
Eurographics Symposium on Geometry Processing 2012
Eitan Grinspun and Niloy Mitra
(Guest Editors)

Volume 31 (2012), Number 5

Stream Surface Parametrization by
Flow-Orthogonal Front Lines

Maik Schulze1, Tobias Germer1,2, Christian Rössl1, and Holger Theisel1

1University of Magdeburg, Germany
2think-cell Software GmbH, Germany

Abstract
The generation of discrete stream surfaces is an important and challenging task in scientific visualization, which
can be considered a particular instance of geometric modeling. The quality of numerically integrated stream
surfaces depends on a number of parameters that can be controlled locally, such as time step or distance of
adjacent vertices on the front line. In addition there is a parameter that cannot be controlled locally: stream surface
meshes tend to show high quality, well-shaped elements only if the current front line is “globally” approximately
perpendicular to the flow direction. We analyze the impact of this geometric property and present a novel solution
– a stream surface integrator that forces the front line to be perpendicular to the flow and that generates quad-
dominant meshes with well-shaped and well-aligned elements. It is based on the integration of a scaled version
of the flow field, and requires repeated minimization of an error functional along the current front line. We show
that this leads to computing the 1-dimensional kernel of a bidiagonal matrix: a linear problem that can be solved
efficiently. We compare our method with existing stream surface integrators and apply it to a number of synthetic
and real world data sets.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Stream surfaces are a standard approach for the visualization
of flow data described by vector fields. Carefully chosen and
accurately integrated stream surfaces are known to give valu-
able insight into the behavior of flow phenomena as well as
dynamical systems. The practical generation of stream sur-
faces is essentially a surface meshing problem, however, it
is different to the “usual” meshing setting in geometry pro-
cessing.

Given an n-dimensional vector field v(x) and an open
parametric seed curve s0(s) with s ∈ [s0,s1], a stream sur-
face s can be written as a parametric surface s(s, t) fulfilling

∂ s(s, t)
∂ t

= v(s(s, t)) (1)

with the initial condition s(s,0) = s0(s) for s ∈ [s0,s1]. The
isoparametric lines s = const are stream lines and t = const
give time lines. In particular, time t = 0 gives the seed curve
s0(s). In general, neither a closed form nor an implicit de-
scription of s exists, so that robust numerical integration

schemes starting from the seed curve are necessary. Let ss
and st = v(s) be the partial derivative vectors of s. While
the numerical integration of stream lines is well-understood,
stream surface integration is still challenging because s tends
to be badly parametrized with increasing integration time.
In fact, the magnitude of ss can become extremely large (or
small) during the integration, meaning that tiny parts of the
seed curve produce large areas of the stream surface (or vice
versa). This lead to the development of algorithms for stream
surface integration in the scientific visualization community.
Mainly, these are advancing front algorithms that combine
different operations for

• robust adaptive stream line integration,
• heuristics for adaptive refinement/coarsening of the cur-

rent front line, and
• (in some cases) a special treatment near critical points.

This way, these approaches provide adaptive solutions for
large magnitudes of ss and st , respectively, and give impres-
sive results in many cases. Nevertheless, they fail in other
(and even rather simple) cases in the sense that the result-

submitted to Eurographics Symposium on Geometry Processing (2012)

2 M. Schulze, T. Germer, C. Rössl, H. Theisel / Stream Surface Parametrization by Flow-Orthogonal Front Lines

Figure 1: Small angle problem for stream line integration.
Stream lines are black, time lines blue, and seed curves
green. Regions of small angle between stream lines and time
lines are red. (A) Long integration of v (here d1) leads to a
small progress of the stream surface (here d2). (B) The small
angle problem can appear for a seed curve perpendicular to
the flow and even in the absence of critical points. (C) The
small angle problem induced by a saddle point appears not
only close to the saddle but in a larger region.

ing meshes tend to produce too many badly shaped trian-
gles, which limits accuracy, quality, and performance of the
approaches. This is due to the fact that all operations men-
tioned above are local , i.e., they use only local information
to perform the adaptive steps. However, there are imperfec-
tions in the parametrization of s that can only be treated by
a global approach to stream surface integration, i.e., the de-
cisions about the next integration steps are based on a global
analysis of the current stream surface front line and the vec-
tor field. Such problems occur in regions where stream lines
and time lines intersect in a small angle, even though the
magnitudes of ss or st behave well. We call this the small
angle problem for stream line integration.

The small angle problem creates different challenges for
stream surface integration. Firstly, long stream line integra-
tions of points on the front line are necessary to obtain a
small progress of the stream surface, leading to an accu-
mulation of numerical error for stream line integration. Fig-
ure 1(A) illustrates this. Secondly, the small angle problem
leads to badly shaped triangles, such that an additional post-
processing, e.g., remeshing, is required. Thirdly, for time-
varying vector fields, v and the front line can become paral-
lel, leading to a non-regular parametrization of s and degen-
erate triangles in the mesh. Note that the small angle problem
cannot be solved by a careful selection of the seed curve:
even if the seed curve is perpendicular to v everywhere, it
can run into the small angle problem during the integration.
Figure 1(B) illustrates this. Also note that a simple normal-
ization of v does not solve the problem either. One prominent
cause for the small angle problem is when the front line hits
a saddle point. In fact, particular solutions which strive for a
robust handling near critical points were proposed.

However, a saddle does not only create the small angle
problem in its local neighborhood but also in larger areas.
Figure 1(C) illustrates this. Moreover, the small angle prob-
lem can occur even in absence of any saddle, as illustrated
in Figure 1(B).

