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Figure 1: Flow swirling around a straight line. Two APAP surfaces are seeded near the core line at different distances.

ABSTRACT

We define APAP surfaces, surfaces that are as perpendicular as
possible to steady 3D vector fields, and present a method to con-
struct discrete representations of them. Since, in general, a per-
fectly perpendicular surface to a vector field does not exist, we pro-
pose and minimize an error metric to enforce perpendicularity as
much as possible. Our algorithm constructs an APAP surface by
deforming a seed surface anchored in a domain point. In the dis-
crete setting this minimization results in iteratively solving linear
least-squares problems and integrating a locally scaled version of
the vector field. The definition of the error metric and its numer-
ical minimization guarantee that the minimum zero is attained for
the perfectly perpendicular surface if it exists. Otherwise, the min-
imization converges to the same local minimum independent of the
seed configuration, and the resulting surface is – in a least-squares
sense – as perpendicular as possible to the flow. We apply these
APAP surfaces as an interactive flow visualization tool which we
demonstrate on a number of synthetic and real flow data sets.

Index Terms: I.3.5 [Computational Geometry and Object Model-
ing ]: Geometric algorithms, languages, and systems—

1 INTRODUCTION

Vector fields play a vital role in many applications in Vision, Graph-
ics and Visualization. Given a 3D vector field v, there is a number
of characteristic surfaces describing different aspects of the flow,
such as stream, path, streak, and time surfaces. They are exhaus-
tively studied in the literature. They all have in common that they
evolve along the flow direction. In addition, surfaces that mainly
evolve perpendicularly to the vector field have moved into the fo-
cus of consideration in different fields of application. Informally
spoken, such a surface is characterized by the fact that at every sur-
face point the direction of the surface normal (approximately) coin-
cides with the direction of the vector field v. Keeping in mind that
this is not a formal and unique definition yet, we call such surfaces
as-perpendicular-as-possible (APAP) surfaces.

APAP surfaces are considered in different areas of application:
in Computer Vision they are used for surface reconstruction from
vector fields in shape-from-shading approaches. In the visualiza-
tion of diffusion tensors they are considered in regions where fibers
cross as an alternative to fiber tracking. In flow visualization, they
are considered to show local or global properties of the flow.
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APAP surfaces are well-defined for conservative vector fields,
i.e., for fields v which can be expressed as the gradient of a cer-
tain scalar field s. In this case, APAP surfaces are (parts of) the
isosurfaces of s. However, if v is not conservative, a surface per-
fectly perpendicular to the flow does not exist. Existing approaches
either modify v to be conservative, or they provide extraction algo-
rithms whose results depend on arbitrarily chosen parameters and
seed configurations. A review and discussion of existing methods
and their limitations is given in section 2. We believe that such am-
biguities in the extraction methods are due to the lack of a formal
definition of the concept of APAP surfaces.

In this paper we give a mathematically rigorous definition of
APAP surfaces as surfaces minimizing a certain error functional.
The main idea is to start with a simple initial surface s0, on which
a time-surface integration of a scaled version α v of the vector field
is applied. The scaling field α is chosen such that the time surfaces
converge to a state of minimizing the error under certain boundary
conditions – usually fixing a particular surface point. Based on this
definition we present an approach to compute discrete APAP sur-
faces. The user provides a triangle mesh representing an arbitrary
seed surface which is anchored at a specified domain point. Our
algorithm integrates this surface along α v until the error becomes
minimal. For this, the field α has to be defined on the surface.
In the discrete setting it is obtained from solving a sparse linear
least-squares problem. We preserve accuracy of the APAP surface
approximation by an adaptive refinement and relaxation of the tri-
angulation during the integration. We also allow for growing the
surface across its boundaries. Our implementation enables the use
of APAP surfaces as an interactive flow exploration tool. We dis-
cuss its applicability on a number of synthetic and real 3D flow
fields.

