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Streamline Embedding
for 3D Vector Field Exploration

Christian Rössl and Holger Theisel

Abstract —We propose a new technique for visual exploration of streamlines in 3D vector �elds. We construct a map from the space
of all streamlines to points in IRn based on the preservation of the Hausdorff metric in streamline space. The image of a vector �eld
under this map is a set of 2-manifolds in IRn with characteristic geometry and topology. Then standard clustering methods applied to
the point sets in IRn yield a segmentation of the original vector �eld. Our approac h provides a global analysis of 3D vector �elds which
incorporates the topological segmentation but yields additional information. In addition to a pure segmentation, the established map
provides a natural “parametrization” visualized by the manifolds. We test our approach on a number of synthetic and real-world data
sets.

Index Terms —vector �elds, streamline embedding, clustering
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1 INTRODUCTION

The visual exploration of 3D vector �elds is still a challenging
problem for which a variety of solutions have been proposed.
One class of approaches aims at �nding semantic structures
in the �ow, i.e., �ow regions which show a similar behavior
concerning certain physical, geometrical, or topologicalcrite-
ria. Such segmentation can be achieved for example by a local
analysis or by global methods applying vector �eld topology,
as well as by hierarchical or multi-scale methods. Although
topological approaches are well-established for 3D �elds,there
are a number of shortcomings, namely:

� Topological segmentation gives a separation of regions
of different �ow behavior. This segmentation is a binary
information: topology tells usif two particular regions
behave differently, it does not tell ushowdifferently they
behave.

� Visualization does not “scale” from 2D to 3D vector
�elds: given a segmentation, visualizing all streamlines
even for only of a number of segments is hard because
of visual clutter. This is a general problem for vector
�elds in three dimensions.

In this paper we propose an approach which tackles the two
points mentioned above. The main idea is to consider the space
of all streamlines and to equip it with a non-trivial metric.For
this we use the Hausdorff distance between streamlines. Then
we de�ne a map from the set of all streamlines to points in an
n-dimensional space, which preserves the Hausdorff distances
as much as possible. This way, the set of all streamlines of a
3D vector �eld is mapped to a number of two-manifolds in
the nD space. Figure 1 illustrates the main idea of the paper.

Our approach addresses the above mentioned problems:
�rst, distances in manifolds provide a continuous measure of
how different streamlines behave. And second, the manifolds
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Fig. 1. Main idea: every streamline si 2 D is mapped to a
point pi 2 IRn such that the Euclidean distances between
pi ;p j correspond as much as possible to the Hausdorff
distances of si ;sj .

can be visualized in a straightforward way, and to some extent
�ow �eld exploration reduces to surface visualization. Finally,
thinking of manifolds does not only convey a quantitative view
of streamline behavior but this new domain also provides a
parametrization of the vector �eld: using the embedding, every
stream line can be uniquely addressed by a point on a surface.

In this paper we describe how to �nd such a map from
streamlines to points and explain how it can be used for
interactive �ow exploration.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews work related to ours. In Section 3 we explain
the general approach and illustrate the idea with simple 2-
dimensional vector �elds. The implementation of this theoret-
ical framework is reviewed in Section 5. Section 6 discusses
results, Section 7 summarizes the limitations, and Section8
concludes the paper.

2 RELATED WORK

There exist a number of approaches to �nd relevant structures
in vector �elds. Hierarchical clustering methods based on local
criteria of vector �elds are applied in [1], [2]. Further methods
based on local analysis apply diffusion �ow [3] well-known
from data smoothing, or apply similarly multi-scale methods
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[4] to achieve a multilevel decomposition. Note that here the
term “local” refers to a certain level of resolution and in this
sense may be misleading. There are a number of approaches
to detect region based vortical structures, such as [5], [6]. All
methods mentioned above have in common that they act on
local properties of the �ow, i.e., that a streamline may enter
or leave different regions of local �ow behavior.

In addition there are semantic �ow separations where a
streamline is guaranteed to belong to exactly one segment.
Among them, topological methods are perhaps the most promi-
nent ones [7]–[11]. They aim at segmenting the �ow into areas
of similar asymptotic �ow behavior and are widely-researched
in the visualization community. We refer to [12]–[14] for state-
of-the-art reports in vector �eld topology.

The concept of streamline predicates [15] is used in a
framework aiming at segmenting streamlines by mapping one
and the same predicate to every point on a streamline. This
way, streamline-respecting segmentations of the �ow domain
are obtained for different choices of the predicates.

In DT-MRI visualization there are various approaches to
treat �ber bundles instead of particular locations, for in-
stance [16], [17]. A spectral clustering approach is taken in
[18] for �nding white matter �ber correspondences. Here,
similarity matrices are de�ned using the Hausdorff distance.
In [19] a hierarchical clustering scheme is applied. Various
proximity measures on �ber tracts are combined in [20] for
visualizing a 2D embedding.

Also related to our work are streamline placing techniques
for 2D [21], [22] and 3D [23] vector �elds. These methods aim
at an equidistant placement of streamlines in the domain which
requires a variable length of streamlines as an optimization
parameter. This is in contrast to a global vector �eld analysis
which must consider streamlines as a whole, i.e., streamlines
of maximal length.

3 STREAMLINE EMBEDDING

Given a steady vector �eldv(x), over the domainD, there is
exactly one streamline passing through every locationx 2 D.
A streamlines� D is a curve with the property that its tangent
direction coincides with the velocity vector ofv everywhere.

Let S� P(D) be the set of all streamlines ofv whereP(D)
denotes the power set ofD. Then S builds a partition ofD:
two streamlines are either disjoint or identical, and the union
of all streamlines givesD. (Note that critical points �t into
this concept as well: an isolated critical point is a streamline
of its own, while a streamline integration starting from the
neighborhood of the critical point may come in�nitely close
but never reaching it.)

For our purpose we need a distance measure onS. The only
non-trivial measure we are aware of that builds a metric space
is the Hausdorff distance:

dH (s1;s2) = maxf dh(s1;s2);dh(s2;s1)g ; (1)

with the one-sided distances

dh(si ;sj ) = sup
�

d(x;sj ) j x 2 si
	

;

and
d(x;s) = inf f d(x;y) j y 2 sg

for s1;s2 2 S, and whered(x;y) = jjx � yjj2 denotes the
Euclidean distance in IR3. Our goal is to establish a map

e: S! IRN

which preserves the Hausdorff distances as much as possi-
ble: for two streamliness1;s2, the distancesdH (s1;s2) and
d(e(s1);e(s2)) should be as close as possible whered describes
the Euclidean distance in IRN. This way we ensure that
streamlines which are close to each other in Hausdorff space
are mapped to spatially close points in IRN.

