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Abstract In many cases, feature detection for flow visualizationnscttired in two
phases: first candidate identification, and afterwardgifilgie With this paper, we
propose to use the directional information contained inRMeE computation in
order to filter thefinite-time Lyapunov exponer(8TLE) field. Thereby we can fo-
cus on those separation structures that delineate flow atmmgats which develop
into different spacial locations, as compared to thosegdbparate parallel flows of
different speed.

We provide a discussion of the underlying theory and outedlaonsiderations. We
derive a new filtering scheme and demonstrate its effecamdimtext of several se-
lected fluid flow cases, especially in comparison with uniiteFTLE visualization.
Since previous work has provided insight with respect tostinieied flow patterns,
we are able to provide a discussion of the resulting visibpasation structures.

1 Introduction

The concept of flow plays a central role in many fields. Cladspplication fields
are the automotive and aviation industry. The visualizatibdata gained from the
simulation or measurement of such processes is relevatitdatomain users, as vi-
sualization has the potential to ease the understandingngplex flow phenomena.
For a good overall understanding of the flow, the identifaatf areas with co-
herent flow behavior has proved to be useful. For steady flasthats based on
vector field topologyas introduced to the visualization community by Helmanth an
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Hesselink [16], provide an expressive segmentation of the fin the case of un-
steady flow, a comparable theory is not readily availablengtiough a number of
promising approaches and methods have been worked outpashgears. We refer
to Pobitzer et al. [23] for an overview of topology-based moels for the visualiza-
tion of unsteady flow.

One of the promising directions leading to a semantic seggttien of unsteady
flow are so-called_agrangian methods. These methods focus on the motion of
massless particles in the flow. The most prominent methoelsedated tdfinite-
time Lyapunov exponen(ETLE). Haller [12, 13] shows the relation of FTLE to
Lagrangian coherent structuresd its application to flow data.

Roughly speaking, the (maximum) FTLE gives the maximum sjmn rate for
nearby particles over a certain time-period. When inteipgeteparation structures
extracted from the FTLE field, such as ridges, this concegepfration, has to be
kept in mind: Apart from the separation due to differencefbaw directions, FTLE
will also detect separation due to differences in flow magtét We illustrate this
with a simple thought experiment:

We consider two particles that travel on straight paraitedd with constant ve-
locity, but the one velocity being twice the other velociy.a certain time, these
particles have a certain distance from each other. Thertisthetween the particles
increases monotonically (due to the different particl@wiies), but their paths re-
main parallel, nonetheless, leading the particles intcstlrae area, eventually (but
at different times). Fig. 1 illustrates this situation.

This causes, for example, that a shear layer is a region wgth BTLE values.
More generally, regions of particles with parallel path different speeds will show
this behavior. A separation concept that is not sensitisiti differences in speed
would therefore define particles as “staying close” if thmaths stay nearby. This
concept of vicinity is calledPoinca or orbital stability. Formally, a path line is
Poincaé if for any givene > 0, there is @ > 0 such that a particle with starting
distancedeltato the path line stays in the-tube around it. For further details we
refer to Jordan and Smith [18]. Although well known in thedhe definition of
Poincaé stability does not provide an intuitive quantification aftednce (since it
would require to compare every single point on one path tpditts on the other
path).

From the above mentioned thought experiment we infer thadrsg¢ion resulting
from differences in the velocity magnitude, occurs alorglthes, i.e., in direction
of the flow vector, while separations due to differences iwfttirection will occur
at an angle to the flow direction. The analysis of the defoionagradient tensor
builds on the assumption of a linear mapping between theréiffce of the particle
positions before and after advection by the flow and assuemsetthat the distance
between particles is locally describable by straight lif#d3. Hence, our consider-
ations are valid for arbitrary path lines, as long as the geressumptions for the
FTLE analysis are fulfilled.