2 RELATED WORK

APAP surfaces have been considered in Computer Vision, tensor
visualization, and flow visualization. We review them here together
with their problems and shortcomings. In addition, we give a short
overview of flow visualization to classify APAP surfaces as an in-
teractive flow exploration tool.

2.1 APAP Surfaces in Computer Vision
In Computer Vision, shape-from-shading approaches aim in recon-
structing surfaces from measured illumination conditions of a sin-
gle image or multiple images [5]. Deriving surface orientation is
a difficult non-linear and ill-posed problem with no general solu-
tion. Most approaches use variational methods [12, 8], Fourier and
wavelet basis functions [9, 15] or a direct solution to the Poisson
equation [27]. [19] uses belief propagation to obtain an integrable
gradient field.



For these approaches it can be assumed that the unknown sur-
face satisfies the integrability condition. The non-integrability is
treated as an error and removed from the field yielding a conserva-
tive normal field. This property does not hold for visualization of
general vector fields that can be far from conservative and where a
projection onto a conservative field is meaningless.

2.2 APAP Surfaces in DT-MRI Visualization
In DT-MRI visualization, fiber tracking is a standard technique.
However, in regions where fibers cross, this method tends to fail
because the diffusion tensor becomes planar, i.e., the larger two
eigenvalues have approximately the same size. For these regions,
so-called DT-MRI stream surfaces have been proposed [28, 33, 38]
which are the surfaces perpendicular to the (in these regions well-
defined) minimum eigenvector. Even though this has been widely
referenced in DT-MRI visualization [22, 34, 39], [26] shows that
these surfaces generally do not exist and that existing extraction
methods depend on arbitrarily chosen parameters.

2.3 APAP Surfaces in Flow Visualization
In flow visualization, APAP surfaces of local first order approx-
imations at particular points are considered for glyph techniques
[7] or for computing local differential geometric properties [36].
[18] describes APAP surfaces as surfaces where the local angle be-
tween flow and surface normal is smaller than a certain threshold.
Unfortunately, such a surface is not uniquely defined: even in a
small neighborhood of a point there are infinitely many such sur-
faces which pass through it. This leads – similar to DT-MRI stream
surfaces – to the fact that the proposed extraction methods depend
on arbitrary parameters, namely the direction in which the proposed
growing starts. In fact, the counterexample for DT-MRI stream sur-
faces in [26] applies to the proposed surfaces in [18] as well.

Contrary to the surfaces in the 3D case, curves perpendicular to
the flow in the plane or on a surface are well-defined and used, e.g.,
in [2]. [23] use perpendicular curves for streamline seeding in 2D
vector fields.

2.4 Flow Visualization
Flow visualization is a well-researched field of scientific visual-
ization, see, e.g., the surveys [17, 21]. Among the existing tech-
niques, an interactive exploration of the flow is enabled by stream
surfaces [13, 25, 29], path surfaces [10, 24], and streak surfaces
[4, 16, 35, 37]. However, contrary to these surfaces our approach
explores the flow perpendicular to the flow direction.

One straightforward solution of the problem of non-integrable
vector fields may come into one’s mind: given a vector field,
decompose it into its conservative and divergence-free part by a
Helmholtz-Hodge decomposition [20, 32] and compute the per-
fectly perpendicular surface from the conservative flow part. Note
that this approach does not give solutions if v is divergence-free,
since in this case the conservative part vanishes. (We consider a
divergence-free flow in the example shown in Figure 7.)

3 AS-PERPENDICULAR-AS-POSSIBLE SURFACES

In this section we provide the definition of as-perpendicular-as-
possible surfaces, first in the continuous case and then in the dis-
crete case.