In this paper we present a solution to the small angle
problem. From the considerations made above it becomes
clear that this requires a global, adaptive approach. We pro-
pose an advancing front algorithm that forces the front line
to be orthogonal to the flow, i.e., the angle between stream
line and time line should be close to 90 degrees. This can
also be interpreted as a conformal parametrization of stream
surfaces, which yields discrete surface meshes consisting of
quad-dominant structures with well-shaped, flow-aligned el-
ements. We achieve this by integrating not v but a scaled
version αv, where α(x) is a suitable scalar field. This is es-
sentially a reparametrization of the stream surface w.r.t. time.
We define α to enforce a self-correcting front line: starting
with an arbitrary seed curve, the angle between the current
front line and v is forced towards being orthogonal during
the integration for all points of the front (Section 3). We
show that for a piecewise linear approximation of the front
line (Section 4) α can be computed as the solution to a bidi-
agonal linear system (Section 5). This results in a combina-
tion of the advancing front integration of the surface with an
advancing front integration of the scalar field α . We discuss
adaptive mesh generation and implementation details (Sec-
tion 6) and show results together with a comparison to state-
of-the-art stream surface meshing for a number of synthetic
and real flow fields (Section 7). Finally, we discuss benefits
and limitations of our approach (Section 8).

2. Related Work

In flow visualization, Hultquist [Hul92] pioneered the devel-
opment of stream surface integrators: this work is still the ba-
sis for state-of-the-art methods. Hulquist’s method consists
of a marching front algorithm that builds a triangle mesh by
particle integration and recursively adding triangles at the
front. Note that this approach already considers the small an-
gle problem, at least indirectly: the decision on which parts
of the front line ought to advance next in the recursion im-
plicitly keeps the front somewhat perpendicular to the flow.
Note that this decision is based on local criteria. The price
for this scheme is that the algorithm is recursive (or stack-
based), making a parallel implementation (e.g., on the GPU)
impossible, which is a drawback for real-time meshing in
interactive application.

Stalling [Sta98] extends this method by a still recursive
algorithm and provides a special treatment to areas near sad-
dle points, where stream lines diverge. (A rigorous treat-
ment of critical points and stream surface topology is given
in [SRWS10].)

Garth et al. [GTS∗04, GKT∗08] present several improve-
ments that avoid the recursion but in turn cannot address the
small angle problem. This results in front lines that are not
perpendicular to the flow and leads to degenerated meshes.
An approach to improve the approximation order and subdi-
vision at the current front is proposed in [SWS09]. Scheuer-
mann et al. [SBH∗01] present a stream surface integrator

submitted to Eurographics Symposium on Geometry Processing (2012)

M. Schulze, T. Germer, C. Rössl, H. Theisel / Stream Surface Parametrization by Flow-Orthogonal Front Lines 3

that relies on exact solutions of the integration for piece-
wise linear fields. Schafhitzel et al. [SST∗07] present a GPU-
accelerated method based on the integration of particles.
Peikert and Sadlo [PS09] put focus on topologically rele-
vant structures, their method extracts complete and crack-
free stream surfaces.

Most of the approaches mentioned above do not consider
the small angle problem. Exceptions are in [Hul92] and the
extension [Sta98], which produce approximately orthogonal
front lines at the cost of using recursive algorithms. Another
notable exception presented by McLoughlin et al. [MLZ09]
measures local shear angles to locally adapt the progress of
the front line for generation of quad structures. While the ba-
sic idea of adapting the speed of the front line is also found
in our method, the means to achieve this are very different.
This method modifies the step size of the integrator which
impacts the numerical integration scheme and was imple-
mented for linear Euler steps and Runge-Kutta integrators
of order 2. All of the aforementioned methods rely on purely
local observations to tackle the small angle problem. This,
however, is generally not sufficient to solve it and in contrast
to our approach, which examines a global setting.

The remaining approaches either treat the impact of the
small angle problem only in the vicinity of saddle points
[SRWS10], or they completely disregard it.

The problem of stream surface integration has also been
regarded in the context of dynamical systems. In fact, algo-
rithms that extract stable and unstable manifolds of dynam-
ical systems are actually stream surface integrators. Doedel
et al. [DKK91] present an approach based on a continua-
tion of trajectories. Krauskopf et al. [KO99, KO03] present
approaches based on an approximation of geodesic level
sets. Henderson [Hen05] computes so-called fat trajectories.
A PDE formulation was given in [GV04], and Dellnitz et
al. [DH97] present a box covering approach. We refer to the
survey [KOD∗05] for an overview of existing methods for
computing (un)stable manifolds of vector fields. The above
mentioned methods generally produce high-quality surfaces,
however, they are suited for off-line processing only and are
far from being interactive. In contrast to our approach, none
of these was ever designed for real-time demands, which
are common in flow visualization and exploration. Our ex-
amples include the well-known Lorenz-attractor (see Sec-
tion 7), which shows that our approach can compete with
such off-line methods in terms of mesh quality.

Finally, the approach of enforcing orthogonality has
recently been used in a different context: Schulze et
al. [SRGT12] propose as-perpendicular-as-possible surfaces
for flow visualization: in contrast to stream surfaces, which
are tangential to the flow, these are surfaces that are approx-
imately perpendicular to a steady vector field.

3. Flow-Orthogonal Frontlines

Our approach consists in constructing a reparametrization s̄
of the stream surface s. This is achieved by modifying the
integration: instead of integrating v using (1), we integrate
a scaled vector field αv where α(x, t) is a suitable scalar
field. The field α is evaluated only on the stream surface,
therefore we write α(s, t) := α(s(s, t), t). We are interested
in the stream surface s̄(s, t) that satisfies

∂ s̄(s, t)
∂ t

= α(s, t) v(s̄(s, t))

with the initial condition s̄(s,0) = s0(s). Since s̄ is a
reparametrization of s w.r.t. the time parameter t, the image
of s̄ and s have the same shape. (Here, and in the following
we assume regular surfaces, i.e., non-vanishing partials.) In
order to locally capture the angle between stream lines and
time lines, we consider the (signed) error function

e(s, t) = s̄T
s v . (2)

We assume that time lines of α v are arc-length
parametrized, i.e., ‖s̄s‖ = 1. Then the error e is a measure
of how perpendicular stream lines and time lines are: per-
fectly perpendicular lines result in a vanishing error e = 0.
The dependence of the error on ‖v‖ can be interpreted as
follows: the larger the magnitude ‖v‖, the more e penalizes
non-perpendicularity of ss and v. This corresponds to the fact
that for large ‖v‖ the small angle problem has a larger impact
on the stream surface integration.

