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Streamline Embedding
for 3D Vector Field Exploration

Christian Rossl and Holger Theisel

Abstract —We propose a new technique for visual exploration of streamlines in 3D vector fields. We construct a map from the space
of all streamlines to points in IR" based on the preservation of the Hausdorff metric in streamline space. The image of a vector field
under this map is a set of 2-manifolds in IR" with characteristic geometry and topology. Then standard clustering methods applied to
the point sets in IR" yield a segmentation of the original vector field. Our approach provides a global analysis of 3D vector fields which
incorporates the topological segmentation but yields additional information. In addition to a pure segmentation, the established map
provides a natural “parametrization” visualized by the manifolds. We test our approach on a number of synthetic and real-world data
sets.

Index Terms —vector fields, streamline embedding, clustering

1 INTRODUCTION 5 e
The visual exploration of 3D vector fields is still a chall@mgy ®
problem for which a variety of solutions have been proposed. e P, )
One class of approaches aims at finding semantic structures —
in the flow, i.e., flow regions which show a similar behavior
concerning certain physical, geometrical, or topologurée-
ria. Such segmentation can be achieved for example by a local
analysis or by global methods applying vector field topoJog}g
as well as by hierarchical or multi-scale methods. Althou
topological approaches are Well-establls.hed for 3D fidhere pi.p; correspond as much as possible to the Hausdorff
are a number of shortcomings, namely: di .
i ) _ _ _ distances of s, s;.
« Topological segmentation gives a separation of regions
of different flow behavior. This segmentation is a binary
information: topology tells usf two particular regions can pe visualized in a straightforward way, and to some éxten
behave differently, it does not tell dmw differently they  fio\ field exploration reduces to surface visualization.afin
behave. thinking of manifolds does not only convey a quantitativewi
» Visualization does not “scale” from 2D to 3D vectorsf streamline behavior but this new domain also provides a
fields: given a segmentation, visualizing all streamlingsarametrization of the vector field: using the embeddingrev
even for only of a number of segments is hard becausgeam line can be uniquely addressed by a point on a surface.
qf visgal clutter'. This. is a general problem for vector |, this paper we describe how to find such a map from
fields in three dimensions. streamlines to points and explain how it can be used for
In this paper we propose an approach which tackles the timeractive flow exploration.
points mentioned above. The main idea is to consider theespacThe remainder of the paper is organized as follows. Sec-
of all streamlines and to equip it with a non-trivial metrior  tion 2 reviews work related to ours. In Section 3 we explain
this we use the Hausdorff distance between streamlinesi Thike general approach and illustrate the idea with simple 2-
we define a map from the set of all streamlines to points in @mensional vector fields. The implementation of this tle¢or
n-dimensional space, which preserves the Hausdorff dis&ndcal framework is reviewed in Section 5. Section 6 discusses
as much as possible. This way, the set of all streamlines ofesults, Section 7 summarizes the limitations, and Se@&ion
3D vector field is mapped to a number of two-manifolds igoncludes the paper.
the nD space. Figure 1 illustrates the main idea of the paper.
Our approach addresses the above mentioned problems:
first, distances in manifolds provide a continuous meastlrelg RELATED WORK
how different streamlines behave. And second, the manifoldfere exist a number of approaches to find relevant strueture
in vector fields. Hierarchical clustering methods basecbeall
e C.Rossl and H. Theisel are with the Visual Computing group, brsity ~ Criteria of vector fields are applied in [1], [2]. Further hets
of Magdeburg, Germany. _ based on local analysis apply diffusion flow [3] well-known
E-mail: {roess|,theisgi@isg.cs.uni-magdeburg.de from data smoothing, or apply similarly multi-scale metbod
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hig. 1. Main idea: every streamline s € D is mapped to a
gpoint pi € IR" such that the Euclidean distances between
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[4] to achieve a multilevel decomposition. Note that here tHfor s;,5 € S, and whered(x,y) = ||x — y||2 denotes the
term “local” refers to a certain level of resolution and iristh Euclidean distance in iR Our goal is to establish a map
sense may be misleading. There are a number of approaches e S RV
to detect region based vortical structures, such as [5],AB] '
methods mentioned above have in common that they act which preserves the Hausdorff distances as much as possi-
local properties of the flow, i.e., that a streamline may entble: for two streamliness;,s,, the distancesly (s1,s2) and
or leave different regions of local flow behavior. d(e(s1),€e(s2)) should be as close as possible whedescribes
In addition there are semantic flow separations wheretize Euclidean distance in 'R This way we ensure that
streamline is guaranteed to belong to exactly one segmesiteamlines which are close to each other in Hausdorff space
Among them, topological methods are perhaps the most proraie mapped to spatially close points in'IR
nent ones [7]-[11]. They aim at segmenting the flow into areasFinding e can be formulated in least-squares sense, i.e., as
of similar asymptotic flow behavior and are widely-researth the following minimization problem: le{ss,...,sn} C S be a
in the visualization community. We refer to [12]-[14] foatt- dense sampling ob. We search foe(sy),...,e(s,) such that
of-the-art reports in vector field topology. non
The concept of streamline predicates [15] is used in a le (du(s,s;) —d(e(s),e(s)) ) — min (2
framework aiming at segmenting streamlines by mapping one i=1j=1
and the same predicate to every point on a streamline. Thisis is the problem arising in the classical multidimension
way, streamline-respecting segmentations of the flow domaicaling (MDS) method (see, e.g., [24]). Solving (2) leads to
are obtained for different choices of the predicates. computing the spectral decomposition of a symmetric matrix
In DT-MRI visualization there are various approaches t@bviously, the solution is not unique because every tréinsla
treat fiber bundles instead of particular locations, for irrotation or reflection in a line remains a solution. Furtherep
stance [16], [17]. A spectral clustering approach is taken the solution depends on the samplingSyf.e., on the number
[18] for finding white matter fiber correspondences. Herand distribution of streamlines.
similarity matrices are defined using the Hausdorff distanc
In [19] a hierarchical clustering scheme is applied. Vasiodllustrating 2D examples