3.1 Continuous Formulation
Given is a 3D vector field v(x) over a domain D and a regu-
larly parametrized surface s(u,v) in D with parameters (u,v) ∈
[u0,u1]× [v0,v1]. In addition, we require that in no surface point
of s the vector of v lies in the tangential plane of s and that v
does not have critical points on s, i.e., det(su,sv,v(s)) 6= 0 for any
(u,v) ∈ [u0,u1]× [v0,v1]. We consider a vector r in the tangent
plane of s,

r(u,v,γ) =
cosγ√

E
su +

sinγ√
EG−F2

√
E
(F su−E sv) (1)

where su,sv denote the partial derivatives of s and E = sT
u su, F =

sT
u sv, G = sT

v sv. (1) is constructed such that ‖r‖ = 1 and r is mov-
ing with constant angular velocity while linearly increasing γ . If s
was a surface perfectly perpendicular to v then the relation rT v = 0
holds for any (u,v,γ). For the general case we define the local error
function

e(u,v,γ) = r(u,v,γ)T ṽ(s(u,v)) (2)

with ṽ = v
‖v‖ . It is a measure of how perpendicular v and r are

locally. Note that the error term in (2) is equipped with a sign.
From (2) we define the global error

E =
∫ 2π

0

∫ v1

v0

∫ u1

u0

‖su× sv‖ · (e(u,v,γ))2 du dv dγ , (3)

which describes how perpendicular v and s are globally. (Note that
E does not depend on the parameterization of s.) The main idea to
define APAP surfaces is to integrate s along a vector field α ṽ until
E is minimized. For this, α is a certain scalar field which has to
be constructed to minimize E but preserves certain properties and
boundary constraints inherent to s. In order to define the scalar
field α , we realize that it is evaluated only on the surface s, i.e., it is
sufficient to consider α(u,v, t) where t is the integration time. This
gives the time-dependent surface s(u,v, t) satisfying

∂ s(u,v, t)
∂ t

= α(u,v, t) · ṽ(s(u,v, t)) ,

with the initial condition s(u,v,0) = s0(u,v). We want to choose α

such that (the signed quantity) e is corrected towards 0 during the
integration. We express this by demanding

∂e(u,v, t)
∂ t

+ e(u,v, t) = 0 , (4)

which can be interpreted as follows: the larger the error e is, the
more it decreases towards 0 during the integration of α ṽ. What
remains to be done is to find conditions for α to satisfy (4). Using
the fact that

∂e
∂ t

=

(
∂r
∂ t

)T
ṽ + rT ∂ ṽ

∂ t
(5)

and keeping in mind that the directional derivative of ṽ in a certain
direction d can be written as J̃d where J̃ is the Jacobian matrix of
ṽ, we get

∂ ṽ
∂ t

= J̃(α ṽ)

∂r
∂ t

= α · J̃ r +
∂α

∂r
ṽ .

Inserting the above into (5) and this into (4), we get

f (α) := α · rT (J̃T + J̃)ṽ+
∂α

∂r
· ṽT ṽ+ rT ṽ (6)

= α · rT (J̃T + J̃)ṽ+
∂α

∂r
+ rT ṽ = 0 ,

where ∂α

∂r is the directional derivative of α in direction r. The fact
that the only derivatives of α in (6) are the directional derivatives in
r-direction gives that the computation of α can perfectly be com-
bined with the integration of s: given s at a certain time t̂, we com-
pute α(u,v, t̂) by solving (6) in a least-squares sense at t̂. From this
we can integrate α ṽ to get s at the next time step.

Now we can give a formal definition of APAP surfaces.
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Figure 2: Quantities required for the local discrete error at an edge
`= {i, j}: vertex positions xi, x j, normalized flow vectors ṽi, ṽ j evalu-
ated at these locations as well as in the midpoint (ṽ`), and the Jaco-
bian J̃` of ṽ at the midpoint of the edge.

Definition 1 A surface s is an as-perpendicular-as-possible surface
(APAP surface) iff the scalar field α(u,v)= 0 minimizes the integral

Ē(α) =
∫ 2π

0

∫ v1

v0

∫ u1

u0

f (α)2 du dv dγ . (7)

Note that this definition conforms to the special case, i.e., if a sur-
face is perfectly perpendicular then it is an APAP surface because
it minimizes (7) to Ē(α) = 0. Informally spoken, this definition
states that any integration of s in α ṽ with α 6= 0 must increase the
error Ē.