In general, the error function e is nonzero. We want to
define the scalar field α such that e is corrected towards zero
during the integration of α v. We express this by demanding

∂e
∂ t

+ e = 0 . (3)

This can be interpreted as follows: the larger the error e at
time t the more it will be damped towards zero by the differ-
ential ∂e

∂ t at the next time step t +∂ t. This way, e converges
towards 0 during the integration. What remains to be done is
to find conditions on α such that (3) holds. Using

∂e
∂ t

=

(
∂ s̄s

∂ t

)T
v + s̄T

s
∂v
∂ t

(4)

and keeping in mind that the directional derivative of v in
direction r can be written in terms of the Jacobian matrix J
as Jr, we obtain for r = αv

∂v
∂ t

= J(α v)
and hence

∂ s̄s

∂ t
=

∂ s̄t

∂ s
=

∂ (αv)
∂ s

=
∂α

∂ s
v+α

∂v
∂ s

= αs v+α J s̄s . (5)

Inserting (5) into (4) and this into (3) gives

α

(
s̄T

s (J+JT)v
)
+ αs

(
vT v

)
+ s̄T

s v = 0 .

This is the condition on α that ensures flow-orthogonality
for the integration of α v. As the partial αt is not involved in

submitted to Eurographics Symposium on Geometry Processing (2012)

4 M. Schulze, T. Germer, C. Rössl, H. Theisel / Stream Surface Parametrization by Flow-Orthogonal Front Lines

vi vi+1vm
i Jm

i

xi xi+1xm
i

x0 xn

Figure 2: Quantities required to estimate the local discrete
error for a segment [xi,xi+1] of the current front line.

this condition, the computation of α can be combined with
an advancing front integration of s: regard the current front
line at t = t̂. Then the computation of α along s(s, t̂) is sim-
ply an initial value problem because v and J are known along
the front. This implies that there remains one degree of free-
dom for the solution: α(s0, t̂) ∈ IR can be fixed as boundary
condition for a certain parameter s0.

4. Discretization

In the discrete setting the current front line at time t̂ is ap-
proximated by a polyline with vertices (x1, ...,xn), xi ∈ IR3,
where we assume that the vertex positions are distributed
approximately uniformly along the front. (Section 6 details
how such discrete arc-length parametrization is maintained
for the resulting surface mesh.) The new front line at the next
time step is obtained by integration along the scaled vector
field α(xi, t̂)v(xi). We search for a piecewise linear scalar
field α , such that this new front line is orthogonal to the flow.
The field α is represented by a vector α = (α1, ...,αn)∈ IRn,
where each value αi is associated with the vertex xi.

We define the piecewise constant error function e at each
segment [xi,xi+1], i = 1, . . .n− 1, of the line by evaluating
the error in the middle 1

2 (xi +xi+1) of each segment. We set

vi = v(xi) , xm
i =

xi+1 +xi

2
, vm

i = v(xm
i) , Jm

i = J(xm
i) .

Then the discrete counterpart of (2) defines the error at xm
i

as
ei = (xi+1−xi)

T vm
i . (6)

Figure 2 illustrates the setup. We demand

∂ei

∂ t
+ ei = 0 . (7)

Using

∂ei

∂ t
=

∂ (xi+1−xi)

∂ t

T
vm

i +(xi+1−xi)
T ∂ vm

i
∂ t

∂ vm
i

∂ t
= Jm

i
αivi +αi+1vi+1

2

∂ (xi+1−xi)

∂ t
= αi+1 vi+1−αi vi ,

(the last equality comes from a local linearization of v) equa-
tion (7) can be written as

αi pi +αi+1 qi + ri = 0
with

pi = 1
2 (xi+1−xi)

T Jm
i vi−vT

i vm
i

qi = 1
2 (xi+1−xi)

T Jm
i vi+1 +vT

i+1 vm
i

ri = (xi+1−xi)
T vm

i

for i = 1, ...,n−1.

Hence, finding α results in finding a solution to the un-
derdetermined linear system Mα = r with M ∈ IR(n−1)×n,
which has the structure

p1 q1
p2 q2

. . .
. . .

pn−1 qn−1




α1
α2
...

αn

=


−r1
−r2

...
−rn−1

 .

5. Finding the Scalar Field α

The linear system Mα = r (4) is underdetermined, and so-
lutions α ∈ IRn are found in the affine subspace αP + µk,
where αP is any particular solution, and k is a vector span-
ning the 1-dimensional kernel {α |Mα = 0}. Given M and r,
there are different ways to determine k and αP. The numeri-
cally most stable way is using the factorization MT = QR
with an orthogonal matrix Q ∈ IRn×n and upper triangu-
lar matrix Rn×(n−1): then we obtain k as the unit vector
(0, . . . ,0,1)Q, i.e., the n-th column of Q, and we chose αP

as the least-norm solution αL = Q[n−1]R−T
[n−1]r, i.e, ||αL|| is

minimal for all solutions to Mα = r. The index [·] denotes
the restriction to the first n−1 columns of Q or rows of R.

Due to the bidiagonal structure of M the necessary com-
putations can be carried out efficiently. We apply n− 1
Givens plane rotations to MT to construct R. Note that
the upper triangular R is also bidiagonal, i.e., we trans-
form subdiagonal and diagonal of MT to diagonal and su-
perdiagonal of R. Then we solve the bidiagonal linear sys-
tem y = RT

[n−1]r. And we finally obtain αL = Q[n−1] y and
k = (0, . . . ,0,1)Q, where the orthogonal transformation is
carried out as n−1 plane rotations, i.e., we do not generate
the matrix Q explicitly. This way we require a total of 26n
flops to compute both, the unit vector k spanning the kernel
of M and the least-norm solution αL. We can give an inter-
pretation for different solutions α = αL +µ k. We start with
the computed least-norm solution αL. This is the solution
closest to the origin, which means that choosing α =αL will
minimize the discrete error ∑i ei defined in (6) most rapidly.
This can be seen from two perspectives: for a given number
of integration steps we obtain the smallest error. And like-
wise for a given error bound we require the least number of
integration steps, i.e., using the least-norm solution α = αL

yields fastest convergence towards a flow-orthogonal front
line.

