the computation of ridges using a volume rendering ap-
proach. The authors show as well that 3D FTLE might be approximated by 2D
FTLE in selected cross-sections. Furthermore, the authorspresent an efficient ap-
proximation to FTLE fields.

Kasten et al. [19] introduce the notation oflocalized FTLE(L-FTLE). The main
idea of this approach is to exchange the deformation gradient tensor with a matrix
that accumulates the separation behavior along a path line.Haller and Sapsis [14]
show that also the smallest FTLE is related to LCS, and can be used to compute the
attracting LCS from forward standard FTLE (and vice versa).This makes comput-
ing both forward and backward FTLE obsolete and, hence, saves costly computa-
tions.

To the best of our knowledge, no attempts have been made yet touse the direc-
tional information inherent to the definition of FTLE in visualization.
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3 The filtering scheme

In the following, we show how the main separation direction can be computed from
the directional information inherent to the definition of FTLE and can be easily
derived from it.

Definition of FTLE and its geometric interpretation: The concept offinite-time
Lyaponov exponents(FTLE) is an adaption of the concept of the classical Lyapunov
exponents to the situation of a vector field which is defined over finite time only.
Those fields are of practical relevance since both simulations and measurements of
unsteady flow will typically yield this type of fields. Roughly speaking, the FTLE is
the maximum deformation of a small neighborhood advected bythe flow over a cer-
tain time-interval. This maximum deformation can be computed from the maximum
eigenvalue of the (right) Cauchy-Green tensor [21, 12].

In the original paper [12], Haller gives an alternative, geometric reasoning to
motivate the interpretation of the FTLE field, which yields the same formula as the
standard formulation. We will use this reasoning as a starting point for our own
considerations: Letv be a time-dependent vector field and

ϕT
t0 (x0) = x(T) (1)

the solution of the initial value problem

ẋ(t) = v(x(t), t) (2)

x(t0) = x0 (3)

evaluated att = T. Hence, the difference in position between two particles that are
seeded at a small distanceδx at timet0 at timet = T is given by

ϕT
t0 (x0+δx)−ϕT

t0(x0) (4)

Now, we apply a Taylor series expansion and get

ϕT
t0 (x0+δx)−ϕT

t0(x0) = ϕT
t0 (x0)+∇ϕT

t0(x)δx+R1−ϕT
t0(x0) (5)

with R1 being an error term with||R1|| ∈O(||δx||2). Hence, in a small sphere around
x0 we have the following approximation

ϕT
t0 (x0+δx)−ϕT

t0(x0)≈ ∇ϕT
t0 (x0)δx (6)

The gradient of the flow map is a linear operator. The maximal stretching of aδ -
sphere aroundx0 is therefore

max
||δx||≤δ

(

||∇ϕT
t0(x0)δx||

||δx||

)

= max
||δx||=1

(

||∇ϕT
t0 (x0)δx||

)

= ||∇ϕT
t0 (x0)||op (7)
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|| · ||op being the operator norm wrt. the usual Euclidian norm [10]. Assuming expo-
nential growth and scaling by the integration length we get

FTLE(x0) =
1

|T − t0|
ln
(

||∇ϕT
t0(x0)||op

)

(8)

The equivalence of this formulation to the standard formulafound in most papers is
easy to check using basic properties of the operator norm [10, 12].