The direction of the main separation can be found by anajy#ie gradient
of the flow mag(in a more general setting referred to as tleformation gradient
tensor[21]). For this purpose we use tliengular value decompositiofsVD). We
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Fig. 1 Two particles traveling along straight parallel lines afetiént speeds: we see that the
particles separate in the direction of the movement, but ttatirspare at a fixed distance, and will
hence traverse the same regions.

show in section 3 that our approach is directly derived frobengeometric approach
to FTLE provided by Haller [12]. The examination of the angiween this main
separation direction and direction of the path line givea useasure for the spatial
separation that is represented by the respective FTLE sakiktering the FTLE
field with this measure then yields the separation strusttepresenting a separation
inspired by the Poincérstability. One needs to be aware of this different stabilit
— and hence, separation — concept, and assess its meanas¥fih the case under
investigation.

Accordingly, the main contribution of this paper is a newefiltto be used as
a filtering step after the computation of FTLE values in uadteflow fields, that
allows to focus on those regions within the flow that lead tatish separation.

The remainder of this paper is structured as follows: Firstdiscuss related
work. Then we introduce our proposed filtering approachjviey it from the
known theory. In the subsequent section we present resatts dnalyzing several
flow cases applying our filtering to four simple analyticahmples, the well-known
“double gyre” example by Shadden et al. [27] and a data setyped from simu-
lation and demonstrate what results we can achieve. We fhenss computational
aspects of the estimation of the deformation gradient tegrsth the extraction of the
main separation direction. Finally we discuss results andtut future work.

2 Related Work

The visualization of flow is an active research field. Topaahmethods were
first introduced to the scientific visualization community Blelman and Hes-
selink [16, 17] for both 2D and 3D steady flow fields, under tb&ation ofvector
field topology(VFT). Globus et al. [9] showed the practical relevance off\Br
computational fluid dynamics data. For a detailed survey®T Yor two and three
dimensions we refer to Asimov’s tutorial [1].

From the theoretical point of view, the applicability of VAdr unsteady flow
has been questioned, among others, by Perry and Chong [2&}. donclude that
classical VFT is only applicable to nearly steady fields.ete&hadden [27] and
Wiebel et al. [31] showed this failure of VFT by examples. weecently, Fuchs
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et al. [6] proposed an extended critical point concept whilbbws them to apply
vector field topology in the case of unsteady flow.

Theisel et al. [29] introduce flow topology based on pathdireath lines are
the paths of massless particles, that are advected by theTtovefore, they are
inherently well suited to gain an understanding of unstebmlys.

The seminal paper of Haller [12] introduces FTLE to the asialpf flow fields.
The concept of agrangian coherent structurds CS) is discussed and its connec-
tion to FTLE is revealed. LCS are —to a certain degree — theeadyg analogon of
separatrices in VFT. In a follow-up paper [13], Haller shawikat LCS correspond
toridges of the FTLE field. Sadlo et al. [25] and Shi et al. [28Inpare LCS to VFT
and conclude that the information conveyed by FTLE is onlyigbas compared to
VFT, missing out on, for example, vortices.

The standard algorithm for the computation of the FTLE fielbives the seed-
ing of a large number of particles in the flow and the calcalabtf their path lines
(flow map). This is computationally challenging since ituggs to perform a high
precision integration for every particle. Sadlo and P&il&%] use adaptive mesh re-
finement in their ridge extraction to avoid unnecessaryuatains of the flow map.
As shown by Shadden [27], LCS are “nearly” material linessTan be exploited to
speed up the algorithm. Sadlo et al. [26] present a methoxttaat LCS using grid
advection exploiting the temporal coherency of LCS. Ligirend Mohseni [20]
present a ridge tracking algorithm for FTLE fields that useth temporal and spa-
tial coherency of LCS and give an error estimator for diffexe between advected
ridge and actual LCS. Both approaches give great speed+pared to the stan-
dard algorithm.

As the computation of ridges usually involves the compatabtf higher-order
derivatives, the computation will be sensitive to noisertit@rmore, some types
of solver used to simulate the flow may introduce discontiesiiin higher-order
derivatives, such aspectral element metho{R0].