However, minimizing the error rapidly does not necessar-
ily advance the front line significantly enough, a condition
which is required to evolve the stream surface. In fact, these
two goals are competing. The simplest example is αL = 0,
hence ei = 0, and the front line is orthogonal to the flow.
Even more, choosing any α 6= 0 may increase the error – but
at the same time the surface evolution stopped for α = 0.

If we want to advance the front line we have to ensure
that αi > 0 for all or for entries i = 1, . . . ,n. There is no

submitted to Eurographics Symposium on Geometry Processing (2012)

M. Schulze, T. Germer, C. Rössl, H. Theisel / Stream Surface Parametrization by Flow-Orthogonal Front Lines 5

Figure 3: Top left to bottom right: Flow-orthogonal front
lines near repelling saddle node. The error e is color-coded
from blue=low to red=high for different µ+.

guarantee that such α exists. We apply a heuristic and re-
lax the condition from having all to having as many positive
entries as possible and proceed as follows: count the num-
ber p of positive entries in k. Set k+ = k if p > n/2 and
k+ = −k otherwise, i.e., k+ spans the kernel of M and is
oriented in direction with more positive coordinates. Then
we have α = αL + µ+k+, and obtain the scalar design pa-
rameter µ+ ≥ 0: for µ+ = 0 the front line will align orthog-
onally to the flow at the cost of small or no advection. For
increasing µ we can obtain more and more positive entries
and larger absolute magnitudes of αi. Hence the front line
will be advected quicker with the flow at the cost of being
less quickly aligned orthogonally to the flow. In practice, we
suggest a standard value of µ+ = 1, which works fine for our
experiments. If required, the parameter µ+ can be changed
interactively.

The effect of changing µ+ on the minimization of the er-
ror can be seen in Figure 3 which shows stream surfaces
near a 3D repelling node saddle. The surface mesh is lo-
cally dense, where αs is high. The color-coded visualizations
show the error e defined in Equation (2) for different values
of µ+: lower values of µ+ lead to faster minimization of e
at the cost of a slower front line advancement and vice versa
for higher values.

Note that this heuristic does not guarantee absence of
foldovers in the final surface mesh. In our experiments we
never observed any foldovers. In case a guarantee is re-
quired, one solution is using an orientation-free integrator, as
proposed by Theisel et al. [TSW∗05] for feature flow fields
and eigenvector fields.

6. Mesh Generation

The goal of this work is to generate stream surface meshes
with a quad-dominant structure and well-shaped, flow-
aligned elements. In practice, triangle meshes are often pref-
ered for direct rendering. Thus, in the following we consider
triangulations (or essentially triangulated quads). In order to
generate high-quality meshes, an adaptive refinement and
handling of vector field singularities is combined with the
flow-orthogonal front lines parametrization.

(A) (B) (C)

(D)

Figure 4: Mesh generation. (A) Normal front advancement.
(B) Refinement by split. (C) Coarsening by merge. (D) Sur-
face ripping near saddle. Colors denote different fronts.

6.1. Front Advancement

The surface is built layer by layer by integrating the front line
in the flow α v. The front at time t is also a time line of α v. It
is represented by vertices x1(t), . . . ,xn(t). (We omit param-
eter t or an additional index, whenever the meaning is clear
from the context.) Each new layer is determined by first com-
puting the scalar field α along the front and then applying a
fourth-order Runge-Kutta integration for each vertex xi. We
assume that the segments of the front line have an approxi-
mately equal length `≈ ||xi+1(t)−xi(t)|| for i= 1, . . . ,n−1.
Our goal is to choose the step size h such that the integration
step approximates this length as well: ||xi(t)−xi(t+h)|| ≈ `
for i = 1, . . . ,n. This means that segment lengths on the time
line xi should match the segment lengths on the stream lines.
The resulting new layer is a quad structure, which is triangu-
lated by inserting diagonals (see Figure 4(A)).

The α-scaling of v corrects the speed of vertices xi such
that the new front line is orthogonal to the flow. This is based
on the derivations presented in the previous sections that de-
termine the relative speed of vertices. For mesh generation
we are left with a “global scale” that is represented as the
length of the time interval h for integration. (Note that h is
not same as and independent of the adaptive step size for the
Runge-Kutta integrator.) This scale parameter is determined
independently for every integration step of the front line and
stays constant during this step. The choice of h determines
the (average) segment length ||xi(t)− xi(t + h)|| on stream
lines. Let ` be the prescribed average segment length on the
front line. Then we choose h as the ratio

h = min
{ `

|αi| · ||v(xi(t))||
, i = 1, . . . ,n

}
.

In practice we additionally impose an upper bound to
avoid large time intervals. In our implementation, we use
min{h,1}. The basic front advancement generates a regular
mesh, where edge lengths in s and t direction are bounded
and do not vary quickly in s and time t-direction. Note that
the actual edge length ||xi+1(t)− xi(t)|| serves as a weight-
ing term for the error e in the discrete case: longer edges
contribute more than shorter edges.

6.2. Front Adaptation

The basic meshing algorithm described above assumes an
approximate arc-length parametrization of the current front.

submitted to Eurographics Symposium on Geometry Processing (2012)

6 M. Schulze, T. Germer, C. Rössl, H. Theisel / Stream Surface Parametrization by Flow-Orthogonal Front Lines

Figure 5: Four time steps (A)-(D) of a stream surface near a
saddle in combination with the α field. A spike in the scalar
field evolves, most distinctive at (C), which guides ripping.