We see that the impact of the gradient of the flow map tensor on the unit sphere is
the crucial aspect in the analysis of local separation usingFTLE. Thesingular value
decomposition(SVD) is a useful tool to examine this action on the unit sphere. It is
well known that a linear mapping transforms the unit sphere into an ellipsoid. The
SVD gives us the opportunity to compute the main axes of this ellipsoid explicitly.
More generally, the SVD of any linear mappingA is its unique representation as

A=U ·diag0(σ1, . . . ,σr ,0, . . . ,0) ·V
∗ (9)

whereU andV are orthogonal matrices,r the rank of the matrixA, anddiag0 a
block-diagonal matrix [10]. Additionally, the relation

σ1 ≥ σ2 ≥ . . .≥ σr > 0 (10)

holds. The columns of the matrixU are in the direction of the axes of the ellipsoid
which the unit sphere is mapped to. The valuesσi are the lengths of its main axes
andσ1 = ||A||op. Fig. 2(a) illustrates this for the linear map given by1

4

(

1 3
4 2

)

. We
see that using the SVD to gain directional information aboutthe local separation is
a straight-forward extension of the original considerations of Haller.

It is worthwhile noticing that an eigenvalue decompositionof the Cauchy-Green
tensor used in the standard presentation of FTLE will yield the columns ofV and not
U . Unless the deformation is rotation free, these vectors will not coincide. However,
the columns inV are mapped onto the columns ofU . These two different sets of
axes are known as theprincipal spatialandprincipal material strains, respectively.
The principal material strains provide the information on the shape of the ellipse
resulting from the advection of the unit sphereS 2 by the flow. Therefore, the use
of the principal material strains to gain the directional information on the FTLE
field is a straight-forward extension of the geometric approach to FTLE provided by
Haller in its original paper [12]. For a thorough discussionof straining we refer to
Mase [21] and Hayes [15].

Comparing the separation direction to the direction of the path line: Given the
path lineγ started inx0 at t0 and integrated tot = T the direction of the path line at
any instantt is given byγ̇(t) = v(γ(t), t) and the corresponding separation direction
U−1(t) (i.e, the first column ofU) is computed from∇ϕ t

t0(x0). Hence, we can use

1
T − t0

∫ T

t0

∣

∣

∣

∣

〈

U−1(t),
v(γ(t), t)

||v(γ(t), t)||

〉∣

∣

∣

∣

dt (11)



Filtering of FTLE for Visualizing Spatial Separation in Unsteady 3D Flow 7

as a measure for the directional difference between separation and path line starting
in (x0, t0). Notice that perfect alignment of the separation directionand the flow
direction, i.e., the situation we want to filter out, will cause the integrand to be 1.
The absolute value has to be used since SVD may invert the orientation.

It is important to point out that this separation measure is not Galilean invariant,
since it depends on not Galilean invariant flow properties, as the velocity. Although
this is a important property in general flow analysis, many interesting situation with
fixed frame exist, e.g., fluid flow in a tube or air flow the insideof a room. Besides
this, we give an example of a separation situation where an Galilean invariant sep-
aration measure would fail to detect a separation easily deductible from the visual
inspection of the path lines (see Sec. 5).

In practical computations, eq. (11) needs to be discretized. We now assume to
haveN samples of the path line(γ(tn))N

n=1. Since the velocities could change rapidly
in direction without affecting the actual overall direction of the path line much,
γ(ti+1)− γ(ti) instead ofv(γ(ti+1), ti+1) can be used to robustify the measure. But
even with this robustification, the local position differences can deviate essentially
from the perceived overall direction, as we can see from Fig.2(b). We choose there-
fore γ(tN)− γ(ti) instead. As the approximation to the velocities, this expression is
less sensitive to fluctuation in the velocity along the path line. Additionally, it uses
our knowledge on where the particle will end up. In this way weestimate the overall
direction of the remaining trajectory. As a pleasant side effect, this estimation is less
sensitive wrt. the chosen sampling of the path line (see Sec.6). With this considera-
tions in mind, the discrete version of our measure for spatial separation read out as
following

1−
1

N−1

N−1

∑
i=1

∣

∣

∣

∣

〈

U−1(ti),
γ(tN)− γ(ti)

||γ(tN)− γ(ti)||

〉∣

∣

∣

∣

(12)