proximity measures on fiber tracts are combined in [20] fafe illustrate the approach on a number of 2D example
visualizing a 2D embedding. fields on a square domaid = [0,1] x [0,1]. We decided to
Also related to our work are streamline placing technique$oose the dimension = 2 and establish maps to ARor
for 2D [21], [22] and 3D [23] vector fields. These methods airthe sake of illustrating the concepts. The shown embeddings
atan equidistant placement Of Stl’eam"nes in the domainmhiare essentia”y 0rthogona| projections of embeddings ?n IR
requires a variable length of streamlines as an optimizatiqye use a rather low number of streamlines here and obtain
parameter. This is in contrast to a global vector field anslysjiscrete 1-manifolds which would converge to true maniold
which must consider streamlines as a WhOle, i.e., Streamlir‘/vhich appear for an infinite number of Samp|es_ The colors
of maximal length. of streamlines match colors of respective segments/coethec
components. (The coordinate systems and axes for embedding
3 STREAMLINE EMBEDDING are chosen as described in Section 6, see also Section 5.3 for
Given a steady vector field(x), over the domairD, there is minimization of (2).)
exactly one streamline passing through every locaki@nD. Figure 2 shows streamlines samples from a linear vector
A streamlinesC D is a curve with the property that its tangenfield describing a node sink. The resulting mapping té IR
direction coincides with the velocity vector afeverywhere. shows thak(s) lie on a closed 1-manifold consisting of four
Let SC P(D) be the set of all streamlines sfwhereP(D) sharp corners corresponding to streamlines passing thitheg
denotes the power set @. Then S builds a partition ofD: four corners ofD. The sharp corners arise from the fact that
two streamlines are either disjoint or identical, and the®an the Hausdorff distances become larger towards the diagonal
of all streamlines give®. (Note that critical points fit into streamlines.
this concept as well: an isolated critical point is a stréaenl  Figure 3 shows sampled streamlines of a simple saddle.
of its own, while a streamline integration starting from théts embedding shows four unconnected 1-manifolds. They
neighborhood of the critical point may come infinitely closeescribe the four topological segments of the flow.
but never reaching it.) Figure 4 shows the sampled streamlines of a center and
For our purpose we need a distance measur®. dme only its corresponding embedding. Again, the separation of the 1
non-trivial measure we are aware of that builds a metricspamanifolds is induced by the topological structure of thetoec
is the Hausdorff distance: fields, here the boundary switch points. This becomes even
o (51, 52) = Max{Ch(s1, %), oh(Ss,51)} (1) more evident when we shift the_ center tp enfor<_:e a different
HASL hiSL =2/, Bni=2, 31 flow between boundaries, see Figure 5. Finally, Figure 6 show
with the one-sided distances streamlines of a more complex symmetric vector field with
multiple critical points.
dh(s,sj) = SUp{d(X’Sj)|X < S} ’ Thg examplesp above show us some properties of the pro-
and posed mappings: they consist of a number of unconnected 1-
d(x,s) = inf{d(x,y)|y € s} manifolds where every manifold corresponds to a topoldgica
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Fig. 2. Linear 2D vector field - a sink node and its
embedding.
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Fig. 3. Linear 2D vector field - a saddle and its embed-
ding.
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Fig. 4. Linear 2D vector field - a center and its embedding.
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Fig. 5. Shifting the center within the same domain bounds
results in a different global behavior.

Fig. 6. A more complex symmetric 2D vector field with
multiple critical points and its embedding.

sector. The manifolds have a shape and a position relative to
each other, giving information on how different the streiaed
in differently topological sectors behave.

4 ANALYSIS OF STREAMLINE EMBEDDING

In this section we provide a theoretic analysis of streamlin
embedding. We reveal the relation to vector field topology
which leads to the conclusion that topological segments are
mapped to manifolds. Furthermore, we discuss alternative
distance measures other than the Hausdorff distance.

4.1 Relation to vector field topology

In this section we show how the Hausdorff distance of
streamlines is related to vector field topology. The esaknti
proposition is that the Hausdorff distance is discontiraiou
only between topological segments. We take this further in
the subsequent section to conclude that the mamps each
topological segment to a manifold.

Topology-based flow visualization has emerged as a
standard tool for analyzing vector fields. We refer to the
state-of-the-art reports [12], [13] for an overview of the
topic and definition of vector field topology. In the follovgn
theorem we require the concept of tapological skeleton
which partitions the domai into regions of similar flow
behavior, e.g., streamlines seeded in a certain segmesmnall
in the same critical point or boundary region. For consisgen
we assume that separation curves and surfaces and critical
points, as well as boundary switch points and curves are
considered segments.

Theorem 1 (Continuity of Hausdorff distancepiven is a
vector fieldv: D — IR", ne€ {2,3}, and the partitions =
{S,.-,Sv} UiS=D andSNS; =0 for j #1i, induced by
its topological skeleton.

Letxp € § €. andx € D with ||x—Xg||2 < . Let 50 and
s be the streamlines passing through and x, respectively:
Xo € So andx € s. Then

0 iff xe§

Jm, O (%,8) = {c>o if x¢S .
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The above theorem states that the Hausdorff distanceris in IRN.
tinuous withintopological segments, ardj; is discontinuous  The segmentation” partitions D C IR", i.e., topological
betweertopological segments. segmentsS§ € . are mdimensional objects, & m < n.

We provide a proof for unbounded 2D vector field&enerally, we haven=n, e.g., segments are 2-dimensional
(n=2,D = IR?). The same arguments apply to the 3D caseggions forD C IR?, however, for special cases like critical
and similarly the proof can be extended to bounded domaimgints fn= 0) and separation curvemé& 1) we havem < n.