Garth et al. [7] avoids the computation of ridges using a n@uendering ap-
proach. The authors show as well that 3D FTLE might be apprated by 2D
FTLE in selected cross-sections. Furthermore, the authr@sent an efficient ap-
proximation to FTLE fields.

Kasten et al. [19] introduce the notationlotalized FTLE(L-FTLE). The main
idea of this approach is to exchange the deformation grathesor with a matrix
that accumulates the separation behavior along a pathHiaéer and Sapsis [14]
show that also the smallest FTLE is related to LCS, and carsée to compute the
attracting LCS from forward standard FTLE (and vice ver3&)js makes comput-
ing both forward and backward FTLE obsolete and, hence sseogtly computa-
tions.

To the best of our knowledge, no attempts have been made ysetthe direc-
tional information inherent to the definition of FTLE in viglization.
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3 The filtering scheme

In the following, we show how the main separation directian be computed from
the directional information inherent to the definition of IEH and can be easily
derived from it.

Definition of FTLE and its geometric interpretation: The concept ofinite-time
Lyaponov exponen{§ TLE) is an adaption of the concept of the classical Lyapuno
exponents to the situation of a vector field which is defineer dinite time only.
Those fields are of practical relevance since both simulati;md measurements of
unsteady flow will typically yield this type of fields. Roughdpeaking, the FTLE is
the maximum deformation of a small neighborhood advectetiéflow over a cer-
tain time-interval. This maximum deformation can be coregidtom the maximum
eigenvalue of the (right) Cauchy-Green tensor [21, 12].

In the original paper [12], Haller gives an alternative, metric reasoning to
motivate the interpretation of the FTLE field, which yieltie tsame formula as the
standard formulation. We will use this reasoning as a sigqutioint for our own
considerations: Let be a time-dependent vector field and

9o (Xo) = x(T) (1)

the solution of the initial value problem
X(t) = v(x(t),t) )
X(to) = Xo 3)

evaluated at = T. Hence, the difference in position between two particles #re
seeded at a small distandg at timetp at timet = T is given by

91! (X0 -+ OX) — b (Xo) @)
Now, we apply a Taylor series expansion and get
Pig (X0 + OX) — by (X0) = By (o) + Dy (X) 0%+ Re — ¢y (xo) (5)

with Ry being an error term withiRy || € &(||5x]|?). Hence, in a small sphere around
Xo we have the following approximation

B (X0 + %) — gy (Xo) = Dy (¥0) Ox (6)

The gradient of the flow map is a linear operator. The maxirtraetching of ad-
sphere aroungy is therefore

10g (x0)OX|| | T T
Hamx@a <|5X||> = Hgﬁ‘fl(HDfPtO(XO)CSXH) = [|0¢y, (X0)llop  (7)
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|| ||op being the operator norm wrt. the usual Euclidian norm [1Gjséming expo-
nential growth and scaling by the integration length we get

FTLE(X0) = I (/|06 (x0)lop) ®)
T —to

The equivalence of this formulation to the standard fornfioland in most papers is
easy to check using basic properties of the operator norpil2]0

We see that the impact of the gradient of the flow map tensdn@nonit sphere is
the crucial aspect in the analysis of local separation USIHg=. Thesingular value
decompositioffSVD) is a useful tool to examine this action on the unit sphéris
well known that a linear mapping transforms the unit sphete an ellipsoid. The
SVD gives us the opportunity to compute the main axes of tlijzsseid explicitly.
More generally, the SVD of any linear mappiAgds its unique representation as

A=U -diag(0y,...,0r,0,...,0)-V* (9)

whereU andV are orthogonal matrices,the rank of the matrid, anddiag, a
block-diagonal matrix [10]. Additionally, the relation

01>0,>...>20, >0 (10)

holds. The columns of the matrix are in the direction of the axes of the ellipsoid
which the unit sphere is mapped to. The valageare the lengths of its main axes
and oy = [|Al|op. Fig. 2(a) illustrates this for the linear map given py7 3). We
see that using the SVD to gain directional information alibatlocal separation is
a straight-forward extension of the original considenagiof Haller.