The main separation direction is the left-singular vector associated to the maxi-
mum singular value. The maximum singular value of the deformation gradient ten-
sor (or, equivalently, the maximum eigenvalue of the Cauchy-Green tensor) is, how-
ever, not unique by definition. In fact, all singular valuesσi might be the same, or
almost the same. Additionally, numerical errors may cause the two largest singular
values to be of the same order. In the original definition of FTLE this does not cre-
ate any problems since we are interested in the maximum only.In contrast, when
looking at the angle between the associated left-singular vector and the flow vec-
tor, this situation needs special consideration. From the SVD we know that those
vectors are orthogonal to each other. Hence, even if one of the vectors is almost
parallel to the flow, there is a direction of comparable distortion close to transversal
to the flow. Therefore, these points shall be considered as ifthe main separation
occurs at a large angle to the flow direction. The consideration of the third singular
value is not necessary since its left-singular vector lies in the same plane orthogonal
to the first left-singular vector as the left-singular vector associated to the second
singular value. To account for this, we introduce a scaling factor 1− σ2(ti)

σ1(ti)
for the

single summands in eq. (12), and our final definition of the separation measuresep
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(a) Illustration of the SVD (b) estimation of the “overall” direction of a path
line

Fig. 2 (a) Illustration of the geometric interpretation of singular values and left-singular vectors of
a linear map: The unit circle (red) and its image (blue) under a linear map. The black arrow corre-
spond to the left-singular vectors of the map, scaled by the respective singular values. (b) The figure
shows two the trajectories of two particles moving from left two right. Although local velocities
are very different we perceive them as having the same overall direction.

becomes

sep(x0) := 1−
1

N−1

N−1

∑
i=1

(

1−
σ2(ti)
σ1(ti)

)∣

∣

∣

∣

〈

U−1(ti),
γ(tN)− γ(ti)

||γ(tN)− γ(ti)||

〉∣

∣

∣

∣

(13)

The basic concept of the new filtering approach:
Bringing all this together, the proposed filter scheme can beset up by four com-

putational steps:

1. Computation of the deformation gradient tensor: This step is generally necessary
in all FTLE-related algorithms and involves the integration of path lines. We
save the particles position at some intermediate time instances as well in order to
compute the spatial separation. Further details are discussed in section 6.

2. Computation of the SVD of the deformation gradient tensor: This step leads both
to the FTLE field and the main separation directions.

3. Computation of the spatial separation of the flow using eq.(13).
4. Focusing on regions of large angles: This focusing can be achieved by threshold-

ing or by smooth brushing [5].

In a final step the filter is applied to the regions with high FTLE values. The above
described four steps comprise the main idea for our filteringapproach.

The filter: The actual filter is then constructed by applying (smooth) brushing to the
field sep. This brush maps values of the separation measuresepto the interval[0,1]
and describes the degree of beingin focus. This corresponds then to accordingly
modulated opacity values in our 3D view (cf. Doleisch and Hauser [5] for further
details). Hence, we can formulate our filter as
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f ilter = brush(sep) (14)

Eventually, this filter is then applied to the FLTE values. This focusing is done by
smooth brushing as well. The overall feature characterization function fsep with
range[0,1] (1 or near 1 for all locations in the flow which are considered to be part
of the searched separation structure), is therefore described by

fsep= brush(FTLE) · f ilter = brush(FTLE) ·brush(sep) (15)

The functionsepcan also be thought of as a degree of “featureness” for the feature
“spatial seperation”, or, asdegree of interest(DOI), using another terminology [5].

4 Case studies

In the following we present results from the extraction of separation structures from
different data sets. We demonstrate, how our filtering scheme helps to focus on
regions which actually separate flow compartments that moveinto different regions
of the flow.