Furthermore in 3D there may exist 2-dimensional segmg&nts
Proof: Let v : IR? — IR? be a sufficiently smooth vector such thatP(S) is a 2-dimensional subspace ofIR
field. Letx$ € IR? be a critical point — w.l.0.g. a source node Each segmen§ can be generated as an ima@es), i.e.,
—of v, i.e.,, v(x§) = 0. Let a denote an angle w.r.t. a localit is “spanned” by the set of all streamlines B. These
coordinate system aff. Let s, be the streamline emanatingstreamlines can in turn be generated by a continuous seeding
from the close vicinity ofx§ in direction a which ends in structure g; which is an (m— 1)-dimensional object. For
another critical poink$ # x§. example, consider a 2D segmeBtcC IR% one can choose

Consider a second streamlirsg emanating fromxj in  arbitrary seed points for each streamline§nBut obviously
direction 8. We are interested in the limtt — 3. There are one can also arrange the seed points along a continuous curve
two cases: 0 C S by ensuring that for “neighboring” streamlines the

(i) sz ends inx§ (Fig 7 (a)): distance of seed points vanishes. Hence, the seedingustuct
Then limy_5 dy(Sa,S5) = O because witha — B the is a 1-dimensional object. Figures 2-6 (left) illustratestithe
pointwise distance betwees,,s; becomes arbitrarily colors indicate segments, and the seeding structures can be
small asv does not vanish along3 until X% is reached. chosen as straight lines. Note that boundaries have to ke tak

(i) sz ends in another critical point # x5 (Fig 7 (b)): into account in these examples.

Then limy_,5 du(Sa,S5) = ¢ > 0. FoIIo_vw_ng Theorem 1, the Hausdorff distance is continuous
The constant > 0 depends owv in the neighborhood ofs.  ONly within topological segments. Remember that the map
Assume w.l.o.gx§ is a sink nodé& There exists a neighbor- € aSSIgns a poing(s) € IRN to each streamlins such that

hood.# of x§ such that a streamline seeded in any locatidrausdorff distances between streamlines are preserveds |
within .4 will end in x¢. Then we definec > 0 as the Sguares sense.\We assume thatcontinuous. Then a segment

maximum radius of a sphere inscribed.ifr. S C IR™ is mapped to an— 1 dimensional manifold in IR,
With the definition of the topological segmentatioii we And likewise any otherk-dimensional segmen§ c . is

can interpret the condition for case (i) as,s3 C S, i.e., mapped to another_, d|st|n§k—1)'—d|men3|onal manifold.

the streamlines belong to the same topological segment. AngVe conclude this section with few remarks. The above

likewise for case (i) we havey C S, s3 C Sj with §j €. arguments reveal that it is reasonable to choose an emigeddin

andi % j, i.e., the streamlines belong to different topologicdl© IR* and IR for 2D and 3D vector fields, respectively.

segments. This concludes one direction of the proof. T&00sing a larger dimensioN only alleviates the error

reverse direction can be shown with the same arguments. €M (2), also called strain. Figure 8 illustrates this: pane
the 3D embedding to the 2D embedding in Figure 4. The

We restricted ourselves to the domain=IR? and made 3, embedding shows 1-manifolds and a smaller error which
assumptions on critical points for the sake of simplicitgl@ 5, e seen from the better preservation of symmetry in this
concise proof. The extension to unbounded 2D or 3D domaigs, \hje Furthermore, it is reasonable to choose a distance
is straightforward, and we provide only few remarks. In 20655 re on streamlines which is indeed a metric such as the
separation curves start from and end in saddle points and/y qorff distance. However, given a metric on streamjines
boundary switch points for bounded domains in structuraIB(_g_,dH, there is no guarantee that the mapas constructed
stable configurations. Figure 7 (c-d) |Ilgstrat.es .the S8y the MDS method) preserves the triangle inequality. Sp far
from a source node to the boundary. While this yields an eXR[\%/e only used continuity arguments to separate manifolds. Th
case, the arguments of the proof remain the same. The eituallj, sqorff distance between distinct manifolds quantiffes t
is only slightly different for center nodes, which are rel&t jirarence of associated topological segments. A natumell a

unstable and hardly appear in pracficen 3D, generally e question is how the shape of distinct manifolds, e.g.,
the same arguments apply. However, there are addltlorﬂ%ir curvature, can be interpreted.

topological structures like, e.g., separation surfaces.
4.3 Alternative distance measures

4.2 .Embe.ddmg manifolds We choose the Hausdorff distance for embedding streamlines
In this section we apply the above theorem to show that thecause it is well known that it is aetric Recall that
mape maps topological segments of vector fields to manifoldse minimum requirements for a reasonable distance measure
1. A similar argument as for streamlines ending in a sink can led fisr are. ppsmve dgflnltengss anq Symm?try’ In. addition, a metrl
streamlines converging to a closed orbit with sink-like héta satisfies the triangle inequality. In this section we sumizear
2. Note that for divergence-free 2D vector fields structyrsiable centers other distance measures for curves which can be used as
do exist. Such fields do not have sources or sinks, and strezsndiither are g|ternatives. Such measures are applied for tracking fibees
closed or leave the domain. For such fields topological methogigienerally . diffusi . . f h f-thn
not applicable whereas our streamline embedding works, semmgs in In diffusion tensor 'maQ'”gy we refer to the state-oi-tiie-a
Figures 4 and 5. report [25] for an overview.
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Fig. 7. Left: two streamlines start from x§. They end either in the same (a) or in different (b) critical points. Right: if
the streamlines end in different boundary segments (d), there must be a non-empty segment of different (in/out) flow
behavior in-between.

dw but less thamly, in this sense the measuif is in-between

dM anddH.

Although theminimumdistanced, between curves is not
considered useful in the literature [25] we include it in our
experiments. Note that this measure can easily degenaste (
well as the end point distana), see Figure 19.

Brun et al. [30] definefeature descriptors from the mean
and square root of covariance matrix of a sampled streamline
which yields a 9-dimensional vector. They define the diganc
measuredr between streamlines as the Euclidean distance
between their feature vectors.