It is designed to limit lengths of segments on stream lines.
However, this does not necessarily mean that the new front
line is still arc-length parametrized. We fix this with an addi-
tional step that adaptively refines or coarsens the new front
line. This way, the mesh is also globally adaptively refined.

The basic idea is simple and includes two local opera-
tions: split and merge. If a segment length ||xi,xi+1|| grows
beyond a threshold `max, then the segment is split into two
segments by inserting a new vertex at the barycenter 1

2 (xi +
xi+1). Conversely, if the length of two adjacent line seg-
ments ||xi−1,xi||+ ||xi,xi+1|| becomes smaller than thresh-
old `min, the algorithm removes the middle vertex merging
them into a single segment (see Figure 4(B-C)). We observe
that `max = 3

2 ` and `min = 5
4 ` work well for all our exam-

ples. Figure 4 illustrates this process and also shows the sub-
sequent local adaptation of the triangulation.

Note that there exist other sophisticated criteria for split-
ting and merging (see, e.g., [GKT∗08]). Such alternatives
may be useful and advantageous depending on the applica-
tion of the resulting stream surfaces. Their integration into
our method is straightforward.

6.3. Ripping

Many stream surface integration methods require special
treatment in the vicinity of saddle points [Hul92, Sta98,
SBH∗01,SRWS10]. In this case, the stream surface contains
a separating stream line S such that stream lines on dif-
ferent sides of S diverge. In our mathematical framework
this corresponds to a peak in α(s), which manifests near
the seed point of S on the front line s̄(s, t̂), and which be-
comes higher and sharper as the front approaches the sad-
dle until it would degenerate to a Dirac delta impulse. The
situation can be described informally as follows: the scalar
field α strives to compensate local deviation from flow-
orthogonality. When the front line approaches the saddle, the
only way to achieve this is to stop integration everywhere,
i.e., α → 0 but at the saddle. There we observe α → ∞ as
||v|| → 0. For such configurations, the whole front line does
not move anymore during integration.

Figure 5 shows this case. Four different time steps of sur-
face integration are shown. On the left side the scalar field α

is shown for the current front line (red and green in the im-
ages on the right). The red front line seeded in Figure 5(A)
shows a smooth α field because it is almost orthogonal to

the vector field. After a few integration steps the α field be-
comes sharper in the middle as seen in Figure 5(B). Figure
5(c) finally shows the scalar field near the saddle. The peak
is detected, and the front line is split into two independent
ones, shown in red and green. After that the scalar field α

is computed for each front line and evolves smoothly after a
few time steps (see Figure 5(D)).

In order to allow for further progress of the integration, we
rip the stream surface: we detect the peak in α by testing if
the second derivative ∂ 2α

∂ s2 exceeds a given threshold. In the
discrete setting, we use finite differences of αi, and when-
ever we detect a peak at αk, we remove the associated vertex
xk from the front line. Effectively, this splits the current front
into two parts, which are further integrated separately as in-
dependent front lines. The stream surface appears as ripped
near the saddle (Figure 5(D)).

This way, we use the scalar field α along the current front
as a detector for saddles. This criterion is global to the whole
front line in contrast to purely local approaches, like the cri-
terion used by [Hul92]. Non-locality makes our approach
more robust than local methods. Peaks are detected reliably
without data-dependent tuning of the threshold parameter.

6.4. Implementation

We implemented most stages of our algorithm as parallel
primitives executed on the GPU using NVIDIA’s CUDA
framework. Both, surface and vector field data, reside solely
on the GPU. The first step of the iterative front line inte-
gration is the computation of the scalar field α . The arising
linear system is set up on the GPU and solved on the CPU.
This is in fact the only part of our implementation that is
not executed in parallel and showed better performance on
the CPU. Note that the amount of data to be transferred is
small, and neither QR-decomposition nor solving a bidiag-
onal system benefit from parallel execution (see Section 5).
After uploading the computed scalar field α to the GPU, we
apply the rip criterion. Note also that the scalar field is not
valid anymore for front lines that have been ripped and needs
to be recomputed. Afterwards, front line adaptation and inte-
gration are performed. Finally, the triangulation between the
current and the former front line is build. In summary, the
integration and all meshing stages are executed on the GPU.

7. Results

In this section we show stream surface meshes that were gen-
erated with our method from synthetic input data and from
flows obtained from practical simulations. In addition, we
implemented the state-of-the-art methods by Stalling [Sta98]
and Garth et al. [GKT∗08] (which emerged from [Hul92])
and compare to their results.

Visualization. Red arrows indicate the main flow direction.
For stream surfaces, we superimpose the triangle or quad
meshes (white wire-frame). Yellow lines show additional

submitted to Eurographics Symposium on Geometry Processing (2012)

M. Schulze, T. Germer, C. Rössl, H. Theisel / Stream Surface Parametrization by Flow-Orthogonal Front Lines 7

Figure 6: Results for synthetic data sets. SADDLE and SINUS: [GKT∗08] (A), [Sta98] (B), and ours (C). STALLING and
FOCUSINK: [Sta98] (C), and ours (B), LORENZ attractor: ours.

time-lines (t = const) of v seeded at equidistant times. The
accompanying video shows our interactive application and
further examples.

7.1. Synthetic Data Sets

Figure 6 compares stream surfaces generated by different al-
gorithms – [Sta98], [GKT∗08], and our method.

The SADDLE field consists of a planar flow towards a sad-
dle point, and we seed seed stream surfaces from the bottom
line. Here, the small angle problem leads to almost parallel
stream lines and time lines for a naïve stream surface inte-
gration.

The time line based method by Garth et al. [GKT∗08]
shown as SADDLE (A) produces increasingly dense stream
lines with skinny and nearly degenerate triangles. Also, it
does not detect the saddle as a topological feature. Stalling’s
algorithm [Sta98] in SADDLE (B) detects the saddle and
creates a consistent mesh in the ε-area around the critical
point. As triangles become smaller and smaller due to de-
creasing velocity, the resulting surface mesh tends to over-
tessellation. The result from our method is shown in fig-
ure 6 SADDLE (C). Almost all triangles are well-shaped and
approximately equally sized. The flow-orthogonal front lines
are clearly visible in the wire-frame visualization. The sur-
face mesh is ripped near the saddle, i.e., the front line is split.
In this case this results in a∧-shaped mesh boundary near the
saddle. The detection of the critical point and surface ripping
work robustly and reliably also for other critical point con-
figurations in the following data sets.