5 Synthetic test data

First we investigate four small analytic examples where theseparation behavior is
directly deductible from the equations

v1(x,y) = (y,0)T (16)

v2(x,y) = (y,1)T (17)

v3(x,y) = ( x−1,1)T (18)

v4(x,y, t) = (x− t,1)T (19)

Notice that the fieldv2 arises from fieldv1 under the Galilean transformation
(x,y, t) 7→ (x,y+ t, t). The fieldv4, in turn, arises fromv3 using the Galilean trans-
formation(x,y, t) 7→ (x+ t,y, t). Hence, it is easy to deduce from the fieldsv1 and
v3 that the FTLE field is constant for all four fields. We investigate all four fields on
the upper half plane (i.e.,y≥ 0) and chooset0 = 0 andT = 1. All computations for
this example have been carried out using the MAPLE software package. The flow
map was computed using MAPLEs seventh-eighth order continuous Runge-Kutta
methoddverk78, for estimation of the deformation gradient tensor we used cen-
tral finite differences in the coordinate directions with spacingh= 0.01. For the first
two fields, our separation measuresepis in the range[0,0.02]. Hence, we expect no
spatial separation. Plotting the respective stream lines of the fields shows that our
filter handles both straight parallel lines (as described inthe thought experiment in



10 A. Pobitzer et al.

(a) linear sheer (b) transformed linear sheer

(c) vertical separation (d) transformed vertical separation

Fig. 3 Stream, resp. path, lines with the separation value as color field in the background. The
left column shows the original fields, the right a Galilean transformed field. For the equations we
refer to Sec. 5. The FTLE field is constant for all four cases. In (a) and (b) we infer from the
stream lines that no spatial separation is present and the separation values are as expected close
to zero (range[0,0.02]). In (c) and (d) the trajectories show clear spatial separationand again the
separation values coincide with the visually detected separation lines.

the introduction) as well as “locally parallel” trajectories. In contrast to the first two
fields, we expect to see a clear spatial separation in the remaining two. In the first
field this separation line is clearlyx= 1, in the second field the separation line will
be located left of the y-axis. Its location depends on the integration time and the
speed of the observer, since this determines if particles starting on the right side of
the y-axis have “enough time to turn”. Our separation measure shows the expected
behavior and stream, respectively path, lines plotted as a verification show the ex-
pected behavior at the separation line (see Fig. 3). The fieldv4 is an example where
a Galilean invariant measure for separation would not give aresponse: fixing the
integration time the observer speed determines where the separation line is located,
and it is easy to see that any parallel to the y-axis can be achieved. Since the re-
sponse of would have to be the same for all observer speeds, the field would have to
be constant.

5.1 Double gyre

We demonstrate our approach in context of a well-known analytic two-dimensional
example, known as the “double gyre”. This has been used by Shadden et al. to
demonstrate the non-usability of vector field topology for time-dependent flow [27],
amongst others. For the analytic definition of the field, we refer to the original paper
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(a) FTLE field (b) filtered FTLE field

Fig. 4 The FTLE field of the double gyre with parameterst0 = 0 andT = 15 (i.e., 1.5 periods).
(a) The unfiltered field (b) The filtered by setting FTLE values to 0 for sep(x) ≤ 0.5. Path lines
confirm that the persistent ridge is indeed due to spacial separation.

(a) FTLE field (b) filtered FTLE field

Fig. 5 (b) Schematic overview over the flow domain. (b) The FTLE field ofa simulation of a
bursting dam with parameterst0 = 62 andT = 68. The FTLE values greater than 0.25 are brushed
(smooth lower bound 0.2) . We see that we can identify expected structures around the obstacle.
The upper rear part of the flow domain shows large regions with high FTLE values, possibly
induced by shearing. (b) The FTLE filtered bysep(x)< 0.45 (smooth lower bound 0.4).

by Shadden et al. [27]. Using the same notation as in this paper, our parameter set is
A= 1/10,ω = π/5 andε = 1/4. The field is defined on[0,2]× [0,1]×R. All com-
putations for this example have been carried out using the MAPLE software pack-
age. The flow map was computed using MAPLEs seventh-eighth order continuous
Runge-Kutta methoddverk78, for estimation of the deformation gradient tensor
we used central finite differences in the coordinate directions with spacingh= 0.01.
Fig. 4(a) shows the FTLE field with parameterst0 = 0 andT = 15, i.e., 1.5 periods.
The filtering is emulated by setting the FTLE value of points with sep(x) ≤ 0.5 to
0. We se that the filtering produces sharper ridges as the original FTLE field, high-
lighting in particular one ridge associated with rather lowFTLE values. Seeding
path lines at both sides of the ridge shows that the highlighted ridge is due to the
desired type of separation, indeed.