It is worthwhile noticing that an eigenvalue decompositidthe Cauchy-Green
tensor used in the standard presentation of FTLE will yieéddolumns 0¥/ and not
U. Unless the deformation is rotation free, these vectodswtlcoincide. However,
the columns iV are mapped onto the columnsdf These two different sets of
axes are known as thincipal spatialandprincipal material strainsrespectively.
The principal material strains provide the information be shape of the ellipse
resulting from the advection of the unit sphe#€ by the flow. Therefore, the use
of the principal material strains to gain the directiongbimation on the FTLE
field is a straight-forward extension of the geometric apphoto FTLE provided by
Haller in its original paper [12]. For a thorough discussadrstraining we refer to
Mase [21] and Hayes [15].

Comparing the separation direction to the direction of the math line: Given the
path liney started inxg attp and integrated to= T the direction of the path line at
any instant is given byy(t) = v(y(t),t) and the corresponding separation direction
U_1(t) (i.e, the first column ob) is computed froniJ¢{ (xo). Hence, we can use

1 o
= <”1“)’||v<v<t>7t>|>‘“'t -
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as a measure for the directional difference between sépaiatd path line starting
in (Xo,tp). Notice that perfect alignment of the separation directiod the flow
direction, i.e., the situation we want to filter out, will ceuthe integrand to be 1.
The absolute value has to be used since SVD may invert thetatien.

It is important to point out that this separation measuretsGalilean invariant,
since it depends on not Galilean invariant flow propertisgha velocity. Although
this is a important property in general flow analysis, mangriesting situation with
fixed frame exist, e.g., fluid flow in a tube or air flow the ins@fea room. Besides
this, we give an example of a separation situation where dile@a invariant sep-
aration measure would fail to detect a separation easilyatédde from the visual
inspection of the path lines (see Sec. 5).

In practical computations, eq. (11) needs to be discreti?églnow assume to
haveN samples of the path Iir’(ey(tn))r’:':l. Since the velocities could change rapidly
in direction without affecting the actual overall directiof the path line much,
y(tit1) — y(t) instead ofv(y(tit+1),ti+1) can be used to robustify the measure. But
even with this robustification, the local position diffecess can deviate essentially
from the perceived overall direction, as we can see fromZtg).. We choose there-
fore y(tn) — y(ti) instead. As the approximation to the velocities, this esgi@n is
less sensitive to fluctuation in the velocity along the path.|Additionally, it uses
our knowledge on where the particle will end up. In this wayestémate the overall
direction of the remaining trajectory. As a pleasant sidecgfthis estimation is less
sensitive wrt. the chosen sampling of the path line (see@ewVith this considera-
tions in mind, the discrete version of our measure for spagiparation read out as

following
y(tn) — y(ti)
(vt e =iem | (42

1 N-1

lel

The main separation direction is the left-singular vectsogiated to the maxi-
mum singular value. The maximum singular value of the defdiom gradient ten-
sor (or, equivalently, the maximum eigenvalue of the Cat@hgen tensor) is, how-
ever, not unigue by definition. In fact, all singular valugamight be the same, or
almost the same. Additionally, numerical errors may cahedwo largest singular
values to be of the same order. In the original definition of EThis does not cre-
ate any problems since we are interested in the maximum bmbgontrast, when
looking at the angle between the associated left-singdatov and the flow vec-
tor, this situation needs special consideration. From ¥B e know that those
vectors are orthogonal to each other. Hence, even if oneeofélstors is almost
parallel to the flow, there is a direction of comparable dista close to transversal
to the flow. Therefore, these points shall be considered #wiimain separation
occurs at a large angle to the flow direction. The considanaif the third singular
value is not necessary since its left-singular vector hebé same plane orthogonal
to the first left-singular vector as the left-singular vecssociated to the second
singular value. To account for this, we introduce a scalagjdr 1— Uzgt'g for the

single summands in eq. (12), and our final definition of theassion measursep
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(a) lllustration of the SVD  (b) estimation of the “overall” direction of a path
line