Fig. 8. 2D vector field from Figure 4 embedded in 3D. We apply and compare the above mentioned distance mea-
sures in our experiments (see Section 6.6). Note that the
theoretical analysis is only valid for the Hausdorff metric

The Hausdorff distancdy can be considered a “worst case
distance” as it uses the maximum distance from either line §  |MpPLEMENTATION

the other streamline. There are two obvious modifications _tro hnicall h b ized foll W
obtain alternative distance measures: echnically, our approach can be summarized as follows. We

First, one could restrict the maximization from whole "ne%amplea fnyte number of streamllnes D and measure
to justend pointsof streamlines: _ausdorff dls_tances for_ every pair of st_reamlmes. From the
distance matrix the multidimensional scaling method cot@gu
de(s1,s2) = max{d(si(t1) —S(t1))|t1,t2 € {0,1}} , an embeddingin IRN (with N = 3), such that distances are
preserved in least-squares sense. The result is a discegte m
assumings, ands, are both parametrized over the intervad which assigns every sampled streamline a point i IR
[0,1]. This yields a much simpler distance measure [26] which partition of the samples into clusters is computed from
can be evaluated in constant time. Despite this simpliti, the distances. Weisualizethe image ofe which are points
above theorem states that such measure separates topblogigmpling 2-manifolds. In the remainder of this section we
segments (distance zero within andetween segments) andgescribe this process in detail.
is hence considered useful [27].
Second, one could I(.)Ok _for a smoot_h_er version of th%l Hausdorff distances between streamlines
Hausdorff distance which is less sensitive to extrema. _ ]
frequent choice is a measure based roean distance [28] Streamlines are mtegratgd by a s.tandard fourth order R.unge
between streamlines: Kutta method with adaptive step size control. We use a simple
approach to measure Hausdorff distances between stream

1

du(s1,%2) = = (dm(S1,%2) +dm(S2,51)) » lines: the integration scheme provides each streamline as a
2 piecewise polynomial which we resample with respect to
with arc length and a uniform distance between samples. We
dm(s1,s2) = meanmind(x1,X2) - then reduce the problem to computing tiscreteHausdorff
aes X2 distance between two point sets. The sampling rabsunds

Zhang et al. [29] modifydy, to take the mean only overthe error induced by this simplification, we choose it two
points whose minimum distance is above some threshpldorders of magnitude smaller than the minimal Hausdorff

i.e., replacedy, by distance between streamline (see below). We remark that
. _ streamline integration takes 3% of the overall run time,
Om(s1,82) = mean min d(xy,X2) . computation of Hausdorff distances takesd0%. We apply

X1€51Ad(X1,X2)>T  X2€S " . .
mostly a brute force approach of quadratic complexity mesti

In addition to the symmetric averagdf, = %(d,%(sl,sQ) + all distances between all point pairs without using anyiapat

di(sz,s1)), they consider measures using either the shorter data structures in the inner loop (see (1)): we realize that
the longer distance @, (s1,s2) andd}(sz,s1). The motivation hierarchical structures, such as kd-trees, don't alwayg pa
is to emphasize diverging parts of streamlises, more than off because they have to be set up per streamline. And for
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each streamline the number of points is still relatively Bma
such that the gain from logarithmic versus linear compyexit
is not enough to justify the additional overhead. We made
compromise and apply a kd-tree (using the ANN library [31]
only if the number of samples of a particular streamlin
is above some threshold. Possible other improvements
advanced sweep-line methods for points and line sets st
as [32] which apply a Voronoi diagram, or taking advantag
of a parallel GPU implementation.

5.2 Sampling streamlines Fig. 9. Vector field (3) and its embedding.

Ideally we would like to achieve a regular sampling of the

embedded 2-manifolds. The only reasonable way is to express

the degree of regularity in terms of Hausdorff distancegigenvalues must be positive and should be significantgetar

between streamlines and hence Euclidean distances in ti@n the remaining eigenvaludg 1, ...,Am. This is satisfied

embedding. We take a straightforward approach to generfae N = 3 in all our experiments (see Figure 23).

a set of streamlines: we discretize the dom&@nwith a We conclude this section with few remarks. First, an em-

regular grid with fixed cell sizeh and enumerate all grid bedding into(N — 1)-dimensional space is obtained from the

points. For every grid point we integrate a streamline. Wembedding inN dimensions as a projection along the axis

put this streamline in the set only if its Hausdorff distanceorresponding toAy. Figures 8 and 4 illustrate this. For

to all streamlines already in the set is larger than a thidsh@ll 3D examples in the subsequent sections this refers to a

dmin. Otherwise the streamline is discarded. This way we c@nojection along the blue-axis. (Note that projected manifolds

adjust the sampling rate, and we avoid local oversamplimgay overlap in 2D.) Second, although the goal is distance

by choosing the parametets and dy,;n. Distance tests are preservation, the results may exhibit significant distortas

executed in reverse order such that potentially near stieasn there is generally no perfect solution (in®R One way to

are tested first. This leads to an early reject in practicegmedy this is to choose a subset of manifolds and associated

typically only an average number of 10300 streamlines Streamlines and to compute a new embedding of this subset

were considered for each test of a potential new streamligly. Finally, We remark that there are various other meshod

We remark that a random sampling (with a caching stratefgr dimensionality reduction with different goal funct®n

for early reject) generally showed inferior results in terof MDS is the method of choice for distance preservation. One

streamline placement. drawback of the method as outlined above is the mandatory
Finally, we note that streamline sampling does not directiyse of dense matrices. For large data sets it might be useful

compare to “usual’” manifold sampling as, e.g., in surfadé choose another method which takes advantage of sparse

reconstruction, because the space of streaml®eis not matrices, e.g., Laplacian eigenmaps [33], and then choose

a Euclidean vector space. All we know about this spassibsets for embedding (see, e.g., Figure 14).

is how to measure (unoriented) distances. In addition, each

streamline (except critical points) has an infinite number @ 4 Clustering

representatives, i.e., seeding points, iff,IRnd there is no

straightforward way to approximate an inverse nm&g to

support seeding.

We aim at a segmentation of the vector field based on
Hausdorff distances (or distances under the ®a®ne way

to partition the field into distinct segments is using a @tisig

] ) method. It is well-known that direct application of clustey

5.3 Computing the embedding methods such ak-means on the embedded points generally
We compute the embedding induced by the discrete elap does not yield good results as it tries to separate pointosgts
multidimensional scaling (MDS) [24]. The input to MDS is adoes not incorporate connectivity information. Betterukss
symmetricm x m distance matriXD with Dij = dy (s,sj)? for are obtained from spectral clustering, see, e.g., [34]. Our
i#jandD; =0 for 1<i,j <m. (The matrixD was set up goal is to compute a partition intk segmentsautomatically

in the sampling stage by recording all measured distancesi}h the numberk > 2 as a variable. We achieve this by
Constraining the mean to the origin yields the symmetritormalized cuts [35], a spectral method which formulates
matrix B = —%JDJ, where J = 1| — %111 and 1 € R™ clustering as a graph partitioning problem. (This is clgsel
is a column vector of ones. Spectral decomposition yieldslated to traditional spectral clustering as essentthlysame

B = QAQ' with diagonal matrixA holding the eigenvalues functional is minimized.)