5.2 A bursting dam

We apply our approach to the simulation of a bursting dam witha box-shaped obsta-
cle. The data set consists of 48 time steps, covering the timespan[2,120] (seconds)
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(a) FTLE field (b) filtered FTLE field

Fig. 6 The (a) FTLE and (b) filtered FTLE field in front (stream-wise) of the obstacle in top
view. The FTLE values greater than 0.25 are brushed (smooth lower bound 0.2), sep(x) < 0.45
(smooth lower bound 0.4) is used for the filtering in (b). We see that the spatial separation structure
stemming from particles passing on different sides of the obstacle is not clearly discernible in the
unfiltered field. While adjusting the brush would not give the desired structure either, our filtering
does.

non-uniformly. The burst occurs in the first time step. We expect a recirculation zone
in front (stream-wise) of the obstacle due to particles hitting the wall and recircu-
lating and others getting deviated to the left and right of the obstacle. Furthermore
we expect reflux on the backside of the obstacle due to pressure differences, causing
particles from the end of the box to be sucked towards the obstacle, some of them
ending up in front, some getting incorporated by the main flow. Right behind the
obstacle we expect to see recirculation. A schematic overview of the flow can be
found in Fig. 5(a). We calculated the FTLE field fort0 = 62 andT = 68, using the
optimal 4th order Runge-Kutta method (sometimes referred to as the “3/8-rule”).
For details we refer to Hairer et al. [11]. The usage of a even higher order integra-
tion method (which is not standard) was purely due to the factthe MAPLE software
package readily provides this method. The integration timewas found empirically
with the aim that not more that 15 percent of the particles seeded leave the flow
domain before the end of the integration time. Fig. 5(b) shows an overview over the
FTLE field. We filter the field brushing all points with asep-value greater or equal
0.45 (smooth lower bound 0.4). We will now investigate two regions in the flow
domain more closely: The region stream-wise in front of the obstacle and the upper
rear region.

In front of the obstacle: In front of the obstacle, we expect to detect a separation
structure upstream in front of the obstacle due to particlespassing on different sides
of the obstacle. We see that (Fig. 6(a)) this expected separation structure is not de-
tectable from the original field. Applying our separation filter allows us to focus
on this spatial separation, even though the corresponding FTLE values do not show
up prominently in the original field. We added path lines to both figures to confirm
that the intuitively expected separation structure indeedexists and coincides with
the structure found by the filtering with our separation measure.



Filtering of FTLE for Visualizing Spatial Separation in Unsteady 3D Flow 13

(a) FTLE field (b) filtered FTLE field

Fig. 7 A cross section of the (a) FTLE and (b) filtered FTLE field. The filtering used is the same
as in fig. 6. The ellipse (A) shows a region where the filter has a strong impact. We see that the
path lines are locally parallel and show little to no spatial separation. In contrast, we see that the
structure below the ellipse separates path lines moving from theback to the front (above) from does
moving in the opposite direction (below). In the same fashion, theellipse (B) indicates a structure
that separates particle coming from the back and passing over theobstacle, from those moving
back to the rear again. This structure is persistent under our proposed filter.