Fig. 2 (a) lllustration of the geometric interpretation of singulatues and left-singular vectors of
a linear map: The unit circle (red) and its image (blue) undérear map. The black arrow corre-
spond to the left-singular vectors of the map, scaled by the régpsmngular values. (b) The figure
shows two the trajectories of two particles moving from lefotight. Although local velocities
are very different we perceive them as having the same overaditbn.

becomes

P T = S 1() L v(tn) — ()
sefxo) =17 ) (1 oﬂn))K“1(t')’||v<tN>—v(ti>||>‘ 13

The basic concept of the new filtering approach:
Bringing all this together, the proposed filter scheme casdbteip by four com-
putational steps:

1. Computation of the deformation gradient tensor: Thip &@enerally necessary
in all FTLE-related algorithms and involves the integratiof path lines. We
save the particles position at some intermediate timerigstaas well in order to
compute the spatial separation. Further details are diedls section 6.

2. Computation of the SVD of the deformation gradient ten$bis step leads both
to the FTLE field and the main separation directions.

3. Computation of the spatial separation of the flow using £8).

4. Focusing on regions of large angles: This focusing carchieeed by threshold-
ing or by smooth brushing [5].

In a final step the filter is applied to the regions with high [ENalues. The above
described four steps comprise the main idea for our filteaipgroach.

The filter: The actual filter is then constructed by applying (smoothgbing to the
field sep This brush maps values of the separation measeipo the interval0, 1]
and describes the degree of beingfocus This corresponds then to accordingly
modulated opacity values in our 3D view (cf. Doleisch and $&a5] for further
details). Hence, we can formulate our filter as
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filter = brush(sep (14)

Eventually, this filter is then applied to the FLTE valuesisTocusing is done by
smooth brushing as well. The overall feature charactéozeinction fsep with
range[0, 1] (1 or near 1 for all locations in the flow which are consider@te part
of the searched separation structure), is therefore desthy

fsep=brush(FTLE) - filter = brush FTLE) - brush(sep (15)

The functionsepcan also be thought of as a degree of “featureness” for tharfea
“spatial seperation”, or, adegree of interegfDOI), using another terminology [5].

4 Case studies

In the following we present results from the extraction gfa@tion structures from
different data sets. We demonstrate, how our filtering sehéglps to focus on
regions which actually separate flow compartments that rrgeaifferent regions
of the flow.

5 Synthetic test data

First we investigate four small analytic examples wherestgaration behavior is
directly deductible from the equations

vi(xy) = (%,0)7 (16)
va(xy) = (y,1)7 (17)
va(x,y) = (x—1,1)7 (18)
va(xyt) = (x—t,1)7 (19)

Notice that the fieldv, arises from fieldv,; under the Galilean transformation
(X, y,t) — (X, y+t,t). The fieldva, in turn, arises fronvs using the Galilean trans-
formation (x,y,t) — (x+t,y,t). Hence, it is easy to deduce from the fieldsand
vs that the FTLE field is constant for all four fields. We investigyall four fields on
the upper half plane (i.ey,> 0) and choos& = 0 andT = 1. All computations for
this example have been carried out using the MAPLE softwaokage. The flow
map was computed using MAPLESs seventh-eighth order camtimirRunge-Kutta
methoddver k78, for estimation of the deformation gradient tensor we usd ¢
tral finite differences in the coordinate directions witlasimgh = 0.01. For the first
two fields, our separation measwepis in the rang€0,0.02]. Hence, we expect no
spatial separation. Plotting the respective stream lifieeofields shows that our
filter handles both straight parallel lines (as describetth@nthought experiment in
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(c) vertical separation (d) transformed vertical separation

Fig. 3 Stream, resp. path, lines with the separation value as coldrifihe background. The
left column shows the original fields, the right a Galilean transied field. For the equations we
refer to Sec. 5. The FTLE field is constant for all four cases. )na¢a (b) we infer from the
stream lines that no spatial separation is present and the separalues are as expected close
to zero (rangg0,0.02)). In (c) and (d) the trajectories show clear spatial separatizhagain the
separation values coincide with the visually detected saparties.