Furthermore, the equation (7) provides a way to construct a
unique APAP surface for a given domain point x̂. Consider an initial
seed surface s0 through x̂ and set α(x̂) ≡ 0 as boundary condition,
making sure that the integrated surface still passes through x̂, then
the construction of α and the integration of α ṽ converges to an
APAP surface through x̂.

3.2 Discretization
In the discrete setting the surface is approximated by a triangula-
tion of vertices X = {x1, . . . ,xn},xi ∈ IR3. In the following, we
require only the notion of edges {i, j} which connect two adjacent
vertices xi and x j in the triangulation. Note that this definition does
explicitly not provide an orientation of edges, {i, j} and { j, i} are
equivalent. We assume a valid triangulation without degenerated
triangles or fold-overs. Furthermore, we assume that initially the
vertices are distributed equally on the surface such that edges are of
almost equal length. In the remainder of this section, we consider
one particular time step, and we leave out parameters in the notation
if they are clear from the context.

We search for a piecewise linear scalar field α(u,v, t̂) which al-
lows us to make the mesh as perpendicular as possible to the flow
field ṽ in the current time step t = t̂. The scalar field is represented
by values ααα = (α1, . . . ,αn) at the vertices. We obtain the APAP sur-
face iteratively by integrating the vertex positions along the scaled
field αi ṽ(xi).

We first derive the error term for each edge. For this, we consider
the error function e in the midpoint of each edge `= {i, j} between
the vertices (xi,x j). Setting

ṽi = ṽ(xi) , ṽ j = ṽ(x j) , x` =
x j +xi

2
, ṽ` = ṽ(x`) , J̃` = J̃(x`) ,

we obtain the discrete error value at x` as

e` = (x j−xi)
T ṽ` (8)

and demand
∂e`
∂ t

+ e` = 0 . (9)

Figure 2 illustrates the setup.
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Figure 3: Surface growing. The position of the offset vertex xnew
is computed from the discrete boundary curve and its unit tangent
n and normal n vectors (left). The boundary polygon and the offset
points form a triangle strip (red) which is included in the triangulation.

Using
∂e`
∂ t

=
∂ (x j−xi)

∂ t

T

ṽ` + (x j−xi)
T ∂ ṽ`

∂ t
∂ ṽ`
∂ t

= J̃`
αi ṽi + α j ṽ j

2
∂ (x j−xi)

∂ t
= α j ṽ j−αi ṽi ,

equation (9) can be written as

αi p` + α j q` + r` = 0 (10)
with

p` =
1
2
(
x j−xi

)T J̃` ṽi− ṽT
i ṽ`

q` =
1
2
(
x j−xi

)T J̃` ṽ j + ṽT
j ṽ`

r` =
(
x j−xi

)T ṽ` .

Equation (10) is the discrete version of equation (6), and we can
express the continuous surface integral Ē(α) in (7) as a discrete
sum over all edges. (In the following we do this in matrix notation.)

Considering equation (10) for all edges simultaneously leads to
a linear system in the unknown variables αi:

Aααα =−r (11)

with A ∈ IRm×n,ααα ∈ IRn, and r ∈ IRm, where m is the number of
edges in the surface triangulation. The system matrix A is sparse,
each row represents an edge, the columns correspond to vertices.
With 1≤ l ≤m denoting the index of a particular edge `= {i, j} its
structure is

Al,ν =


p` if ν = i
q` if ν = j
0 otherwise

(12)

for vertices 1≤ ν ≤ n.

4 CONSTRUCTION OF DISCRETE APAP SURFACES

In the previous section we gave the definition for APAP surfaces
and derived a discrete version. In this section we show how to find
the required discrete scalar field α in practice. Using this field we
construct discrete APAP surfaces from an initial seed surface by an
integration along the flow field α ṽ.