The upper rear region: In the overview in fig. 5(b) we see a large region with
high FTLE in the upper rear part of the flow domain. Applying our filtering reduces
the region to a surface separating particles moving from theback to the front (upper
part) from those leaving the flow domain (lower part). We seeded particles in a cross-
section in order to validate the result from the filtering. Wesee that the particles
in the region delineated by the ellipse (A) in fig. 7(b), show the expected locally
parallel pattern. The structure at approximately half height of the box captures the
boundary between the two essentially different particle behaviors described above.
The structure in ellipse (B) in fig. 7(b) separates particlesmoving from the back to
the front and passing over the obstacle from those invertingtheir motion direction
again. This separation is again the type our filter aims to focus on.

6 Computational Issues

Although the steps that are needed to compute the proposed filter are in theory rather
straight forward, the application to discrete data offers some challenges we want to
discuss. Namely, we are going to address

• the influence of the used sampling of the path line
• the computational cost of computing the FTLE field followingour suggestions

compared to the standard algorithm

The impact of the sampling: Our sampling of the path line at 1/2,3/4,7/8 and
the full integration time puts emphasis on the end of the pathlines. Visually, this is
intuitive, since we perceive path lines as parallel if theirends show this behavior.
We anticipate common “spatial fate”. Therefore will rathersmall direction changes
towards the end of the registered path lines intuitively be read as diverging behavior,
since we anticipate that the motion will continue in the samedirection.
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We computed the separation measure for some of the data sets,namely the time-
dependent ones, forN = 2,4,6,8,10 and compared the results point-wise, using the
N=25 as reference value. Table 1 shows the avarage relative error and the variance in
the computed fields. We choose to investigate the time-dependent data sets since this
is most relevant in practice since FTLE computations for steady fields are usually
avoided using vector field topology instead.

N = 2 4 6 8 10
v4 mean 1.2·10−3 6.13·10−4 3.23·10−6 1.64·10−5 3.5·10−5

variance 1.27·10−6 3.04·10−7 8.42·10−7 2.17·10−8 3.5·10−9

double gyre mean 0.2 0.1 0.07 0.4 0.1
variance 0.03 0.01 0.03 9.4·10−4 1.4·10−4

breaking dam mean 1.27·10−2 5.47·10−3 2.57·10−3 9.82·10−4 6.6·10−5

variance 1.13·10−5 2.4·10−7 5.36·10−8 7.7·10−9 l2.97·10−9

Table 1 Error Analysis of Sampling Density

FTLE as eigenvalues of the Cauchy-Green tensor vs. singularvalues of the
deformation gradient tensor: Our filtering needs, in addition to the FTLE field,
the left-singular vectors of the deformation gradient tensor. This is not a part of
the usual algorithm to compute FTLE. However, the computation of the deforma-
tion gradient tensor is. Therefore, we do an informal comparison of the expected
computational cost. The expensive parts of the computations the two methods to
derive the FTLE do not share, are the SVD and eigenvalue computation of the de-
formation gradient tensor and the Cauchy-Green tensor, respectively. Standard algo-
rithms for both tasks are based on the same transformation inthe iteration steps and
have therefore the same complexity order. The singular matrices are a by-product
of the computation. For details we refer to Gill et al. [8]. Hence, computing the
FTLE plus left-singular vectors will not be essentially slower than the usual com-
putation of FTLE from Cauchy-Green tensor. With the Maple implementations of
SVD and eigenvalue decomposition the ratio of the computation time using the
SVD to the time used with the standard formula is in the range[0.95,1.06], i.e.,
the SVD-based method is in the worst case 6% lower than the standard method
on the presented data sets. In SimVis we used the linear algebra library JAMA
(http://math.nist.gov/tnt/overview.html), which gives a ratio of
1.12 for the presented data set, i.e., a 12% computational overhead. It it worthwhile
noticing that our methods provides both the regular FTLE field plus the additional
information needed to perform the filtering at once. Hence, ridge extraction algo-
rithms may be applied as well, if wanted.
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7 Discussion and future work

We examine the results from analyzing several different flowscenarios with the here
proposed filtering scheme. We asses the filtered structures by seeding path lines in
the unfiltered field and comparing the result of our filtering scheme to the result
that we would expect from the path lines. In all cases the paths lines seeded in the
filtered region show the expected parallel flow pattern (which we see as a satisfying
confirmation of our more theoretical considerations with respect to the design of the
proposed filter).