the introduction) as well as “locally parallel” trajectesi. In contrast to the first two
fields, we expect to see a clear spatial separation in theimeérgawo. In the first
field this separation line is clearky= 1, in the second field the separation line will
be located left of the y-axis. Its location depends on thegdrdtion time and the
speed of the observer, since this determines if partickesirsg on the right side of
the y-axis have “enough time to turn”. Our separation meashows the expected
behavior and stream, respectively path, lines plotted aifioation show the ex-
pected behavior at the separation line (see Fig. 3). TheViigklan example where
a Galilean invariant measure for separation would not givesponse: fixing the
integration time the observer speed determines where gaga®n line is located,
and it is easy to see that any parallel to the y-axis can besaethi Since the re-
sponse of would have to be the same for all observer speedelthwould have to
be constant.

5.1 Double gyre

We demonstrate our approach in context of a well-known aicathyo-dimensional
example, known as the “double gyre”. This has been used bydg&imaet al. to
demonstrate the non-usability of vector field topology fora-dependent flow [27],
amongst others. For the analytic definition of the field, wento the original paper
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(a) FTLE field (b) filtered FTLE field

Fig. 4 The FTLE field of the double gyre with parametéys= 0 andT = 15 (i.e., 1.5 periods).
(a) The unfiltered field (b) The filtered by setting FTLE valuetfor sefx) < 0.5. Path lines
confirm that the persistent ridge is indeed due to spacial separat
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(a) FTLE field (b) filtered FTLE field

Fig. 5 (b) Schematic overview over the flow domain. (b) The FTLE fieldacddimulation of a
bursting dam with parametetis= 62 andT = 68. The FTLE values greater thar8 are brushed
(smooth lower bound.@) . We see that we can identify expected structures aroundbisiace.

The upper rear part of the flow domain shows large regions wigh KTLE values, possibly
induced by shearing. (b) The FTLE filtered bypx) < 0.45 (smooth lower bound.8).

by Shadden et al. [27]. Using the same notation as in thisrpapeparameter set is
A=1/10,w = 1t/5 ande = 1/4. The field is defined of0, 2] x [0,1] x R. All com-
putations for this example have been carried out using th&MAsoftware pack-
age. The flow map was computed using MAPLEs seventh-eigldér @ontinuous
Runge-Kutta methodver k78, for estimation of the deformation gradient tensor
we used central finite differences in the coordinate dioastiwith spacindgp = 0.01.
Fig. 4(a) shows the FTLE field with parametéys= 0 andT = 15, i.e., 15 periods.
The filtering is emulated by setting the FTLE value of poinithwvgegx) < 0.5 to
0. We se that the filtering produces sharper ridges as thaaligTLE field, high-
lighting in particular one ridge associated with rather IBWLE values. Seeding
path lines at both sides of the ridge shows that the higtdigjinidge is due to the
desired type of separation, indeed.

5.2 A bursting dam

We apply our approach to the simulation of a bursting dam atlox-shaped obsta-
cle. The data set consists of 48 time steps, covering thespranr[2, 120 (seconds)
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Fig. 6 The (a) FTLE and (b) filtered FTLE field in front (stream-wise) bétobstacle in top
view. The FTLE values greater than28 are brushed (smooth lower boun@)) segx) < 0.45
(smooth lower bound.@) is used for the filtering in (b). We see that the spatial semaratructure
stemming from particles passing on different sides of the obstacieticlearly discernible in the
unfiltered field. While adjusting the brush would not give theids structure either, our filtering
does.