Aii = A; in decreasing order such that> Aj for i < j, and  We briefly summarize the general idea. We assume that we
associated eigenvectors as columnQoflhe restriction to the want to partition the samples into two segments 0 and 1.
first N columns ofE = Q/\% yields coordinates in Rin the This bi-partition can be expressed by a vedoe {0,1}™.
rows of this matrix. The magnitude of eigenvalues “priagti A normalized cut defined as the minimizer of a certain
the coordinate axis, and we are interested in the projeotibm cost function which expresses how well clusters are seg@rat
the firstN eigenvectors. Thus, for a valid embedding the fitst while taking into account compactness of clusters. Thereliec
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problem is now turned into a continuous problem repladingdensity and distribution. Furthermore, any faithful suga
by y € R™ in order to make optimization feasible. First, theeconstruction has to make assumptions on sampling density
distance ("dissimilarity”) matrixD € IR™™ is turned into a relative to local feature size. This would require a careful
similarity matrix A with Aj; = exp(—i2 Dij). The parameter tuning of parameters for every point cloud.
p controls how rapidly similarity faﬁs off with the squared For representing the clusters, we use a simple color coding
distanceD;j = dy (s,sj)z. Note thatA can be made a sparsefor both the streamlines and the embeddings where corre-
matrix in practice by either truncating small entries toazer sponding clusters are equipped with the same color.
or by restricting non-zeros to a certain number of nearestEven though the embeddings show relations between dif-
neighbors using the symmetrc+ A ". Now put the row sums ferent streamlines, a direct association from a point on the
of A as a diagonal weight matri¥/ such thatWj = ¥ ; Ajj, manifold to its corresponding streamline is lost. To cope
1 1 i i i inki .
and compute the graph Laplacidn—W~2 (W — A)W "2 with this, _brushmg and linking approaches are used: 'Fhe
- . - e . __user can interactively select a number of embedded points
which is symmetric and positive semidefinite. An approxienal . ;
. . X ST or the corresponding clusters) on the manifold and get the
(continuous) solution to the normalized cut minimizes th ; . : o
) . associated streamlines, or vice versa. Similarly, the gaar
Rayleigh quotient ; . .
select a point or streamline as a representative to select th
y'Ly associated cluster. A new clustering can be computed any
yTly time, and the user can switch to a partial embedding of a

It is well known that this minimization leads to solving theselectlon of points/streamlines. Another way of intexatis

eigenvalue problerhy = Ay. (Spectral clustering as describedfe.'?mbeddmg Fhe user selects a subsgt of points from the
in [34] uses a different formulation for the Laplacian mate- Initial embedding. Then the corresponding subset of stream

sulting in a shift of eigenvalues.) LetOA; < Ay < Az < - < lines is considered for computing a new embedding with less

Am be eigenvalues df, andy; are the associated eigenvegtorsq'smrtlon of distances. We refer to Section 6.4 which shows

The first eigenvectoy; is constant and leads to n¢ug) = 0. an example.

The second eigenvectgp provides an approximation to the

normalized cut solution. Recall that the optimal cut intatw5.6 Alternative distance measures

segments is the discrete vector Hence, we are left with We compare the Hausdorff distance to alternative distance

computing a binary partition frorgy, e.g., by thresholding. measures summarized in Section 4.3. The sampling strategy
Indeed, this process of computing the discrete partition iemains the same as it is independent of the choice of distanc

more involved as we are aiming atkaway partition with measure. For our experiments, however, we computed the

2 <K < kmax. There are various methods for computing gampling only for the Hausdorff distance and used the same

discrete segmentation from the eigenvectgss...,yi,.+1 Seeds for the other distance measures as this enables & bette

including hierarchical cuts andkameans variant. We choose acomparison of clusters on the same set of streamlines. éteith

simultaneousk-way cut from multiple eigenvectors (see [35khe computation of the embedding nor the clustering are

for details). For each segmentation we obtain a cost valaffected by the choice of distance measure.

ncug of the normalized cuts, and we minimize this value by The computation of mean distandg, mean-of-thresholded

a linear search over the number of clustierdhis is efficient distancedf, and minimal distancely, is very similar to

because the computation is dominated by computing the filsé computation of the Hausdorff distandg with similar

kmax+ 1 eigenvectors. Figure 22 shows cost (normalized feomputational cost.

comparison) fork-way cuts plotted over the number of clus- The computation of the end point distane is performed

ters: we determine the optimklas the global minimum. The in constant time independent of the length of streamlinks. T

diagram provides a visual feedback revealing local minimgame is true for the feature distardeafter feature descriptors

which indicate “stability” of the choice ok and alternative haven been computed once for each streamline; the cost for

choices. We observed that this clustering scheme tendsdo fihis computation is not relevant. Both measurds,and dr,

reasonable numbeksand good clusters automatically. We arare evaluated very efficiently.

not restricting neighborhoods and taking advantage ofsgpar

matrices here. This leaves the distance fallfas the only § RESULTS AND DISCUSSION

parameter of the algorithm.

ncutly) =

We show 3D streamline embeddings for several synthetic and
. ] ) ] real-world data sets. We visualize the embeddings together
5.5 Visual representation and interaction with the streamlines, the colors denote clusters. All timese

For the visual representation of the embeddings, we haweasured on a Intel Core2 CPU at 2.6GHz (using only a single
chosen small spheres to show the particular points of there).

embedding and to give an impression of their spatial rafatio We use a canonical coordinate system for the visualization
Since the embedded points are assumed to build 2-manifoldsthe embeddings. As pointed out in Section 3, the minimizer
a surface reconstruction using, e.g., alpha shapes [363, oof (2) is invariant to translation and rotation. In additiadhe
splat rendering after estimation and orientation of nosmisl absolute scale does not convey any relevant information. Fo
an option. We prefer the discrete representation usingrephethis reason, coordinates are uniformly re-scaled to peovid
to give the user a better impression of the present poibod views, and the vectors denoting axis have length oree. Th
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Fig. 10. Vector field (4) and its embedding.