The computation of the flow map is, as expected, the bottle neck when apply-
ing our filtering to data sets. A speed-up of this computationcould be achieved by
exploiting the inherent parallel nature of path line computation and multi-core archi-
tecture. AMR and advection based methods to speed-up computations do not seem
to be suitable at the first sight, since we are not extracting ridges and we do not
know whether the structures that our filtering reveals have properties corresponding
to material lines and surfaces. We intend to perform computational experiments to
assess this question.

Finally, the possibility to combine our filtering with otherflow feature detectors
shall be assessed. FTLE is known to miss out on some features as, for example,
vortices. Hence, the combination of feature detectors is a promising approach [2, 3].
We have implemented our filtering in the SimVis framework [4], that is inherently
suitable for the proposed investigation due to its combination of interactive visual
analysis and 3D context visualization designed for flow data.

8 Conclusion and Acknowlegdments

In this paper we discuss differences in possible reasons forenlarged FTLE values
and present a filtering forfinite-time Lyaponov exponents, that focuses on spatial
separation of particles in flow fields. Our approach is intuitive and easy to imple-
ment. We analyzed our approach by comparison with unfilteredFTLE and seeding
of path lines, the influence of the involved parameters has been discussed and direc-
tions of future work have been suggested.

The project SemSeg acknowledges the financial support of theFuture and Emerg-
ing Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open grant number 226042.
The CFD simulation of a bursting dam is courtesy of AVL List GmbH, Graz, Aus-
tria.
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3. Bürger, R., Muigg, P., Iľćık, M., Doleisch, H., Hauser, H.: Integrating local feature detectors
in the interactive visual analysis of flow simulation data. In: K.Museth, T. M̈oller, A. Yn-
nerman (eds.) Data Visualization 2007: Proc. of the 9th Joint EUROGRAPHICS– IEEE VGTC

Symp. on Visualization (EuroVis 2007), pp. 171–178. A K Peters(2007)
4. Doleisch, H.: SimVis: Interactive visual analysis of large andtime-dependent 3D simulation

data. In: Proc. of the 2007 Winter Conf. on Simulation (WSC 2007), pp. 712–720 (2007)
5. Doleisch, H., Hauser, H.: Smooth brushing for focus+context visualization of simulation data

in 3D. Journal of WSCG11(1-2), 147–154 (2001)
6. Fuchs, R., Kemmler, J., Schindler, B., Waser, J., Sadlo, F., Hauser, H., Peikert, R.: Toward a

lagrangian vector field topology. Computer Graphics Forum29(3), 1163–1172 (2010)
7. Garth, C., Gerhardt, F., Tricoche, X., Hagen, H.: Efficient computation and visualization of co-

herent structures in fluid flow applications. IEEE Transactionson Visualization and Computer
Graphics13(6), 1464–1471 (2007)

8. Gill, P.E., Murray, W., Wright, M.: Numerical Linear Algebra and Optimization, 1st edn.
Addison Wesley Publishing Company (1991)

9. Globus, A., Levit, C., Lasinski, T.: A tool for visualizing thetopology of three-dimensional
vector fields. In: Proc. of IEEE Visualization ’91, pp. 33–40 (1991)

10. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn.Johns Hopkins Studies in Math-
ematical Sciences. The Johns Hopkins University Press (1996)

11. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn.
Springer Series in Computational Mathematics. Springer (1993)

12. Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid
flows. Physica D149, 248–277 (2001)