We want to solve the linear system (11) in order to obtain α for
a particular time step. This system is generally overdetermined,
as the number of edges is generally m ≈ 3n for sufficiently large
meshes with a single boundary. Counting the degrees of freedom
reveals that also for the discrete setting we cannot expect a solution
leading to a surface which is perfectly perpendicular to the flow.
Instead of solving Aααα +r = 0 we determine the optimal solution ααα

in least-squares sense, i.e., we minimize

||Aααα + r||2 , (13)
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Figure 4: (a) Surface growing. We consider the conservative vector
field v(x) = ∇x, the critical point 0 is marked. In this case the APAP
surface is a spherical isosurface. We start with disk as seed surface
(left) which evolves to part of a sphere (center) as APAP surface.
After surface growing the mesh covers the whole sphere. (b) Two
APAP surfaces in a conservative linear field with a saddle.

refering to the continuous Ē(α) in (7). We do this by solving the
normal equations

AT Aααα = −AT r .

The system matrix AT A is sparse, symmetric and positive-definite
if (1.) the triangulation is not degenerate in the sense that for every
edge {i, j} the vector x j − xi does not vanish, and (2.) the vector
field v does not have critical points at xi and x j. We assume that
the first condition is satisfied due to our requirements on the seed
(see section 3.2) and relaxation during the minimization (see sec-
tion 4.2). We address the second condition by adding a regulariza-
tion term µ f ||ααα||2 to (13), i.e., we solve

(
AT A+µ f I

)
ααα = −AT r

for a small scalar µ f . This improves numerical robustness, and this
way ααα is well-defined also in the vicinity of critical points. In prac-
tice, if we hit a critical point exactly, the movement of the surface
stops locally, vertices close to a critical point keep moving.

For vector field exploration we require an additional constraint:
we want the APAP surface to interpolate a given point of interest.
The easiest way to achieve this is to fix a certain vertex x̂ = xc ∈
X by adding the constraint αc = 0, i.e., the vertex does not move
during integration along the vector field α ṽ. It is well-known that
constraining the normal equations directly sacrifices smoothness of
the resulting surface at the constraint, i.e., fixing a single vertex xc
would manifest in a small and thin “spike”. As this behavior is
not desirable, we relax the interpolation constraint and replace it by
an approximation constraint: we would like to remain as close as
possible near xc or equivalently keep ||αc||2 as small as possible.
Technically this results in adding another regularization term, or
more precisely penalty term, this time weighted with a relatively
high value µc� µ f . The higher the value of µc, the less is the drift
of a constrained vertex xc with interpolation of the constraints in
the limit case µc = ∞. Note that it is sufficient for our purpose to
constrain one single vertex.

As both regularization terms are of the same type, we can write
the resulting linear system as(

AT A +D
)

ααα = −AT r , (14)

where D ∈ IRn×n is a diagonal matrix with

Dii =

{
µc if vertex i is constrained
µ f if vertex i is free .

In our implementation we used values µ f = 10−5 and µc = 104.
The system matrix is symmetric and positive definite, and we

solve the linear system by a sparse Cholesky factorization. There
are established and highly efficient numerical algorithms and soft-
ware libraries, which enable the processing of large meshes with
tens or even hundreds of thousands of vertices. We use the
CHOLMOD [6] library in our implementation.

4.1 Error Minimization by Integration
Given is a seed surface placed in domain D such that one vertex
xc is anchored to a point of interest x̂. We translate and rotate the

Figure 5: APAP surfaces in a conservative flow [29]. The LIC image
of the underlying 2D vector field reveals the sink and saddle.

Figure 6: Five APAP surfaces combined with illuminated streamlines
visualize the focus saddle flow.

initial surface such that xc = x̂ and the directions of the surface
normal n(xc) and the flow field v(xc) coincide at the anchor point.