Finding e can be formulated in least-squares sense, i.e., as
the following minimization problem: letf s1; :::;sng � S be a
dense sampling ofS. We search fore(s1); :::;e(sn) such that

n

å
i= 1

n

å
j= 1

( dH (si ;sj ) � d(e(si);e(sj )) ) 2 ! min (2)

This is the problem arising in the classical multidimensional
scaling (MDS) method (see, e.g., [24]). Solving (2) leads to
computing the spectral decomposition of a symmetric matrix.
Obviously, the solution is not unique because every translation,
rotation or re�ection in a line remains a solution. Furthermore,
the solution depends on the sampling ofS, i.e., on the number
and distribution of streamlinessi .

Illustrating 2D examples

We illustrate the approach on a number of 2D example
�elds on a square domainD = [ 0;1] � [0;1]. We decided to
choose the dimensionn = 2 and establish maps to IR2 for
the sake of illustrating the concepts. The shown embeddings
are essentially orthogonal projections of embeddings in IR3.
We use a rather low number of streamlines here and obtain
discrete 1-manifolds which would converge to true manifolds
which appear for an in�nite number of samples. The colors
of streamlines match colors of respective segments/connected
components. (The coordinate systems and axes for embedding
are chosen as described in Section 6, see also Section 5.3 for
minimization of (2).)

Figure 2 shows streamlines samples from a linear vector
�eld describing a node sink. The resulting mapping to IR2

shows thate(si) lie on a closed 1-manifold consisting of four
sharp corners corresponding to streamlines passing through the
four corners ofD. The sharp corners arise from the fact that
the Hausdorff distances become larger towards the diagonal
streamlines.

Figure 3 shows sampled streamlines of a simple saddle.
Its embedding shows four unconnected 1-manifolds. They
describe the four topological segments of the �ow.

Figure 4 shows the sampled streamlines of a center and
its corresponding embedding. Again, the separation of the 1-
manifolds is induced by the topological structure of the vector
�elds, here the boundary switch points. This becomes even
more evident when we shift the center to enforce a different
�ow between boundaries, see Figure 5. Finally, Figure 6 shows
streamlines of a more complex symmetric vector �eld with
multiple critical points.

The examples above show us some properties of the pro-
posed mappings: they consist of a number of unconnected 1-
manifolds where every manifold corresponds to a topological
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Fig. 2. Linear 2D vector �eld - a sink node and its
embedding.

Fig. 3. Linear 2D vector �eld - a saddle and its embed-
ding.

Fig. 4. Linear 2D vector �eld - a center and its embedding.

Fig. 5. Shifting the center within the same domain bounds
results in a different global behavior.

Fig. 6. A more complex symmetric 2D vector �eld with
multiple critical points and its embedding.

sector. The manifolds have a shape and a position relative to
each other, giving information on how different the streamlines
in differently topological sectors behave.

4 ANALYSIS OF STREAMLINE EMBEDDING

In this section we provide a theoretic analysis of streamline
embedding. We reveal the relation to vector �eld topology
which leads to the conclusion that topological segments are
mapped to manifolds. Furthermore, we discuss alternative
distance measures other than the Hausdorff distance.

4.1 Relation to vector �eld topology

In this section we show how the Hausdorff distance of
streamlines is related to vector �eld topology. The essential
proposition is that the Hausdorff distance is discontinuous
only between topological segments. We take this further in
the subsequent section to conclude that the mape maps each
topological segment to a manifold.

Topology-based �ow visualization has emerged as a
standard tool for analyzing vector �elds. We refer to the
state-of-the-art reports [12], [13] for an overview of the
topic and de�nition of vector �eld topology. In the following
theorem we require the concept of atopological skeleton
which partitions the domainD into regions of similar �ow
behavior, e.g., streamlines seeded in a certain segment allend
in the same critical point or boundary region. For consistency,
we assume that separation curves and surfaces and critical
points, as well as boundary switch points and curves are
considered segments.

Theorem 1 (Continuity of Hausdorff distance):Given is a
vector �eld v : D ! IRn, n 2 f 2;3g, and the partitionS =
f S1; : : : ;SNg,

S
i Si = D and Si \ Sj = /0 for j 6= i, induced by

its topological skeleton.
Let x0 2 Si 2 S andx 2 D with jjx � x0jj2 < d. Let s0 and

s be the streamlines passing throughx0 and x, respectively:
x0 2 s0 andx 2 s. Then

lim
d! 0

dH (s0;s) =

(
0 iff x 2 Si

c > 0 iff x =2 Si :
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The above theorem states that the Hausdorff distance iscon-
tinuous withintopological segments, anddH is discontinuous
betweentopological segments.

We provide a proof for unbounded 2D vector �elds
(n = 2; D = IR2). The same arguments apply to the 3D case,
and similarly the proof can be extended to bounded domains.

Proof: Let v : IR2 ! IR2 be a suf�ciently smooth vector
�eld. Let xc

1 2 IR2 be a critical point – w.l.o.g. a source node
– of v, i.e., v(xc

1) = 0. Let a denote an angle w.r.t. a local
coordinate system atxc

1. Let sa be the streamline emanating
from the close vicinity ofxc

1 in direction a which ends in
another critical pointxc

2 6= xc
1.

Consider a second streamlinesb emanating fromxc
1 in

direction b . We are interested in the limita ! b . There are
two cases:
(i) sb ends inxc

2 (Fig 7 (a)):
Then lima ! b dH (sa ;sb ) = 0 because witha ! b the
pointwise distance betweensa ;sb becomes arbitrarily
small asv does not vanish alongsb until xc

2 is reached.
(ii) sb ends in another critical pointxc

3 6= xc
2 (Fig 7 (b)):

Then lima ! b dH (sa ;sb ) = c > 0.
The constantc > 0 depends onv in the neighborhood ofx3.
Assume w.l.o.g.xc

3 is a sink node1. There exists a neighbor-
hood N of xc

3 such that a streamline seeded in any location
within N will end in xc

3. Then we de�ne c > 0 as the
maximum radius of a sphere inscribed inN .

With the de�nition of the topological segmentationS we
can interpret the condition for case (i) assa ;sb � Si , i.e.,
the streamlines belong to the same topological segment. And
likewise for case (ii) we havesa � Si , sb � Sj with Sj 2 S
and i 6= j, i.e., the streamlines belong to different topological
segments. This concludes one direction of the proof. The
reverse direction can be shown with the same arguments.