13. Haller, G.: Lagrangian coherent structures from approximate velocity data. Physics of Fluids
14, 1851–1861 (2002)

14. Haller, G., Sapsis, T.: Lagrangian coherent structures andthe smallest finite-time lyapunov
exponent. Chaos (2010)

15. Hayes, M.: On strain and straining. Archive for Rational Mechanics and Analysis100(3),
265–273 (1988)

16. Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow
data sets. IEEE Computer22(8), 27–36 (1989)

17. Helman, J., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Computer
Graphics and Applications11, 36–46 (1991)

18. Jordan, D.W., Smith, P.: Nonlinear ordinary differentialequations : an introduction for sci-
entists and engineers, 4th ed. edn. Oxford Applied and Engineering Mathematics. Oxford
University Press (2007)

19. Kasten, J., Petz, C., Hotz, I., Noack, B., Hege, H.C.: Localized finite-time Lyapunov exponent
for unsteady flow analysis. In: Vision Modeling and Visualization, pp. 265–274 (2009)

20. Lipinski, D., Mohseni, K.: A ridge tracking algorithm and error estimate for efficient compu-
tation of Lagrangian coherent structures. Chaos20(1), 017,504 (2010)

21. Mase, G.E.: Continuum Mechanics, 1st edn. Schaum’s Outline Series. McGraw-Hill (1969)
22. Perry, A., Chong, M.: Topology of Flow Patterns in VortexMotions and Turbulence. Applied

Scientific Research53, 357–374 (1994)
23. Pobitzer, A., Peikert, R., Fuchs, R., Schindler, B., Kuhn, A., Theisel, H., Matkovíc, K., Hauser,

H.: On the way towards topology-based visualization of unsteady flow - the state of the art.
In: Eurographics 2010 – State of the Art Reports. Eurographics Association (2010)



Filtering of FTLE for Visualizing Spatial Separation in Unsteady 3D Flow 17

24. Sadlo, F., Peikert, R.: Efficient Visualization of Lagrangian Coherent Structures by Filtered
AMR Ridge Extraction. IEEE Transactions on Visualization andComputer Graphics13(6),
1456–1463 (2007)

25. Sadlo, F., Peikert, R.: Visualizing Lagrangian coherentstructures: A comparison to vector
field topology. In: H.C. Hege, K. Polthier, G. Scheuermann (eds.) Topology-Based Methods
in Visualization II: Proc. of the 2nd TopoInVis Workshop (TopoInVis 2007), pp. 15–29 (2009)

26. Sadlo, F., Peikert, R.: Time-dependent visualization of Lagrangian coherent structures by grid
advection. In: V. Pascucci, X. Tricoche, H. Hagen, J. Tierny (eds.) Topological Methods in
Data Analysis and Visualization: Theory, Algorithms and Applications. Springer (2011)

27. Shadden, S., Lekien, F., Marsden, J.: Definition and properties of Lagrangian coherent struc-
tures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D
Nonlinear Phenomena212, 271–304 (2005). DOI 10.1016/j.physd.2005.10.007

28. Shi, K., Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Visualizing Transport Structures
of Time-Dependent Flow Fields. Computer Graphics and Applications28(5), 24–36 (2008)

29. Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Topological methods for 2D time-
dependent vector fields based on stream lines and path lines. IEEE Transactions on Visu-
alization and Computer Graphics11(4), 383–394 (2005)

30. Wasberg, C.E.: Post-processing of marginally resolved spectral element data. In: E.M.
Rønquist (ed.) ICOSAHOM conference proceedings (to appear). Springer (2009)

31. Wiebel, A., Chan, R., Wolf, C., Robitzki, A., Stevens, A.,Scheuermann, G.: Topological Flow
Structures in a Mathematical Model for Rotation-Mediated Cell Aggregation. In: V. Pascucci,
X. Tricoche, H. Hagen, J. Tierny (eds.) Topological Methods inData Analysis and Visualiza-
tion: Theory, Algorithms and Applications. Springer (2011)