We minimize the error – the deviation from a perfectly perpen-
dicular surface – by integrating the surface in the field α ṽ. In
the discrete setting we do this in discrete time steps: in each time
step we solve (14) for the current scalar field α . Then we apply
a fourth-order Runge-Kutta integration step with fixed step size
h and scale the result by α . Note that α may be negative, i.e.,
the surface may (locally) move backwards. We repeat this for a
sequence of time steps until the change in the residual ||Aααα + r||2,
which approximates the continuous error Ē(α), is sufficiently
small. (Figure 11 shows error plots over time; the error decreases
rapidly, and generally only few time steps are required.) The
additional least-squares constraint µc ||αc||2 penalizes movement
of the constrained vertex xc, see (14). Effectively, this anchor
vertex remains close to its initial position x̂, and the integrated
surface stays globally smooth. In summary, we use the following
algorithm to minimize Ē(α).

• Translate/rotate seed s.t. for anchor x̂ = xc: n(xc) | | v(xc)
• Repeat over time steps . . .

– setup and solve the linear system (14) to get the field α

– compute a step-size ∆h(xi, ti) for every vertex xi
– integrate every vertex: xi ← xi + αi ∆h(xi, ti)
– optionally adapt the surface mesh (see below)

• . . . until change of global error ||Aααα+r||2 is below a threshold

The optional adaptation step ensures the quality of the surface
sampling and triangulation. In addition, it enables dilating or grow-
ing the surface. We describe surface mesh adaptation in the next
section.

4.2 Surface Mesh Adaptation
The approximation of APAP surfaces depends on the discrete sam-
pling: the number of vertices and their distribution over the surface.
We start with an equal vertex distribution as seed. During integra-
tion, the vertices may move not only in surface normal direction
but also tangentially. This tangential drift results in a change of the
sampling rate: edge lengths and triangle areas increase or decrease
locally, i.e., there are fewer or more vertex samples per local area.
The effect depends on the flow field v, and in fact, the tangential



drift can become significant over time. This can lead to undersam-
pling and cannot be tolerated for a high quality approximation.

A standard approach to remedy this effect is remeshing, well-
known in geometry processing. There are various approaches with
different goals, and we refer to [1] for a review. A simple and effi-
cient method [3] iterates edge collapses and edge splits for short and
long edges, edge flips to balance vertex degrees near the optimal
number 6, and a tangential relaxation of vertex positions to equal-
ize edge lengths. The goal is a quasi-regular triangulation with all
triangles being close to equilateral for a given target edge length.

We observed that undersampling due to large triangles is espe-
cially critical in our setting. Therefore, we apply a local refinement
for all triangles (and boundary edges) whose area (length) exceeds a
threshold. We use the

√
3-refinement [14] – a 1-3-split of triangles

followed by edge flips – which provides a truly local refinement
at low computational cost. The refinement can be combined with a
tangential relaxation based on a uniform Laplacian smoothing. This
results in a more equal vertex distribution.

4.3 Surface Growing
We implement another feature related to surface adaptation: surface
growing – the user may interactively expand the APAP surface over
its current boundaries. Starting with a relatively large seed surface
captures the flow more globally and hence evolves to a different er-
ror function. This can result in a globally different surface. In order
to overcome this restriction, we allow for a dynamic surface expan-
sion in any time step of the integration of the APAP surface. The
expansion is done progressively, layer by layer, with an interleaved
error minimization based on the growing surface as new seed.

In order to expand the surface by one layer of triangles, we iterate
over the boundary vertices. For each boundary vertex we estimate
its normal vector and its tangent vector by taking central differences
on the boundary edge loop. With the unit normal vector n and the
unit tangent vector t we obtain a new offset point at position (n×
t) · ε within an approximate ε-distance based on the desired edge
length. The value of ε is proportional to the average edge length.
The new vertices and the boundary define a triangle strip which is
added to the triangulation yielding a new offset boundary curve.
Figure 3 illustrates this process.