The SINUS data set is modeled as a sinusoidal flow de-
fined by v(x,y,z) = (5sin(y)7 + y,1,0). This field is a good
benchmark because constant changes in the angle between
streamline and timeline result in a constantly shifting scalar
field α . SINUS (A) shows the result from [GKT∗08], which

tends to produce badly shaped triangles. SINUS (B) shows
the result from [Sta98] and illustrates the velocity depen-
dence: high shear areas lead to large triangles and possibly
undersampling. Figure 6 SINUS (C) shows the result of our
algorithm. The front lines are orthogonal to the flow, and
there are only small regions of oversampling.

The STALLING data set is modeled after a planar flow
benchmark described in [Sta98] with a main flow direction
from left to right. The vector field contains a sink in the cen-
ter and a saddle on the right boundary of the domain. We
compare Stalling’s algorithm [Sta98] (A) to our method (B).
Note that the vector field had been normalized for Stalling’s
algorithm to avoid the generation of a large number of small
triangles near the critical points. Both algorithms detect the
critical points. Stalling’s tracer placement closes the gap that
emerges from ripping the stream surface. Our basic method
lacks such sort of topology-aware meshing. If required, how-
ever, an extension is straightforward.

The FOCUSSINK example shows stream surfaces near a
focus sink. The seed line on the far right is chosen badly
in the sense that it is far from orthogonal to the flow. Here,
Stalling’s algorithm (A) generates increasingly many trian-
gles of decreasing size because their edge length is coupled
to the velocity of the vector field. In contrast, our method in
(B) generates a surface mesh with relatively few quads and
with low variation in their areas for a prescribed target edge
length. For this example, both algorithms adjust the align-
ment of front lines orthogonal to the flow well.

The LORENZ attractor data set is a prominent benchmark
for high-quality, off-line algorithms as used, e.g., in the dy-
namical systems context. The stream surface generated by
our algorithm grows from an open, circular seeding struc-
ture. For this complex example we generate high-quality
meshes in real-time.

submitted to Eurographics Symposium on Geometry Processing (2012)

8 M. Schulze, T. Germer, C. Rössl, H. Theisel / Stream Surface Parametrization by Flow-Orthogonal Front Lines

0.0

0.5

1.0

45.0 67.5 90.0 112.5 135.0
0.0

0.5

1.0

-1.0 0.5 0.0 0.5 1.0

0.0

0.5

1.0

45.0 67.5 90.0 112.5 135.0
0.0

0.5

1.0

-1.0 0.5 0.0 0.5 1.0

0.0

0.5

1.0

45.0 67.5 90.0 112.5 135.0

0.0

0.5

1.0

-1.0 0.5 0.0 0.5 1.0

0.0

0.5

1.0

45.0 67.5 90.0 112.5 135.0
0.0

0.5

1.0

-1.0 0.5 0.0 0.5 1.0

Figure 7: Results generated by our method for various simulation data. The histograms show quality measures based on angles
relative edge lengths (see section 7). PATHCYLINDER and STREAKCYLINDER show examples for time-dependent vector fields.

7.2. Simulation Data Sets

We apply our method to a series of more complex, simulated
data sets with different properties. The results are shown in
Figure 7. For these data, we measure angles between all ad-
jacent edges of the mesh and show their distribution (blue
histograms, ideal value is 90◦). We also compute the relative
deviation from the “ideal” edge length: assuming square el-
ements this is the average length `avg of the four edges. The
red histograms show the distribution of 1− `i

`avg
for all edge

lengths `i such that values of zero indicate perfect squares.

The TURBINE models the outflow of a hydroelectric tur-
bine. The fluid passes through a pipe (left) and enters a
chamber with an obstacle dividing the flow. The stream sur-
face shows that the ripping criterion works reliably for prac-
tical data as well. The histograms confirm that quads almost
rectangular (blue) and most of them close to square (red).

The time-dependent DELTAWING vector field represents
the airflow around a triangle-shaped airplane. The main flow
feature are two vortices behind the airplane. These structures
are clearly visible in the stream surface that was generated
for a single time step. Although the surface is highly twisted
it is well tessellated.

The STEP vector field [KJ00] represents the flow behind
a backward-facing step, and we examine one time step. The
generated stream surface shows that after the flow passes the
step, it remains nearly laminar for some time until it sud-
denly becomes turbulent. The main vortex core region con-
tains many saddles, which all are detected by our ripping cri-
terion. The stream surface is ripped into a couple of “fringed
bands”. Although the front lines are deformed significantly,
the mesh is well tessellated and consists of almost equilat-
eral quads. This data set also shows the robustness of our
approach for nontrivial flow behavior.

submitted to Eurographics Symposium on Geometry Processing (2012)

M. Schulze, T. Germer, C. Rössl, H. Theisel / Stream Surface Parametrization by Flow-Orthogonal Front Lines 9

The time-dependent BORROMEAN [DSCB10] data set
represents the decay of a magnetic field. The initial configu-
ration consists of interweaved Borromean rings of magnetic
flux. We show a stream surface that is seeded in the vicin-
ity of closed orbits. This example shows that regions of high
curvature as well as long integration times are handled well.

The EVOLUTIONCYLINDER data set [CSBI05] shows the
evolution of a stream surface in the flow around a square
cylinder. The stream surfaces are seeded behind the cylin-
der. This is the region where a vortex core line appears. We
generate a stream surface for one single time step and show
three stages of the integration with the front marked red.
Note that there is no ripping despite high twisting and shear:
the stream surface is always ruled by a single front line.