non-uniformly. The burst occurs in the first time step. Weest@ recirculation zone
in front (stream-wise) of the obstacle due to particledrigtthe wall and recircu-
lating and others getting deviated to the left and right ef ehstacle. Furthermore
we expect reflux on the backside of the obstacle due to pedifterences, causing
particles from the end of the box to be sucked towards theaolestsome of them
ending up in front, some getting incorporated by the main .fleight behind the
obstacle we expect to see recirculation. A schematic oseraf the flow can be
found in Fig. 5(a). We calculated the FTLE field figr= 62 andT = 68, using the
optimal 4" order Runge-Kutta method (sometimes referred to as thert8ég).
For details we refer to Hairer et al. [11]. The usage of a evghdr order integra-
tion method (which is not standard) was purely due to thetfeeMAPLE software
package readily provides this method. The integration tvas found empirically
with the aim that not more that 15 percent of the particlesisddeave the flow
domain before the end of the integration time. Fig. 5(b) shawoverview over the
FTLE field. We filter the field brushing all points withs pvalue greater or equal
0.45 (smooth lower bound.®). We will now investigate two regions in the flow
domain more closely: The region stream-wise in front of thetacle and the upper
rear region.

In front of the obstacle: In front of the obstacle, we expect to detect a separation
structure upstream in front of the obstacle due to partjgdssing on different sides
of the obstacle. We see that (Fig. 6(a)) this expected sipaustructure is not de-
tectable from the original field. Applying our separationefilallows us to focus
on this spatial separation, even though the correspondihg values do not show
up prominently in the original field. We added path lines tthbfigures to confirm
that the intuitively expected separation structure indeddts and coincides with
the structure found by the filtering with our separation nieas
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(a) FTLE field (b) filtered FTLE field

Fig. 7 A cross section of the (a) FTLE and (b) filtered FTLE field. Theefilig used is the same

as in fig. 6. The ellipse (A) shows a region where the filter hasangtimpact. We see that the
path lines are locally parallel and show little to no spatialesapon. In contrast, we see that the
structure below the ellipse separates path lines moving froiinable to the front (above) from does
moving in the opposite direction (below). In the same fashionetligse (B) indicates a structure

that separates particle coming from the back and passing ovebgtacle, from those moving

back to the rear again. This structure is persistent under opoped filter.

The upper rear region: In the overview in fig. 5(b) we see a large region with
high FTLE in the upper rear part of the flow domain. Applying 6ltering reduces
the region to a surface separating particles moving fronib#o to the front (upper
part) from those leaving the flow domain (lower part). We selghrticles in a cross-
section in order to validate the result from the filtering. ¥ée that the particles
in the region delineated by the ellipse (A) in fig. 7(b), shdwe expected locally
parallel pattern. The structure at approximately half heaf the box captures the
boundary between the two essentially different particleavéors described above.
The structure in ellipse (B) in fig. 7(b) separates partiaewing from the back to
the front and passing over the obstacle from those invetting motion direction
again. This separation is again the type our filter aims tasam.

6 Computational Issues

Although the steps that are needed to compute the propotafit in theory rather
straight forward, the application to discrete data offenms challenges we want to
discuss. Namely, we are going to address

¢ the influence of the used sampling of the path line
e the computational cost of computing the FTLE field followiogr suggestions
compared to the standard algorithm

The impact of the sampling: Our sampling of the path line at/2,3/4,7/8 and
the full integration time puts emphasis on the end of the pa#s. Visually, this is
intuitive, since we perceive path lines as parallel if trexids show this behavior.
We anticipate common “spatial fate”. Therefore will ratlserall direction changes
towards the end of the registered path lines intuitivelydagras diverging behavior,
since we anticipate that the motion will continue in the salinection.
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We computed the separation measure for some of the datanaets)y the time-
dependent ones, fof = 2,4,6,8,10 and compared the results point-wise, using the
N=25 as reference value. Table 1 shows the avarage relatoreagd the variance in
the computed fields. We choose to investigate the time-dkgeniata sets since this
is most relevant in practice since FTLE computations foadyefields are usually
avoided using vector field topology instead.