This heuristic expansion works well in regions of small vec-
tor field curvature. In this case, the new vertices will move only
slightly during the subsequent error minimization. However, in re-
gions with high vector field curvature the heuristic may fail in a
sense that the new points are far from their optimal position. In ad-
dition, the optimization process may suffer from triangle fold-overs
which generally cannot be avoided for the offset. We remedy this by
a global uniform Laplacian smoothing step on the current surface:
every inner vertex is moved towards the barycenter of it neighbors,
and every boundary vertex is moved towards the barycenter of its
boundary neighbors. We damp the Laplacian displacements by a
factor of 2

5 ; the anchor vertex remains fixed. The rationale is that
the tangential part of the displacements equilibrates the vertex dis-
tribution, while the normal part provides a geometric smoothing.
Assuming that the optimal APAP surface is smooth, the latter im-
proves the position of the heuristically inserted vertices in a sense
that they get closer to their optimal position. At the same time, the
subsequent error minimization corrects the normal displacement of
the inner vertex. The global smoothing step provides numerical sta-
bility to the heuristic expansion of the surface to a new seed. This
step is essentially the same step as the relaxation for mesh adapta-
tion, the only difference is whether the Laplacian displacements are
projected into the tangent plane or not.

In our experiments we observe that growing the surface by iterat-
ing boundary expansion, smoothing, and APAP error minimization
is robust and stable, independent of the starting configuration. Fig-
ure 4a shows a simple example where APAP surfaces are spherical

isosurfaces. Surface growing enables starting with a moderately
sized disk-shaped seed which evolves to geometric sphere. (Of
course, topologically, the surface remains a disk.) Our examples
include conservative fields, see Figures 4b and 8a, for which we
apply surface growing, and for which the discrete APAP surfaces
converge to isosurfaces.

5 USER INTERACTION

This section describes how a user can interact with APAP surfaces
in our implementation, and how these surfaces are used for inter-
active flow visualization. Please see also the accompanying video
which briefly demonstrates the visualization and interaction. The
video shows parts of the interactive sessions played back at 1.5×
real time (3×real time for cylinder example).

Control of APAP surfaces. Most useful are planar disk-
shaped seed meshes where the user can interactively choose ra-
dius and sampling rate. The user can translate and rotate the seed
mesh in the flow. Optionally, flow vectors are evaluated on the seed
surface for immediate feedback. This is useful for orientation if
no additional visualization such as vector or streamline samples is
used. Generally, we propose to combine the visualization of APAP
surfaces with other established techniques like illuminated stream-
lines [40].

The user can “anchor” the seed surface at a point of interest,
usually the surface center, and compute an APAP surface passing
through this point. Then, the surface normal at this point is aligned
with the vector field by rotating the surface. Here, we also enable
the user to choose a different orientation of the seed. This way,
different parts of the vector field are sampled and therefore a differ-
ent orientation may manifest in different APAP surfaces. A manual
alignment was used in Figure 1 and near the vortex cores in Fig-
ure 9. (Note that the orientation has no influence for conservative
flow fields.) After this, the user can start the error minimization pro-
cess. After each iteration the surface is displayed. This results in
an animation. Similarly, the user can interactively grow the surface
according to his needs. In the video we grow several surfaces over
multiple offset layers (see section 4.3) before we start the animated
error minimization. Generally, we recommend alternate error min-
imization and growing to increase stability.

The user can place an arbitrary number of APAP surfaces. Each
surface can be modified, e.g., by growing the surface or moving the
anchor point and recomputing the surface, or by removing it from
the visualization.

Rendering. For the evaluation of our algorithm we render
APAP surfaces with the local error color-coded on the surface. For
color coding we “normalize” the error, i.e., we compute the angu-
lar error e`/||x j − xi|| – cosine of angle between vector field and
edge – and take averages of all incident edges for vertices. The
color map in the pictures and in the video maps blue and red to low
and high error, respectively. Note that for conservative flow fields
a standard shading is preferable as the error is zero everywhere. Of
course, any other scalar vector field quantity can be visualized on
the APAP surfaces, e.g., curvature.