x-axis (red),y-axis (green), and-axis (blue) refer to the first, Fig. 11. Visualization of topological structure of vector
second and third columns of the matiix (see Section 5.3) field (4).

and hence eigenvalugg < A; < Az of B, respectively. This

means thex-axis refers to the most relevant dimension, see ) ) ] o
also Section 6.7. as ribbons. The complexity of such direct visualization of

topological structure even for simple data indicates ktins
. for more complex vector fields.
6.1 Synthetic examples

We start with a simple example, a flow from a source &2 ABC flow

(0,0,0) into a sink at(1,1,1) in the vector field As a non-trivial example, Figure 12 shows the embedding of
X1 (1—x1) the (steady) ABC (Arnold-Beltrami-Childress) flow
v(x) = [ X2(1-x2) | , x€[0,1]x[0,2]x[0,1] (3) Asin(xs) + B cogx,) X1
X3 (1— X3) v(x) = [ Bsin(x;) + Ccogxs) | , x=|x | €[0,2m®,
Csin(x2) + Acogx1) X3

where x; denote thei-th component ofx. Figure 9 shows
the embedding of 403 streamlines which is essentially vith A= /(3),B=,/(2), andC = 1. This incompressible
saddle-like 2-manifold surface. Note that for this exampke and inviscid flow has some theoretical importance in fluid dy-
explicitly avoid seeding on planes= 0 andx; =1 (i=1,2,3) hamics because it describes a closed-form solution of Buler
because any streamline will always remain within thesegylaréquation [37]. It has served as example data set in a number of
which yields a set of 2D configurations and the respective tisualization papers [38], [39]. We tested streamline dasip
manifold embeddings (see Section 4.2). Topologicallys¢heon a regular 15 15x 15 grid and choosémi, = 0.075. The
planes act as separatrix planes of the field. Generally sgedsampling took approximately 63 minutes. Figure 12 shows
exactly on separatrices cannot be avoided. However, we cde resulting 3958 streamlines and their embedding which
sider such a seeding exceptional and hence unlikely for m@fearly exhibits the manifold structure. The normalized cu
complex synthetic fields and for measured flow fields. ThRegmentation detected 17 clusters. We obtain a smalleibwers
example was computed on a £6.6 x 16 streamline sampling With 1,153 streamlines fobyin = 0.1. The sampling time is
grid with &yin = 0.05. Sampling took approximately 8 secondgeduced to approximately 3 minutes. Figure 20 shows this
We extend this to a more complex example showing tiggnaller version dy, top left) together with a comparison

vector field of distance measures. Note the different embedding due to
the lower sampling rate which, however, shows the same
—X1 (1—x%1) (14x1) manifolds
viX)= [ %2 (1-x2)(1+x2) | , xe[-1,1® (@) :
—X3(1-X3) (1+x3) 6.3 Cylinder flow |

consisting of a sink af0,0,0), 8 sources, 18 saddles, andrigures 13 and 14 show a simulated flow around a 3D spherical
therefore 8 topological sectors. Figure 10 show852 sam- cylinder. Here we use a single time-step of an unsteady
pled streamlines and their embedding. Here the colors shsimulation. The data was given on a 12828x 128 grid.

the clusters formed by eight connected components corife sampled streamlines on a 204 x 10 sampling grid
sponding to the topological sectors. Again, we avoidedisged with &y, = 0.05. Sampling took approximately 33 minutes.
in certain planes =c, ce {—1,0,1} to avoid degenerate Figure 13 shows the resulting 735 streamlines and their
configurations (see previous example). We used the sasmbedding.

sampling parameters as above. Sampling took approximatelfrigure 14 shows a re-embedding of selected clusters of
35 seconds. We used normalized cuts, and the numberpofnts/streamlines. With fewer constraints the manifdatdcs
clusters was detected automatically. In addition, Figute iure becomes more evident. We apply the same colors as
shows a visualization of the topological structure of thifor the original clusters in Figure 13 and use this partial
vector field: its critical points are shown as spheres (ssjrcembedding to interactively select clusters. Only streaedli
sinks) and disks (saddles), separation surfaces are tadican the selected cluster are displayed.
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Fig. 14. We compute a new MDS embedding only for a subset of points/streamlines (left, highlighted red) and use
it for selection of two clusters (center/right). We show the partial re-embedding, and only the selected streamlines,
corresponding to red points, are shown. Here, the two selected clusters separate the flow in a left and a right part.

Fig. 16. We compute a re-embedding for a selection (left) and then select two points (in red) to highlight the
corresponding streamlines (right)
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Fig. 18. Streamlines of the aneurysm data set and their
embedding.

Fig. 12. 3,958 streamlines of the ABC flow and their

embedding. of 934,266 cells: prisms and tetrahedra. There is one region
of inflow and two regions of outflow. Between these regions
. there are three aneurysms. The size of the bounding box of
6.4 Cylinder flow Il the model is 43 x 187.2, we chos&yyin = 3.
This field is the same as cylinder flow I, except for the fact For this example it is sufficient to seed streamlines from
that we subtracted a constant average field describing #}§ or more seeding planes. We placed seeds on two planes,
ambient part of the flow. This treatment is well-known in thene first plane intersects the vessel near the inflow regiod, a
fluid dynamics community. It is motivated by the idea thahe second plane intersects near the outflow.
the observer is moving with the flow. This way we get a e found 802 streamlines, the sampling took 566 seconds,
cascade of critical points behind the cylinder and theesfoang 11 clusters were detected. Figure 18 shows the result.
a different behavior of the streamlines. We used the samge goal of the simulation is to understand which amount
sampling parameters as for the previous data set. Sampljigihe flow passes the aneurysm under which conditions
took approximately 52 minutes. Figure 15 shows the reulti ,cn as velocity and pressure. The more important goal is
1,251 streamlines and their embedding (center left). For thi§ |earn how this flow can be manipulated, e.g. by so-called
example, the manifold structure is less intuitive as fewn®i cojling and/or inserting stents, such that flow and pressure
are far away and a large number of points clusters. To get M@i€aneurysms become minimal. A clustering of streamlines is
information, we applied a re-embedding: we selected a $Ubgg|pfu| for interpretation of the results of the simulatiamd to
of points which appeared to collapse in a small region in thghjeve these goals. A trivial clustering by inflow and outflo
original embedding and did a re-embedding for this selectioegions is obviously too simple. On the other hand, vectdu fie
Figure 16 shows that it unfolds to a 2-manifold. topology is complex for this data set: it is hard to extracain
Figure 16 shows a re-embedding of a part of the streagpyst way and yields too much (unimportant) information.
lines/points (chosen similar as in Figure 14 for the cylindesy this is not a practical option, either. Clustering based
flow | example). We select two points (in red) and show thg, the Hausdorff distance, or alternative distance measure
corresponding streamlines: as the manifolds separat@iie f petween streamlines leads to reasonable results. Themen ti
symmetric flow into a left and right part, the symmetry ofor computing clusters is relatively low. And the strearalin