We restricted ourselves to the domainD = IR2 and made
assumptions on critical points for the sake of simplicity and a
concise proof. The extension to unbounded 2D or 3D domains
is straightforward, and we provide only few remarks. In 2D,
separation curves start from and end in saddle points and/or
boundary switch points for bounded domains in structurally
stable con�gurations. Figure 7 (c-d) illustrates the situation
from a source node to the boundary. While this yields an extra
case, the arguments of the proof remain the same. The situation
is only slightly different for center nodes, which are regarded
unstable and hardly appear in practice2. In 3D, generally
the same arguments apply. However, there are additional
topological structures like, e.g., separation surfaces.

4.2 Embedding manifolds

In this section we apply the above theorem to show that the
mape maps topological segments of vector �elds to manifolds

1. A similar argument as for streamlines ending in a sink can be used for
streamlines converging to a closed orbit with sink-like behavior.

2. Note that for divergence-free 2D vector �elds structurally stable centers
do exist. Such �elds do not have sources or sinks, and streamlines either are
closed or leave the domain. For such �elds topological methodsare generally
not applicable whereas our streamline embedding works, see examples in
Figures 4 and 5.

in IRN.
The segmentationS partitions D � IRn, i.e., topological

segmentsSi 2 S are m-dimensional objects, 0� m � n.
Generally, we havem = n, e.g., segments are 2-dimensional
regions forD � IR2, however, for special cases like critical
points (m= 0) and separation curves (m= 1) we havem< n.
Furthermore in 3D there may exist 2-dimensional segmentsS
such thatP(S) is a 2-dimensional subspace of IR3.

Each segmentSi can be generated as an imageP(Si), i.e.,
it is “spanned” by the set of all streamlines inSi . These
streamlines can in turn be generated by a continuous seeding
structure gi which is an (m� 1)-dimensional object. For
example, consider a 2D segmentSi � IR2: one can choose
arbitrary seed points for each streamline inSi . But obviously
one can also arrange the seed points along a continuous curve
gi � Si by ensuring that for “neighboring” streamlines the
distance of seed points vanishes. Hence, the seeding structure
is a 1-dimensional object. Figures 2-6 (left) illustrate this: the
colors indicate segments, and the seeding structures can be
chosen as straight lines. Note that boundaries have to be taken
into account in these examples.

Following Theorem 1, the Hausdorff distance is continuous
only within topological segments. Remember that the map
e assigns a pointe(s) 2 IRN to each streamlines such that
Hausdorff distances between streamlines are preserved in least
squares sense. We assume thate is continuous. Then a segment
Si � IRm is mapped to am� 1 dimensional manifold in IRN.
And likewise any otherk-dimensional segmentSk 2 S is
mapped to another, distinct(k� 1)-dimensional manifold.

We conclude this section with few remarks. The above
arguments reveal that it is reasonable to choose an embedding
into IR2 and IR3 for 2D and 3D vector �elds, respectively.
Choosing a larger dimensionN only alleviates the error
term (2), also called strain. Figure 8 illustrates this: compare
the 3D embedding to the 2D embedding in Figure 4. The
3D embedding shows 1-manifolds and a smaller error which
can be seen from the better preservation of symmetry in this
example. Furthermore, it is reasonable to choose a distance
measure on streamlines which is indeed a metric such as the
Hausdorff distance. However, given a metric on streamlines,
e.g.,dH , there is no guarantee that the mape (as constructed
by the MDS method) preserves the triangle inequality. So far,
we only used continuity arguments to separate manifolds. The
Hausdorff distance between distinct manifolds quanti�es the
difference of associated topological segments. A natural and
open question is how the shape of distinct manifolds, e.g.,
their curvature, can be interpreted.

4.3 Alternative distance measures

We choose the Hausdorff distance for embedding streamlines
because it is well known that it is ametric. Recall that
the minimum requirements for a reasonable distance measure
are positive de�niteness and symmetry, in addition, a metric
satis�es the triangle inequality. In this section we summarize
other distance measures for curves which can be used as
alternatives. Such measures are applied for tracking �ber traces
in diffusion tensor imaging, we refer to the state-of-the-art
report [25] for an overview.
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Fig. 7. Left: two streamlines start from xc
1. They end either in the same (a) or in different (b) critical points. Right: if

the streamlines end in different boundary segments (d), there must be a non-empty segment of different (in/out) �ow
behavior in-between.

Fig. 8. 2D vector �eld from Figure 4 embedded in 3D.

The Hausdorff distancedH can be considered a “worst case
distance” as it uses the maximum distance from either line to
the other streamline. There are two obvious modi�cations to
obtain alternative distance measures:

First, one could restrict the maximization from whole lines
to just end pointsof streamlines:

dE(s1;s2) = maxf d(s1(t1) � s2(t1)) j t1; t2 2 f 0;1gg ;

assumings1 and s2 are both parametrized over the interval
[0;1]. This yields a much simpler distance measure [26] which
can be evaluated in constant time. Despite this simplicity,the
above theorem states that such measure separates topological
segments (distance zero within andc between segments) and
is hence considered useful [27].

Second, one could look for a “smoother” version of the
Hausdorff distance which is less sensitive to extrema. A
frequent choice is a measure based onmean distance [28]
between streamlines:

dM(s1;s2) =
1
2

(dm(s1;s2) + dm(s2;s1)) ;

with
dm(s1;s2) = mean

x12s1
min
x22s2

d(x1;x2) :

Zhang et al. [29] modifydm to take the mean only over
points whose minimum distance is above some thresholdt ,
i.e., replacedm by

dt
m(s1;s2) = mean

x12s1^ d(x1;x2)> t
min
x22s2

d(x1;x2) :

In addition to the symmetric averagedt
M = 1

2(dt
m(s1;s2) +

dt
m(s2;s1)) , they consider measures using either the shorter or

the longer distance ofdt
m(s1;s2) anddt

m(s2;s1). The motivation
is to emphasize diverging parts of streamliness1;s2 more than

dM but less thandH , in this sense the measuredt
M is in-between

dM anddH .
Although theminimumdistancedmin between curves is not

considered useful in the literature [25] we include it in our
experiments. Note that this measure can easily degenerate (as
well as the end point distancedE), see Figure 19.