N= 2 4 6 8 10
V4 mean || 1.2-10°3 |6.13-104|3.23-10°6|1.64.10°5| 35.10°°
variance|1.27-106|3.04-10°7(8.42.10°7|2.17-10°8| 35.10°°

double gyre  mean 0.2 0.1 0.07 0.4 0.1
variance| 0.03 0.01 003 |94-104|14-10*
breaking dam mearn]|1.27-1072|5.47-10°3(2.57-10°°[9.82-10%| 6.6-107°
variance|1.13-107°| 2.4-10°7 |5.36-10°8| 7.7-10°° [12.97-10°

Table 1 Error Analysis of Sampling Density

FTLE as eigenvalues of the Cauchy-Green tensor vs. singularalues of the
deformation gradient tensor: Our filtering needs, in addition to the FTLE field,
the left-singular vectors of the deformation gradient éen3his is not a part of
the usual algorithm to compute FTLE. However, the compaitatif the deforma-
tion gradient tensor is. Therefore, we do an informal conspar of the expected
computational cost. The expensive parts of the computatibae two methods to
derive the FTLE do not share, are the SVD and eigenvalue ctatipu of the de-
formation gradient tensor and the Cauchy-Green tensqrecotigely. Standard algo-
rithms for both tasks are based on the same transformatibe iiteration steps and
have therefore the same complexity order. The singularicestare a by-product
of the computation. For details we refer to Gill et al. [8].nde, computing the
FTLE plus left-singular vectors will not be essentiallywsér than the usual com-
putation of FTLE from Cauchy-Green tensor. With the Mapl@lementations of
SVD and eigenvalue decomposition the ratio of the compurtatime using the
SVD to the time used with the standard formula is in the rajig@5,1.06), i.e.,
the SVD-based method is in the worst case 6% lower than tmelatd method
on the presented data sets. In SimVis we used the linear raldifoary JAMA
(http://math. nist.gov/tnt/overview htmn), which gives a ratio of
1.12 for the presented data set, i.e., a 12% computationahesdr It it worthwhile
noticing that our methods provides both the regular FTLE figlis the additional
information needed to perform the filtering at once. Henimlge extraction algo-
rithms may be applied as well, if wanted.
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7 Discussion and future work

We examine the results from analyzing several different #oenarios with the here
proposed filtering scheme. We asses the filtered structyresdiling path lines in
the unfiltered field and comparing the result of our filterimfpesme to the result
that we would expect from the path lines. In all cases theslites seeded in the
filtered region show the expected parallel flow pattern (Whie see as a satisfying
confirmation of our more theoretical considerations witpect to the design of the
proposed filter).

The computation of the flow map is, as expected, the bottl& nden apply-
ing our filtering to data sets. A speed-up of this computationld be achieved by
exploiting the inherent parallel nature of path line conapion and multi-core archi-
tecture. AMR and advection based methods to speed-up catigng do not seem
to be suitable at the first sight, since we are not extractidges and we do not
know whether the structures that our filtering reveals hawpgrties corresponding
to material lines and surfaces. We intend to perform contjmuial experiments to
assess this question.

Finally, the possibility to combine our filtering with othffow feature detectors
shall be assessed. FTLE is known to miss out on some featarderaexample,
vortices. Hence, the combination of feature detectors i@mising approach [2, 3].
We have implemented our filtering in the SimVis framework gt is inherently
suitable for the proposed investigation due to its comimnabf interactive visual
analysis and 3D context visualization designed for flow data

8 Conclusion and Acknowlegdments

In this paper we discuss differences in possible reasonsriarged FTLE values
and present a filtering fdiinite-time Lyaponov exponenthat focuses on spatial
separation of particles in flow fields. Our approach is inteind easy to imple-
ment. We analyzed our approach by comparison with unfiltefidcE and seeding
of path lines, the influence of the involved parameters hag biéscussed and direc-
tions of future work have been suggested.

The project SemSeg acknowledges the financial support &ithee and Emerg-
ing Technologies (FET) programme within the Seventh Fraonkwrogramme for
Research of the European Commission, under FET-Open gunartier 226042.
The CFD simulation of a bursting dam is courtesy of AVL List @i Graz, Aus-
tria.
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