manifolds is reflected in symmetry of respective streans'.lineembedding serves as a visualization of clusters which does
Figure 17 uses a different partial embedding of a larggu: suffer from visual clutter.

subset of streamlines and shows different clusters (pamts
red, only selected streamlines are shown).
6.6 Comparison of distance measures

6.5 Aneurysm data In this section we evaluate the alternative distance measur
We conclude with a medical data set: the flow data is takemean distancel,, mean-of-thresholded distandg, minimal
from a simulation of the blood flow in areas containing thredistancedn,, end point distanceg, and feature distancar
cerebral aneurysms. Such aneurysms result from a conger(gae Section 4.3). For all experiments we choose the thiesho
or evolved weakness of stabilizing parts of the vessel wall at = 10, with the same values fod,i, as for the previous
potentially lead to rupture and a life-threatening blegd#0]. experiments. We use the same set of streamline samples
Therefore, the main segmentation task here is to identifg before (fromdy), timings are summarized in Table 2.
regions in which the blood flow enters the aneurysm witho&bor all results in this section we applied normalized cuts
leaving it again. The data consists of a single time step fufr segmentation with automatic detection of the number of
a time-dependent simulation. In order to compute the flowdusters kmax= 20). Figure 22 illustrates this process: it shows
silicone model of the vessel geometry was constructed. A Cdest along y-axis) fork segmentsx-axis) for the example data
scan of this aneurysm phantom served as basis for the diggats anddy. For comparison values are scaled such that cost
model for the flow simulation. This volumetric model consistfor k =2 equals 1.
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Fig. 17. Selection of some clusters the cylinder flow data. We select clusters on a partial re-embedding. Selected
points are displayed in red, together with the streamlines in the selected cluster.

Fig. 19. Embedding using measures (from left) dy, df,, dmin, de, and dr for synthetic vector field (4).

Figure 19 shows embeddings using different distance meaivantage oved, and d}, at the same computational cést
sures on the synthetic vector field (4). Figure 10 shows tfidne end point distance tends to yield similar resultsdas
vector field and embedding for the Hausdorff distamte — which can be explained with arguments in Section 4, and
Note that the embeddings are degenerate for the mininwehich indicates that the Hausdorff distance is often adt@in
distancedn, and the end point distanad:. This is obvious for end points of streamlines — but it also tends to degeeerat
from their definition and the definition of this particularcter Finally, the distancedr based on feature shows good results
field. The same 8 clusters are recognized automaticallylfor but is hard to relate to the other measures.
measures.

Figure 20 shows the same comparison for the ABC rov(g._7 Dimensionality of data

We include the Hausdorff distance, and normalized cut selg- . . .
mentation yields 17y), 12 (c), 13 @), 15 @min), 20 @), or the MDS method, the magnitudes of eigenvalues in the

and 18 (i) clusters, respectively. Clustering took between 1gjagonal matrix\ (see Section 5.3) indicate the dimensionality
and 25 seconds. of the data described by the distance matbx For an

For the Cylinder Flow Il data (Figure 21), we obtain 9embedding i.n IR we expect a significaqt drop in magnitude
(@), 11 @m), 16 @L), 5 @min), 17 @), and 14 @) clusters, for the 4th eigenvalud,. For all embeddings that are shown,

respectively. Clustering took between 9 and 18 seconds. the reac_j, green, and biue axes corresponﬂl_td\z_, and_ A3,
spectively. The global scale is chosen arbitrarily. Feg3

Finally, we compare distance measures for the Aneurys;rﬁows the first 16 eigenvalues for all our examples: xhe
data set (without figure): here, we obtain , 14 dm), 5 ) o . "
( gure) ] () axis shows the index of A;, and eigenvalues on thgaxis

T . —
(d), 7 (nin), 10 (de), and 12 @) clusters (for allp = 4), are normalized such that aly = 1 to enable comparison for

respectively. Clustering took between 5 and 10 seconds. . __ ) S
i ; - multiple data sets. These empirical observations coinwitie
The figures show different characteristics of the measure,

. . N . g theoretical analysis in Section 4.2.
dm is less sensitive to extrema than the “worst case dlstance'e y
T . -
dl_-l- As expecteddy, falls in-betweerdy anddm. The minimal 3 |, fact, evaluation oty is cheaper forsampling because theimin
distancedmi, tends to degenerate and does not show amyeshold is detected immediately.
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Fig. 21. Embedding using measures (from left), top row: du, dm, df,; bottom row: dmin, de, and de for the Cylinder flow
Il data set.

—Cxample 2 —Example 1
—Example 2
—ABC

— Cylinder flow |
—Cylinder flow Il
Aneurysm

09| |— Cylinder flow I 0.9]
— Aneurysm

0.8

0.7,

0.6}

0.5

0.4

0.3

0.2

0.1

Fig. 22. Normalized cuts: the optimal number k of clusters  Fig. 23. MDS embedding: largest 16 eigenvalues (nor-
is determined automatically as global minimum of ncut,. malized) for our examples.