Brun et al. [30] de�nefeature descriptors from the mean
and square root of covariance matrix of a sampled streamline
which yields a 9-dimensional vector. They de�ne the distance
measuredF between streamlines as the Euclidean distance
between their feature vectors.

We apply and compare the above mentioned distance mea-
sures in our experiments (see Section 6.6). Note that the
theoretical analysis is only valid for the Hausdorff metric.

5 IMPLEMENTATION

Technically, our approach can be summarized as follows. We
sample a �nite number of streamlines inD and measure
Hausdorff distances for every pair of streamlines. From the
distance matrix the multidimensional scaling method computes
an embeddingin IRN (with N = 3), such that distances are
preserved in least-squares sense. The result is a discrete map
e which assigns every sampled streamline a point in IR3.
A partition of the samples into clusters is computed from
the distances. Wevisualizethe image ofe which are points
sampling 2-manifolds. In the remainder of this section we
describe this process in detail.

5.1 Hausdorff distances between streamlines

Streamlines are integrated by a standard fourth order Runge-
Kutta method with adaptive step size control. We use a simple
approach to measure Hausdorff distances between stream
lines: the integration scheme provides each streamline as a
piecewise polynomial which we resample with respect to
arc length and a uniform distancet between samples. We
then reduce the problem to computing thediscreteHausdorff
distance between two point sets. The sampling ratet bounds
the error induced by this simpli�cation, we choose it two
orders of magnitude smaller than the minimal Hausdorff
distance between streamline (see below). We remark that
streamline integration takes< 3% of the overall run time,
computation of Hausdorff distances takes> 90%. We apply
mostly a brute force approach of quadratic complexity testing
all distances between all point pairs without using any spatial
data structures in the inner loop (see (1)): we realize that
hierarchical structures, such as kd-trees, don't always pay
off because they have to be set up per streamline. And for
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each streamline the number of points is still relatively small
such that the gain from logarithmic versus linear complexity
is not enough to justify the additional overhead. We made a
compromise and apply a kd-tree (using the ANN library [31])
only if the number of samples of a particular streamline
is above some threshold. Possible other improvements are
advanced sweep-line methods for points and line sets such
as [32] which apply a Voronoi diagram, or taking advantage
of a parallel GPU implementation.

5.2 Sampling streamlines

Ideally we would like to achieve a regular sampling of the
embedded 2-manifolds. The only reasonable way is to express
the degree of regularity in terms of Hausdorff distances
between streamlines and hence Euclidean distances in the
embedding. We take a straightforward approach to generate
a set of streamlines: we discretize the domainD with a
regular grid with �xed cell sizeh and enumerate all grid
points. For every grid point we integrate a streamline. We
put this streamline in the set only if its Hausdorff distance
to all streamlines already in the set is larger than a threshold
dmin. Otherwise the streamline is discarded. This way we can
adjust the sampling rate, and we avoid local oversampling
by choosing the parametersh and dmin. Distance tests are
executed in reverse order such that potentially near streamlines
are tested �rst. This leads to an early reject in practice,
typically only an average number of 10� 300 streamlines
were considered for each test of a potential new streamline.
We remark that a random sampling (with a caching strategy
for early reject) generally showed inferior results in terms of
streamline placement.

Finally, we note that streamline sampling does not directly
compare to “usual” manifold sampling as, e.g., in surface
reconstruction, because the space of streamlinesS is not
a Euclidean vector space. All we know about this space
is how to measure (unoriented) distances. In addition, each
streamline (except critical points) has an in�nite number of
representatives, i.e., seeding points, in IR3, and there is no
straightforward way to approximate an inverse mape� 1 to
support seeding.

5.3 Computing the embedding

We compute the embedding induced by the discrete mape by
multidimensional scaling (MDS) [24]. The input to MDS is a
symmetricm� m distance matrixD with Di j = dH (si ;sj )2 for
i 6= j and Dii = 0 for 1 � i; j � m. (The matrixD was set up
in the sampling stage by recording all measured distances.)
Constraining the mean to the origin yields the symmetric
matrix B = � 1

2 JDJ, where J = I � 1
m11> , and 1 2 IRm

is a column vector of ones. Spectral decomposition yields
B = QLQ> with diagonal matrixL holding the eigenvalues
L ii = l i in decreasing order such thatl i > l j for i < j, and
associated eigenvectors as columns ofQ. The restriction to the
�rst N columns ofE = QL

1
2 yields coordinates in IRN in the

rows of this matrix. The magnitude of eigenvalues “prioritize”
the coordinate axis, and we are interested in the projectiononto
the �rst N eigenvectors. Thus, for a valid embedding the �rstN

Fig. 9. Vector �eld (3) and its embedding.

eigenvalues must be positive and should be signi�cantly larger
than the remaining eigenvaluesl N+ 1; : : : ; l m. This is satis�ed
for N = 3 in all our experiments (see Figure 23).

We conclude this section with few remarks. First, an em-
bedding into(N � 1)-dimensional space is obtained from the
embedding inN dimensions as a projection along the axis
corresponding tol N. Figures 8 and 4 illustrate this. For
all 3D examples in the subsequent sections this refers to a
projection along the bluez-axis. (Note that projected manifolds
may overlap in 2D.) Second, although the goal is distance
preservation, the results may exhibit signi�cant distortion as
there is generally no perfect solution (in IR3). One way to
remedy this is to choose a subset of manifolds and associated
streamlines and to compute a new embedding of this subset
only. Finally, We remark that there are various other methods
for dimensionality reduction with different goal functions.
MDS is the method of choice for distance preservation. One
drawback of the method as outlined above is the mandatory
use of dense matrices. For large data sets it might be useful
to choose another method which takes advantage of sparse
matrices, e.g., Laplacian eigenmaps [33], and then choose
subsets for embedding (see, e.g., Figure 14).