We use the same data to show that – with few extensions
– our algorithm can as well handle time-dependent vector
fields, i.e., it can generate path and streak surfaces. The re-
sults are shown as PATHCYLINDER and STREAKCYLINDER

in Figure 7.

8. Discussion

In this section we discuss the contribution of our approach,
relation to other approaches, quality, performance, potential
generalizations, and limitations.

Contribution and relation to other approaches. Our work
is based on the novel idea of integrating a modified flow α v
instead of v: the scalar function α scales velocity locally
such that the front line of a stream surface is aligned orthog-
onally to the flow. This is essentially a reparametrization of
the stream surface that enforces a rather uniform advance-
ment of the front and hence a high quality surface mesh con-
sisting of well-shaped quads. At the same time the velocity
scale α provides a reliable and robust detector for critical
points. This is the main contribution of this work. In con-
trast to other approaches, our method benefits from the fact
that it is based on a global observation of the flow and the
stream surface.

The reparametrization, the core part of our method, is
independent of the particular mesh generation. It can be
plugged into any method for constructing stream surfaces
that is based on a marching front algorithm. This renders the
main contribution of our approach in a sense "orthogonal" to
existing approaches. It is easy to extend or to even exchange
of the mesh generation by a more sophisticated algorithm
without additional effort: integrate the scaled flow α v and
react on detection of critical points, e.g., to close gaps at sad-
dles. Note that a significant part of special treatment required
by other methods may not be necessary anymore when fol-
lowing our approach. This includes certain optimizations of
the triangulation such as stripification for efficient rendering
due to our automatic alignment.

Performance The performance of any method for stream
surface integration depends on several parameters that allow

Data set ns ni nv adapt α rip advance triangulate
Lorenz 10 500 287,869 1,116 1,539 569 231 683
2D Saddle 20 240 8,821 350 319 142 89 265
3D Saddle 50 300 76,117 322 327 136 85 260
BubbleChamber 50 100 7,251 189 252 80 403 143
Cylinder 100 500 50,021 510 500 217 264 435
Cylinder 200 1,000 199,690 972 962 416 293 8159
Borromean 20 2,000 138,272 2,082 2,126 887 3,014 1,738
Borromean 200 4,000 425,118 3,856 3,766 1,651 763 3,201

Table 1: Timings for stream surfaces of data sets with ns vertices
on the seed line performing ni integration steps. We measured time
to adapt, rip, compute α , advance the front and, triangulate. All
times are measured in milliseconds.

for a trade-off between computational cost and quality of
the result. From this point of view our approach is similarly
efficient as others: the only additional requirement is the re-
peated computation of the 1-dimensional kernel of a bidiag-
onal matrix. This can be done in O(n), where n is the number
of vertices on the streamline. We implemented a customized
solver, which is numerically stable and highly efficient (see
Section 5). However, in contrast to other methods, a paral-
lel implementation of our approach is straightforward. Also
note that our flow-orthogonal integration potentially reduces
the computational cost for integration and meshing due to
sampling a more suitably parametrized representation of the
stream surface. This effect is hard to quantify.

We applied our algorithm on a series of increasingly com-
plex benchmark data sets, some are shown Section 7. Tim-
ings for all data sets are given in Table 1, which shows the
typical computation times for the different steps of mesh
generation. The measurements show that around 28% of the
computation time for one iteration of front advancement are
spent for computing α .

Surface Quality It is not an easy task to propose a sur-
face quality measure that includes both accuracy of the
stream surface approximation and quality of its parametriza-
tion, i.e., quality of the mesh. As the first quantity depends
mainly on the numerical integration scheme, we focus on
the parametrization and measure quality of the generated
quads based on angles and relative edge lengths (see Sec-
tion 7). The histograms in Figure 7 show that integration in
the scaled α v results in almost perfectly rectangular quads.
Moreover, most quads are close to squares. The average por-
tion of quads in the meshes we obtained throughout exper-
imentation is > 95%. The examples in Figure 6 show that
existing non-recursive methods [GKT∗08] have a signifi-
cantly lower tessellation quality. In fact, there, the small an-
gle problem leads to long and thin triangles, contrary to our
approach.

Generalization to other surfaces We introduced the theo-
retical concept of our method in Section 3 for stream sur-
faces in steady flow fields. As already shown with the results
(see Figure 7 PATHCYLINDER and STREAKCYLINDER),
the concept can be extended to time-dependent vector fields
and path surfaces. (See, e.g., [MLP∗10] for a definition of
path and streak surfaces.) This extension is straightforward
because the path surface of an unsteady flow v(x, t) ∈ IRd

submitted to Eurographics Symposium on Geometry Processing (2012)

10 M. Schulze, T. Germer, C. Rössl, H. Theisel / Stream Surface Parametrization by Flow-Orthogonal Front Lines

can be described as stream surfaces of the steady d + 1-
dimensional flow (v,1)T ∈ IRd+1 [TWHS05]. Similarly,
streak surfaces in IRd can be represented as stream surfaces
in IRd+1 [WT10]. The latter, however, requires a rather ex-
pensive preprocessing to convert the data set.

Limitations Our approach also has limitations: the above
mentioned integration of path surfaces and streak surfaces
requires the simultaneous evaluation of flow data from dif-
ferent time steps. This increases the size of the working set
and may reduce the maximum spatial data resolution com-
pared to other methods. This issue could be alleviated by an
out-of-core implementation, which works only on a narrow
band of the flow.

9. Conclusions

We developed a new approach to the generation of stream
surfaces that aligns the front line orthogonally to the flow.
This is achieved by minimizing an error function at each in-
tegration step of the front line. We derived the error function
in the continuous setting, and showed that the discretiza-
tion essentially leads to solving a linear problem. Flow-
orthogonal integration can be interpreted as a conformal
reparametrization of stream surfaces, which allows for better
sampling by the advancing front. This way, we obtain high
quality triangles meshes in interactive applications. Our ap-
proach is efficient and robust, and it can easily be combined
with other methods or existing implementations.