The diagram shows the cost ncuty (see [35]) plotted over

the number k of clusters for dy. Values are normalized

such that for all data sets ncut, = 1. timings depend on the data set and the choice of sampling
parameters. For all examples we sampled points on streasnlin
with a regular spacing dfis = 0.02 (excepths = 0.005 for the
cylinder flows with a spatial extent ¢, 1.5] x [0,1] x [0,0.75]

We finally report on the performance of our approach arahdhs= 0.5 for the aneurysm with bounding box diagonal of
summarize timings. The resulting number of streamlines a@89). The computation times for embedding and clusterieg ar

6.8 Performance
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data set # [ l MDS  clusteri . .
E?(:mspie 1 Sanl%gs samp '8ng 07 cus er_'ng see Section 5). And secondly, the number of distance evalu-
Example 2 1,652 35 18 19 ations is quadratic in the number of streamline samples. The
ABC flow 1,153 182 41 16 last point could possibly be addressed by only considering
ABC flow 3,958 3,783 224 54 dist ¢ tain clust ters for distant o
Cylinder flow | 735 1,965 11 12 istances to certain cluster centers for distant sampllp i
Cylinder flow I 1,251 3,127 6.8 16 to multi-pole methods. These are implementation detaiishvh
Aneurysm 802 566 15 3.3 refer essentially to a preprocessing stage. Another iraport
TABLE 1 issue is that we only have coarse control over sampling. The
Timings: sampling (dy) and embedding. choice of the grid sizén and minimal distancely,;, does not

yield a good estimate on the resulting number of streamlines
(and hence on run-time), neither does it allow for a “pefifect
data set # Oy dm dn dmn de  de sampling in a sense of surface reconstruction. Furthermore
Example 1~ 403 59 59 75 59 015 014 the computation of the embedding may be somewhat biased
Example 2 1,652 93 92 151 80 16 15 ) . . . ;
ABC flow 1153 763 795 864 763 1.4 0.8 due to locally varying sampling density. This problem ischar

ABC flow 3,958 7,230 7,323 8,027 7,165 16 14 to solve as there is not enough information available on the

Cyl.fiowl 785 20 20 38 20 051 051 gtreamline spaces. On the other hand it is always possible to
Cyl.fowll 1,251 593 599 648 595 15 16 . > P
Aneurysm 802 497 298 452 115 55 5.4 oversample data and to then filter results. Such filtering may

also be necessary as the MDS embedding requires computation

TABLE 2 . . Do
Timinas: evaluation of distance matrix for different of eigenvalues of dense matrices. For our setup the limiting
gs- measures number is currently near,800 samples for evaluating MDS,

in terms of acceptable run-time and memory requirements.
Finally, we remark that automatic clustering provides atce
able results in practice. However, clustering algorithrely r

generally much lower than those for sampling. For MDS, tHf2" few user-defined parameters. One way to remedy this
run time depends on the numberof streamlines, i.e., on the would be to use multi-scale methods, e.g. [41]. Furthermore
size of the distance matrix. the “decisions” of these algorithms are not always easy to

Tables 1 and 2 summarize timings. All times are given ignderstand. Therefore a manual inspection is recommended,

seconds, the first two columns denote data set and numbePggSibly followed by a manual intervention, e.g., to choase
streamline samples. different number of clusters.

Table 1 shows times for sampling using the Hausdorff
distancedy and times for computing the embedding. The tim8 CONCLUSIONS

for clustering (Figures 19-21) is an average for the nom®dli \ye presented a new technique for visualizing streamlines in
cuts segmentation with automatic detection of the numbgg \ecior fields which is based on mapping streamlines to
of clusters. The maximum number of clusterskigax = 20, yqints in 3D. This map is constrained to preserve Hausdorff
.e., the first 21 eigenvectors of the dissimilarity matrbe a yigtances between streamlines as Euclidean distancesdretw

computed. Clustering includes few iterative optimizasiowe ,,ints in least-squares sense. The image of the (infinite) se
choose reasonably high limits on the maximum number gt gyreamiines covering the vector field domain is a set of 2-
iterations that always reproduced good results. Equallydgoy,anifoids embedding in R We see the following advantages

results may be obtained for considerably lower limits atdow making our approach an alternative to existing flow visualiz
computational cost. tion tools:

Table 2 shows times for evaluation of the distance matrix . - : . .
. . . "« Visualizing manifolds is less prone to visual clutter than
D for all distance measures. Here, all seed points are given . o : :
visualizing stream lines directly.

from the initial sampling (usingly), only pairwise distances . Surface topology — connected components — provides a

are evaluated. . : .
. topological segmentation of the vector field.
We finally note that we have chosen all parameters very . . :
« Surface geometry — distance in manifolds — encodes

conservatively to sample manifolds faithfully, we do ngt o L . .
find clever approximations. For instance, simply reducimg t similarity of global streamline behavior.
: ' Manifolds serve as 2D parametrization of the field, en-

sampling rate would increase performance without changing . . : . .
S ; . abling selection of neighborhoods or mapping of addi-
the results very much. Similarly, the resolution of samgplin : . :
tional information.

grids could be reduced. In fact, we can always get reasonable )
previews within seconds to minutes. We remark that our approach does not make any assumptions

on the dimensionality of the data: 2D data are handled exactl

the same way as 3D data. The concept theoretically extends to
7 LIMITATIONS higher dimensions, however, interpretation, e.g., of 4Bash-
We showed the properties of our technique for a number liofies for unsteady flows is non-trivial. Similarly, altetive
examples from simple to fairly complex vector fields. Thesgistance measures can be applied. We give few examples and
tests also reveal a number of limitations: computation $imeomparisons. We prove theoretical properties of our amproa
for sampling are rather high. This is firstly due to aivea for the Hausdorff distance: streamline embedding is rdlate
evaluation of Hausdorff distances (which could be improvetb vector field topologyk-dimensional topological segments
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are mapped tdk — 1)-dimensional manifolds. This is backed19] W. Chen, S. Zhang, S. Correia, and D. S. Ebert, “Absivaatepresen-
by our empirical results. On the practical side, howeveg, th
current approach to manifold sampling is slow, and develpi 20]
advanced sampling methods would constitute a challenging
direction for future work.

(21]
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