5.4 Clustering

We aim at a segmentation of the vector �eld based on
Hausdorff distances (or distances under the mape). One way
to partition the �eld into distinct segments is using a clustering
method. It is well-known that direct application of clustering
methods such ask-means on the embedded points generally
does not yield good results as it tries to separate point setsbut
does not incorporate connectivity information. Better results
are obtained from spectral clustering, see, e.g., [34]. Our
goal is to compute a partition intok segmentsautomatically
with the numberk � 2 as a variable. We achieve this by
normalized cuts [35], a spectral method which formulates
clustering as a graph partitioning problem. (This is closely
related to traditional spectral clustering as essentiallythe same
functional is minimized.)

We brie�y summarize the general idea. We assume that we
want to partition the samples into two segments 0 and 1.
This bi-partition can be expressed by a vectorb 2 f 0;1gm.
A normalized cut de�nesb as the minimizer of a certain
cost function which expresses how well clusters are separated
while taking into account compactness of clusters. The discrete
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problem is now turned into a continuous problem replacingb
by y 2 IRm in order to make optimization feasible. First, the
distance (”dissimilarity”) matrixD 2 IRm� m is turned into a
similarity matrix A with A i j = exp(� 1

r 2 Di j ). The parameter
r controls how rapidly similarity falls off with the squared
distanceDi j = dH (si ;sj )2. Note thatA can be made a sparse
matrix in practice by either truncating small entries to zero,
or by restricting non-zeros to a certain number of nearest
neighbors using the symmetricA + A> . Now put the row sums
of A as a diagonal weight matrixW such thatW ii = å j A i j ,

and compute the graph LaplacianL = W � 1
2 (W � A) W � 1

2

which is symmetric and positive semide�nite. An approximate
(continuous) solution to the normalized cut minimizes the
Rayleigh quotient

ncut(y) :=
y> Ly
y> y

:

It is well known that this minimization leads to solving the
eigenvalue problemLy = l y. (Spectral clustering as described
in [34] uses a different formulation for the Laplacian matrix re-
sulting in a shift of eigenvalues.) Let 0= l 1 < l 2 � l 3 � � � � �
l m be eigenvalues ofL, andyi are the associated eigenvectors.
The �rst eigenvectory1 is constant and leads to ncut(y0) = 0.
The second eigenvectory2 provides an approximation to the
normalized cut solution. Recall that the optimal cut into two
segments is the discrete vectorb. Hence, we are left with
computing a binary partition fromy2, e.g., by thresholding.

Indeed, this process of computing the discrete partition is
more involved as we are aiming at ak-way partition with
2 � k � kmax. There are various methods for computing a
discrete segmentation from the eigenvectorsy2; : : : ;ykmax+ 1
including hierarchical cuts and ak-means variant. We choose a
simultaneousk-way cut from multiple eigenvectors (see [35]
for details). For each segmentation we obtain a cost value
ncutk of the normalized cuts, and we minimize this value by
a linear search over the number of clustersk. This is ef�cient
because the computation is dominated by computing the �rst
kmax+ 1 eigenvectors. Figure 22 shows cost (normalized for
comparison) fork-way cuts plotted over the number of clus-
ters: we determine the optimalk as the global minimum. The
diagram provides a visual feedback revealing local minima
which indicate “stability” of the choice ofk and alternative
choices. We observed that this clustering scheme tends to �nd
reasonable numbersk and good clusters automatically. We are
not restricting neighborhoods and taking advantage of sparse
matrices here. This leaves the distance fall-offr as the only
parameter of the algorithm.

5.5 Visual representation and interaction

For the visual representation of the embeddings, we have
chosen small spheres to show the particular points of the
embedding and to give an impression of their spatial relation.
Since the embedded points are assumed to build 2-manifolds,
a surface reconstruction using, e.g., alpha shapes [36], ora
splat rendering after estimation and orientation of normals is
an option. We prefer the discrete representation using spheres
to give the user a better impression of the present point

density and distribution. Furthermore, any faithful surface
reconstruction has to make assumptions on sampling density
relative to local feature size. This would require a careful
tuning of parameters for every point cloud.

For representing the clusters, we use a simple color coding
for both the streamlines and the embeddings where corre-
sponding clusters are equipped with the same color.

Even though the embeddings show relations between dif-
ferent streamlines, a direct association from a point on the
manifold to its corresponding streamline is lost. To cope
with this, brushing and linking approaches are used: the
user can interactively select a number of embedded points
(or the corresponding clusters) on the manifold and get the
associated streamlines, or vice versa. Similarly, the usercan
select a point or streamline as a representative to select the
associated cluster. A new clustering can be computed any
time, and the user can switch to a partial embedding of a
selection of points/streamlines. Another way of interaction is
re-embedding: the user selects a subset of points from the
initial embedding. Then the corresponding subset of stream-
lines is considered for computing a new embedding with less
distortion of distances. We refer to Section 6.4 which shows
an example.

5.6 Alternative distance measures

We compare the Hausdorff distance to alternative distance
measures summarized in Section 4.3. The sampling strategy
remains the same as it is independent of the choice of distance
measure. For our experiments, however, we computed the
sampling only for the Hausdorff distance and used the same
seeds for the other distance measures as this enables a better
comparison of clusters on the same set of streamlines. Neither
the computation of the embedding nor the clustering are
affected by the choice of distance measure.

The computation of mean distancedm, mean-of-thresholded
distancedt

m, and minimal distancedmin is very similar to
the computation of the Hausdorff distancedH with similar
computational cost.

The computation of the end point distancedE is performed
in constant time independent of the length of streamlines. The
same is true for the feature distancedF after feature descriptors
haven been computed once for each streamline; the cost for
this computation is not relevant. Both measures,dE and dF ,
are evaluated very ef�ciently.

6 RESULTS AND DISCUSSION

We show 3D streamline embeddings for several synthetic and
real-world data sets. We visualize the embeddings together
with the streamlines, the colors denote clusters. All timeswere
measured on a Intel Core2 CPU at 2.6GHz (using only a single
core).