Acknowledgements

We thank Janick Martinez Esturo for his help with the video
and experimentation. We also thank Tino Weinkauf for pro-
viding a resampled version of the cylinder data set. The delta
wing data set is courtesy of Markus Rütten from DLR.

References

[CSBI05] CAMARRI S., SALVETTI M.-V., BUFFONI M., IOLLO
A.: Simulation of the three-dimensional flow around a square
cylinder between parallel walls at moderate Reynolds numbers.
In XVII Congresso di Meccanica Teorica ed Applicata (2005). 9

[DH97] DELLNITZ M., HOHMANN A.: A subdivision algorithm
for the computation of unstable manifolds and global attractors.
Numerische Mathematik 75, 3 (1997), 293–317. 3

[DKK91] DOEDEL E. J., KELLER H. B., KERNÉVEZ J. P.: Nu-
merical analysis and control of bifurcation problems. I. Bifurca-
tion in finite dimensions. IJBC 1, 3 (1991), 493–520. 3

[DSCB10] DEL SORDO F., CANDELARESI S., BRANDENBURG
A.: Magnetic-field decay of three interlocked flux rings with zero
linking number. Phys. Rev. E 81, 3 (2010), 36401 – 36408. 9

[GKT∗08] GARTH C., KRISHNAN H., TRICOCHE X., TRIC-
OCHE T., JOY K. I.: Generation of accurate integral surfaces
in time-dependent vector fields. IEEE TVCG 14, 6 (2008), 1404–
1411. 2, 6, 7, 9

[GTS∗04] GARTH C., TRICOCHE X., SALZBRUNN T., BOBACH
T., SCHEUERMANN G.: Surface techniques for vortex visualiza-
tion. In Proc. VisSym (2004), pp. 155–164, 346. 2

[GV04] GUCKENHEIMER J., VLADIMIRSKY A.: A fast method
for approximating invariant manifolds. SIADS 3, 3 (2004), 232–
260. 3

[Hen05] HENDERSON M. E.: Computing invariant manifolds by
integrating fat trajectories. SIADS 4, 4 (2005), 832–882. 3

[Hul92] HULTQUIST J. P.: Constructing stream surfaces in steady
3-d vector fields. In Proc. IEEE Vis (1992), pp. 171–178. 2, 3, 6

[KJ00] KALTENBACH H.-J., JANKE G.: Direct numerical simu-
lation of flow separation behind a swept, rearward-facing step at
re[sub h] = 3000. Physics of Fluids 12, 9 (2000), 2320–2337. 8

[KO99] KRAUSKOPF B., OSINGA H.: Two-dimensional global
manifolds of vector fields. CHAOS 9 (1999), 768–774. 3

[KO03] KRAUSKOPF B., OSINGA H. M.: Computing geodesic
level sets on global (un)stable manifolds of vector fields. SIADS
2 (2003), 546–569. 3

[KOD∗05] KRAUSKOPF B., OSINGA H. M., DOEDEL E. J.,
HENDERSON M. E., GUCKENHEIMER J., VLADIMIRSKY A.,
DELLNITZ M., JUNGE O.: A survey of methods for computing
(un)stable manifolds of vector fields. IJBC 15, 3 (2005), 763–
791. 3

[MLP∗10] MCLOUGHLIN T., LARAMEE R. S., PEIKERT R.,
POST F. H., CHEN M.: Over two decades of integration-based,
geometric flow visualization. Computer Graphics Forum 29, 6
(2010), 1807–1829. 9

[MLZ09] MCLOUGHLIN T., LARAMEE R. S., ZHANG E.: Easy
integral surfaces: a fast, quad-based stream and path surface al-
gorithm. In Proc. CGI (2009), pp. 73–82. 3

[PS09] PEIKERT R., SADLO F.: Topologically Relevant Stream
Surfaces for Flow Visualization. In Proc. SCCG (2009), pp. 43–
50. 3

[SBH∗01] SCHEUERMANN G., BOBACH T., HAGEN H.,
MAHROUS K., HAMANN B., JOY K. I., KOLLMANN W.: A
tetrahedra-based stream surface algorithm. In Proc. IEEE Vis
(2001), pp. 83–91. 2, 6

[SRGT12] SCHULZE M., RÖSSL C., GERMER T., THEISEL H.:
As-perpendicular-as-possible surfaces for flow visualization. In
Proc. IEEE PacificVis (2012), pp. 153–160. 3

[SRWS10] SCHNEIDER D., REICH W., WIEBEL A., SCHEUER-
MANN G.: Topology aware stream surfaces. CGF 29, 3 (2010),
1153–1161. 2, 3, 6

[SST∗07] SCHAFHITZEL T., STUTTGART U., TEJADA E.,
WEISKOPF D., ERTL T.: Point-based stream surfaces and path
surfaces. In Proc. GI (2007), pp. 289–296. 3

[Sta98] STALLING D.: Fast Texture-Based Algorithms for Vector
Field Visualization. PhD thesis, FU Berlin, 1998. 2, 3, 6, 7

[SWS09] SCHNEIDER D., WIEBEL A., SCHEUERMANN G.:
Smooth stream surfaces of fourth order precision. CGF 28, 3
(2009), 871–878. 2

[TSW∗05] THEISEL H., SAHNER J., WEINKAUF T., HEGE H.-
C., SEIDEL H.-P.: Extraction of parallel vector surfaces in 3d
time-dependent fields and applications to vortex core line track-
ing. In Proc. IEEE Vis (2005). 5

[TWHS05] THEISEL H., WEINKAUF T., HEGE H.-C., SEIDEL
H.-P.: Topological methods for 2d time-dependent vector fields
based on stream lines and path lines. IEEE TVCG 11, 4 (2005),
383–394. 10

[WT10] WEINKAUF T., THEISEL H.: Streak lines as tangent
curves of a derived vector field. IEEE TVCG 16, 6 (2010), 1225–
1234. 10

submitted to Eurographics Symposium on Geometry Processing (2012)