We use a canonical coordinate system for the visualization
of the embeddings. As pointed out in Section 3, the minimizer
of (2) is invariant to translation and rotation. In addition, the
absolute scale does not convey any relevant information. For
this reason, coordinates are uniformly re-scaled to provide
good views, and the vectors denoting axis have length one. The
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Fig. 10. Vector �eld (4) and its embedding.

x-axis (red),y-axis (green), andz-axis (blue) refer to the �rst,
second and third columns of the matrixE (see Section 5.3)
and hence eigenvaluesl 1 � l 2 � l 3 of B, respectively. This
means thex-axis refers to the most relevant dimension, see
also Section 6.7.

6.1 Synthetic examples

We start with a simple example, a �ow from a source at
(0;0;0) into a sink at(1;1;1) in the vector �eld

v(x) =

0

@
x1 (1� x1)
x2 (1� x2)
x3 (1� x3)

1

A ; x 2 [0;1] � [0;1] � [0;1] (3)

where xi denote thei-th component ofx. Figure 9 shows
the embedding of 403 streamlines which is essentially a
saddle-like 2-manifold surface. Note that for this examplewe
explicitly avoid seeding on planesxi = 0 andxi = 1 (i = 1;2;3)
because any streamline will always remain within these plane,
which yields a set of 2D con�gurations and the respective 1-
manifold embeddings (see Section 4.2). Topologically, these
planes act as separatrix planes of the �eld. Generally seeding
exactly on separatrices cannot be avoided. However, we con-
sider such a seeding exceptional and hence unlikely for more
complex synthetic �elds and for measured �ow �elds. This
example was computed on a 16� 16� 16 streamline sampling
grid with dmin = 0:05. Sampling took approximately 8 seconds.

We extend this to a more complex example showing the
vector �eld

v(x) =

0

@
� x1 (1� x1) (1+ x1)
� x2 (1� x2) (1+ x2)
� x3 (1� x3) (1+ x3)

1

A ; x 2 [� 1;1]3 (4)

consisting of a sink at(0;0;0), 8 sources, 18 saddles, and
therefore 8 topological sectors. Figure 10 shows 1;652 sam-
pled streamlines and their embedding. Here the colors show
the clusters formed by eight connected components corre-
sponding to the topological sectors. Again, we avoided seeding
in certain planesxi = c; c 2 f� 1;0;1g to avoid degenerate
con�gurations (see previous example). We used the same
sampling parameters as above. Sampling took approximately
35 seconds. We used normalized cuts, and the number of
clusters was detected automatically. In addition, Figure 11
shows a visualization of the topological structure of this
vector �eld: its critical points are shown as spheres (sources,
sinks) and disks (saddles), separation surfaces are indicated

Fig. 11. Visualization of topological structure of vector
�eld (4).

as ribbons. The complexity of such direct visualization of
topological structure even for simple data indicates limitations
for more complex vector �elds.

6.2 ABC �ow

As a non-trivial example, Figure 12 shows the embedding of
the (steady) ABC (Arnold-Beltrami-Childress) �ow

v(x) =

0

@
A sin(x3) + B cos(x2)
B sin(x1) + C cos(x3)
C sin(x2) + A cos(x1)

1

A ; x =

0

@
x1
x2
x3

1

A 2 [0;2p]3 ;

with A =
p

(3);B =
p

(2), and C = 1. This incompressible
and inviscid �ow has some theoretical importance in �uid dy-
namics because it describes a closed-form solution of Euler's
equation [37]. It has served as example data set in a number of
visualization papers [38], [39]. We tested streamline samples
on a regular 15� 15� 15 grid and choosedmin = 0:075. The
sampling took approximately 63 minutes. Figure 12 shows
the resulting 3;958 streamlines and their embedding which
clearly exhibits the manifold structure. The normalized cut
segmentation detected 17 clusters. We obtain a smaller version
with 1;153 streamlines fordmin = 0:1. The sampling time is
reduced to approximately 3 minutes. Figure 20 shows this
smaller version (dH , top left) together with a comparison
of distance measures. Note the different embedding due to
the lower sampling rate which, however, shows the same
manifolds.

6.3 Cylinder �ow I

Figures 13 and 14 show a simulated �ow around a 3D spherical
cylinder. Here we use a single time-step of an unsteady
simulation. The data was given on a 128� 128� 128 grid.
We sampled streamlines on a 20� 14� 10 sampling grid
with dmin = 0:05. Sampling took approximately 33 minutes.
Figure 13 shows the resulting 735 streamlines and their
embedding.

Figure 14 shows a re-embedding of selected clusters of
points/streamlines. With fewer constraints the manifold struc-
ture becomes more evident. We apply the same colors as
for the original clusters in Figure 13 and use this partial
embedding to interactively select clusters. Only streamlines
in the selected cluster are displayed.
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Fig. 13. Left: streamlines of the cylinder �ow I and their emb edding.

Fig. 14. We compute a new MDS embedding only for a subset of points/streamlines (left, highlighted red) and use
it for selection of two clusters (center/right). We show the partial re-embedding, and only the selected streamlines,
corresponding to red points, are shown. Here, the two selected clusters separate the �ow in a left and a right part.

Fig. 15. Streamlines of the cylinder �ow II and their embeddi ng.

Fig. 16. We compute a re-embedding for a selection (left) and then select two points (in red) to highlight the
corresponding streamlines (right)
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Fig. 12. 3;958 streamlines of the ABC �ow and their
embedding.

6.4 Cylinder �ow II

This �eld is the same as cylinder �ow I, except for the fact
that we subtracted a constant average �eld describing the
ambient part of the �ow. This treatment is well-known in the
�uid dynamics community. It is motivated by the idea that
the observer is moving with the �ow. This way we get a
cascade of critical points behind the cylinder and therefore
a different behavior of the streamlines. We used the same
sampling parameters as for the previous data set. Sampling
took approximately 52 minutes. Figure 15 shows the resulting
1;251 streamlines and their embedding (center left). For this
example, the manifold structure is less intuitive as few points
are far away and a large number of points clusters. To get more
information, we applied a re-embedding: we selected a subset
of points which appeared to collapse in a small region in the
original embedding and did a re-embedding for this selection.
Figure 16 shows that it unfolds to a 2-manifold.

Figure 16 shows a re-embedding of a part of the stream-
lines/points (chosen similar as in Figure 14 for the cylinder
�ow I example). We select two points (in red) and show the
corresponding streamlines: as the manifolds separate the fairly
symmetric �ow into a left and right part, the symmetry of
manifolds is re�ected in symmetry of respective streamlines.

Figure 17 uses a different partial embedding of a larger
subset of streamlines and shows different clusters (pointsin
red, only selected streamlines are shown).

6.5 Aneurysm data

We conclude with a medical data set: the �ow data is taken
from a simulation of the blood �ow in areas containing three
cerebral aneurysms. Such aneurysms result from a congenital
or evolved weakness of stabilizing parts of the vessel wall and
potentially lead to rupture and a life-threatening bleeding [40].
Therefore, the main segmentation task here is to identify
regions in which the blood �ow enters the aneurysm without
leaving it again. The data consists of a single time step of
a time-dependent simulation. In order to compute the �ow a
silicone model of the vessel geometry was constructed. A CT-
scan of this aneurysm phantom served as basis for the digital
model for the �ow simulation. This volumetric model consists

Fig. 18. Streamlines of the aneurysm data set and their
embedding.

of 934,266 cells: prisms and tetrahedra. There is one region
of in�ow and two regions of out�ow. Between these regions
there are three aneurysms. The size of the bounding box of
the model is 43:6� 187:2, we chosedmin = 3.

For this example it is suf�cient to seed streamlines from
one or more seeding planes. We placed seeds on two planes,
the �rst plane intersects the vessel near the in�ow region, and
the second plane intersects near the out�ow.

We found 802 streamlines, the sampling took 566 seconds,
and 11 clusters were detected. Figure 18 shows the result.
One goal of the simulation is to understand which amount
of the �ow passes the aneurysm under which conditions
such as velocity and pressure. The more important goal is
to learn how this �ow can be manipulated, e.g. by so-called
coiling and/or inserting stents, such that �ow and pressure
in aneurysms become minimal. A clustering of streamlines is
helpful for interpretation of the results of the simulationand to
achieve these goals. A trivial clustering by in�ow and out�ow
regions is obviously too simple. On the other hand, vector �eld
topology is complex for this data set: it is hard to extract ina
robust way and yields too much (unimportant) information.
So this is not a practical option, either. Clustering based
on the Hausdorff distance, or alternative distance measures,
between streamlines leads to reasonable results. The run time
for computing clusters is relatively low. And the streamline
embedding serves as a visualization of clusters which does
not suffer from visual clutter.

6.6 Comparison of distance measures

In this section we evaluate the alternative distance measures:
mean distancedm, mean-of-thresholded distancedt

m, minimal
distancedmin, end point distancedE, and feature distancedF
(see Section 4.3). For all experiments we choose the threshold
t = 10dmin with the same values fordmin as for the previous
experiments. We use the same set of streamline samples
as before (fromdH ), timings are summarized in Table 2.
For all results in this section we applied normalized cuts
for segmentation with automatic detection of the number of
clusters (kmax= 20). Figure 22 illustrates this process: it shows
cost along (y-axis) fork segments (x-axis) for the example data
sets anddH . For comparison values are scaled such that cost
for k = 2 equals 1.
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Fig. 17. Selection of some clusters the cylinder �ow data. We select clusters on a partial re-embedding. Selected
points are displayed in red, together with the streamlines in the selected cluster.

Fig. 19. Embedding using measures (from left) dm, dt
m, dmin, dE, and dF for synthetic vector �eld (4).

Figure 19 shows embeddings using different distance mea-
sures on the synthetic vector �eld (4). Figure 10 shows the
vector �eld and embedding for the Hausdorff distancedH .
Note that the embeddings are degenerate for the minimal
distancedmin and the end point distancedE. This is obvious
from their de�nition and the de�nition of this particular vector
�eld. The same 8 clusters are recognized automatically for all
measures.

Figure 20 shows the same comparison for the ABC �ow.
We include the Hausdorff distance, and normalized cut seg-
mentation yields 17 (dH ), 12 (dm), 13 (dt

m), 15 (dmin), 20 (dE),
and 18 (dF ) clusters, respectively. Clustering took between 10
and 25 seconds.

For the Cylinder Flow II data (Figure 21), we obtain 9
(dH ), 11 (dm), 16 (dt

m), 5 (dmin), 17 (dE), and 14 (dF ) clusters,
respectively. Clustering took between 9 and 18 seconds.

Finally, we compare distance measures for the Aneurysm
data set (without �gure): here, we obtain 11 (dH ), 14 (dm), 5
(dt

m), 7 (dmin), 10 (dE), and 12 (dF ) clusters (for allr = 4),
respectively. Clustering took between 5 and 10 seconds.

The �gures show different characteristics of the measures:
dm is less sensitive to extrema than the “worst case distance”
dH . As expected,dt

m falls in-betweendH anddm. The minimal
distancedmin tends to degenerate and does not show any

advantage overdm and dt
m at the same computational cost3.

The end point distance tends to yield similar results asdH
– which can be explained with arguments in Section 4, and
which indicates that the Hausdorff distance is often attained
for end points of streamlines – but it also tends to degenerate.
Finally, the distancedF based on feature shows good results
but is hard to relate to the other measures.

6.7 Dimensionality of data

For the MDS method, the magnitudes of eigenvalues in the
diagonal matrixL (see Section 5.3) indicate the dimensionality
of the data described by the distance matrixD. For an
embedding in IR3 we expect a signi�cant drop in magnitude
for the 4th eigenvaluel 4. For all embeddings that are shown,
the read, green, and blue axes correspond tol 1, l 2, and l 3,
respectively. The global scale is chosen arbitrarily. Figure 23
shows the �rst 16 eigenvalues for all our examples: thex-
axis shows the indexi of l i , and eigenvalues on they-axis
are normalized such that alll 1 = 1 to enable comparison for
multiple data sets. These empirical observations coincidewith
the theoretical analysis in Section 4.2.

3. In fact, evaluation ofdmin is cheaper forsampling because thedmin
threshold is detected immediately.
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Fig. 20. Embedding using measures (from left), top row: dH , dm, dt
m; bottom row: dmin, dE, and dF for the ABC �ow.

Fig. 21. Embedding using measures (from left), top row: dH , dm, dt
m; bottom row: dmin, dE, and dF for the Cylinder �ow

II data set.
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Fig. 22. Normalized cuts: the optimal number k of clusters
is determined automatically as global minimum of ncutk.
The diagram shows the cost ncutk (see [35]) plotted over
the number k of clusters for dH . Values are normalized
such that for all data sets ncut2 = 1.

6.8 Performance

We �nally report on the performance of our approach and
summarize timings. The resulting number of streamlines and

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
Example 1
Example 2
ABC
Cylinder flow I
Cylinder flow II
Aneurysm

Fig. 23. MDS embedding: largest 16 eigenvalues (nor-
malized) for our examples.

timings depend on the data set and the choice of sampling
parameters. For all examples we sampled points on streamlines
with a regular spacing ofhs = 0:02 (excepths = 0:005 for the
cylinder �ows with a spatial extent of[0;1:5] � [0;1] � [0;0:75]
andhs = 0:5 for the aneurysm with bounding box diagonal of
289). The computation times for embedding and clustering are
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data set # samples sampling MDS clustering
Example 1 403 8 0.2 –
Example 2 1,652 35 18 19
ABC �ow 1,153 182 4.1 16
ABC �ow 3,958 3,783 224 54
Cylinder �ow I 735 1,965 1.1 12
Cylinder �ow II 1,251 3,127 6.8 16
Aneurysm 802 566 1.5 3.3

TABLE 1
Timings: sampling (dH ) and embedding.

data set # dH dm dt
m dmin dE dF

Example 1 403 5.9 5.9 7.5 5.9 0.15 0.14
Example 2 1,652 93 92 151 80 1.6 1.5
ABC �ow 1,153 763 795 864 763 1.4 0.98
ABC �ow 3,958 7,230 7,323 8,027 7,165 16 14
Cyl. �ow I 735 20 20 38 20 0.51 0.51
Cyl. �ow II 1,251 593 599 648 595 1.5 1.6
Aneurysm 802 497 298 452 115 5.5 5.4

TABLE 2
Timings: evaluation of distance matrix for different

measures.

generally much lower than those for sampling. For MDS, the
run time depends on the numberm of streamlines, i.e., on the
size of the distance matrix.

Tables 1 and 2 summarize timings. All times are given in
seconds, the �rst two columns denote data set and number of
streamline samples.

Table 1 shows times for sampling using the Hausdorff
distancedH and times for computing the embedding. The time
for clustering (Figures 19–21) is an average for the normalized
cuts segmentation with automatic detection of the number
of clusters. The maximum number of clusters iskmax = 20,
i.e., the �rst 21 eigenvectors of the dissimilarity matrix are
computed. Clustering includes few iterative optimizations, we
choose reasonably high limits on the maximum number of
iterations that always reproduced good results. Equally good
results may be obtained for considerably lower limits at lower
computational cost.

Table 2 shows times for evaluation of the distance matrix
D for all distance measures. Here, all seed points are given
from the initial sampling (usingdH ), only pairwise distances
are evaluated.

We �nally note that we have chosen all parameters very
conservatively to sample manifolds faithfully, we do not try to
�nd clever approximations. For instance, simply reducing the
sampling rate would increase performance without changing
the results very much. Similarly, the resolution of sampling
grids could be reduced. In fact, we can always get reasonable
previews within seconds to minutes.

7 L IMITATIONS

We showed the properties of our technique for a number of
examples from simple to fairly complex vector �elds. These
tests also reveal a number of limitations: computation times
for sampling are rather high. This is �rstly due to a na�̈ve
evaluation of Hausdorff distances (which could be improved,

see Section 5). And secondly, the number of distance evalu-
ations is quadratic in the number of streamline samples. The
last point could possibly be addressed by only considering
distances to certain cluster centers for distant samples similar
to multi-pole methods. These are implementation details which
refer essentially to a preprocessing stage. Another important
issue is that we only have coarse control over sampling. The
choice of the grid sizeh and minimal distancedmin does not
yield a good estimate on the resulting number of streamlines
(and hence on run-time), neither does it allow for a “perfect”
sampling in a sense of surface reconstruction. Furthermore,
the computation of the embedding may be somewhat biased
due to locally varying sampling density. This problem is hard
to solve as there is not enough information available on the
streamline spaces. On the other hand it is always possible to
oversample data and to then �lter results. Such �ltering may
also be necessary as the MDS embedding requires computation
of eigenvalues of dense matrices. For our setup the limiting
number is currently near 5;000 samples for evaluating MDS,
in terms of acceptable run-time and memory requirements.
Finally, we remark that automatic clustering provides accept-
able results in practice. However, clustering algorithms rely
on few user-de�ned parameters. One way to remedy this
would be to use multi-scale methods, e.g. [41]. Furthermore,
the “decisions” of these algorithms are not always easy to
understand. Therefore a manual inspection is recommended,
possibly followed by a manual intervention, e.g., to choosea
different number of clusters.

8 CONCLUSIONS

We presented a new technique for visualizing streamlines in
3D vector �elds which is based on mapping streamlines to
points in 3D. This map is constrained to preserve Hausdorff
distances between streamlines as Euclidean distances between
points in least-squares sense. The image of the (in�nite) set
of streamlines covering the vector �eld domain is a set of 2-
manifolds embedding in IR3. We see the following advantages
making our approach an alternative to existing �ow visualiza-
tion tools:

� Visualizing manifolds is less prone to visual clutter than
visualizing stream lines directly.

� Surface topology – connected components – provides a
topological segmentation of the vector �eld.

� Surface geometry – distance in manifolds – encodes
similarity of global streamline behavior.

� Manifolds serve as 2D parametrization of the �eld, en-
abling selection of neighborhoods or mapping of addi-
tional information.

We remark that our approach does not make any assumptions
on the dimensionality of the data: 2D data are handled exactly
the same way as 3D data. The concept theoretically extends to
higher dimensions, however, interpretation, e.g., of 4D stream-
lines for unsteady �ows is non-trivial. Similarly, alternative
distance measures can be applied. We give few examples and
comparisons. We prove theoretical properties of our approach
for the Hausdorff distance: streamline embedding is related
to vector �eld topology,k-dimensional topological segments
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are mapped to(k� 1)-dimensional manifolds. This is backed
by our empirical results. On the practical side, however, the
current approach to manifold sampling is slow, and developing
advanced sampling methods would constitute a challenging
direction for future work.
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