6 RESULTS

In this section we show results from vector field visualization with
APAP surfaces for synthetic and real world data sets. We provide
timings to show that the approach is interactive, and we measure
convergence of the global error. For some examples, we combine
APAP surfaces with other flow visualization techniques like 2D LIC
and illuminated streamlines. The color coding on surfaces – if ap-
plied – displays the local error.

We start with a couple of synthetic vector fields. The simplest
one is the gradient field shown in Figure 4a to demonstrate surface
growing.



Figure 7: Simulated flow around a square cylinder. We show one time step of the simulation and combine APAP surfaces with a LIC image on a
central plane.

(a) (b)

Figure 8: (a) APAP surface near critical point in front of square cylin-
der. 473 streamlines are seeded at the vertices resulting in an even
distribution. (b) Four APAP surfaces on the benzene flow combined
with illuminated streamlines.

Another conservative field is a linear vector field with a saddle
(Figure 4b). We place two disk-shaped seed surfaces. Note that
the double cone is formed by one surface with a single boundary:
the difference to the smaller surface is the location of the anchor
closer to the critical point and bigger amount of surface growing.
This example is a test for regions of high curvature requiring local
refinement (see section 4.2) during integration. This is handled well
by our algorithm. The number of vertices ranges from 1,105 to
27,082 for the larger locally refined APAP surface.

The next example is modeled after a benchmark data set in [29].
It is essentially a 2D flow, constant in the 3rd dimension and re-
quires significant deformation of the seed in order to converge to
the APAP surface in the center domain region. Figure 5 shows the
result combined with a LIC image of the underlying flow. The max-
imum number of vertices for the largest APAP surface is 38,874.

For all conservative fields as well as for the inherently 2D fields
(Figure 5) our algorithm converges to the “ground truth” solutions
which are perfectly flow-perpendicular surfaces passing through the
point of interest.

We show two more synthetic vector fields which are not conser-
vative. Here, the global error converged to a non-zero minimum, the
colors visualize the local error. Figure 6 shows five APAP surfaces
seeded in the inflow plane of the focus saddle. In the visualiza-
tion, we combine APAP surfaces with illuminated streamlines. The
maximum number of vertices is 5,733.

Figure 1 shows a flow swirling around a straight line. The APAP
surfaces form helical structures which twist around the core line.
The helix radius depends on the distance from the anchor point to
the line. We show two APAP surfaces with seeds placed in different
distance to the core line. We used a maximum of 37,990 (left) and
25,787 (right) vertices.

We also show a number of real data sets which stem from nu-
merical simulations. Figure 8a shows the electrostatic field around
a benzene molecule. This data set was using the fractional charges
method described in [30]. This conservative vector field has 184
critical points. We show four APAP surfaces in combination with
illuminated streamlines. We started with seeds of 1,901 vertices
and observe a maximum of 29,235 vertices for the final APAP sur-
faces. Figure 7 shows a flow around a square cylinder. The time-
dependent data set was obtained from a numerical simulation. The

main flow direction is from left to right. We show one time step
in the mid of the simulated time span. We combine a LIC image
on a central intersection plane with multiple APAP surfaces which
behave well in front of the obstacle and close to the critical point.
There, we observe high curvature manifested in a sharp bend of
the APAP surface. The resulting APAP surfaces in this region are
aligned on ellipses which indicates a swirling behavior. The maxi-
mum number of vertices was 39,468.

Figure 8b shows another APAP surface in the cylinder data set.
Streamlines are seeded at the 473 surface vertices. We show that
APAP surfaces are good seeding structures for streamlines because
of the resulting equal density.

Figure 9 shows two different views of one time step of a sim-
ulated flow around an airplane wing. The main flow direction is
from right to left (red arrow). Swirling flow is found above the
wing. Five APAP surfaces are placed in combination with illumi-
nated streamlines. The big, almost planar APAP surface closest
to the inflow region shows the laminar flow above the front of the
wing and contains 822 vertices. The swirling region is depicted
by three surfaces that contain up to 11,551 vertices. Near the vor-
tex region the seed surfaces were oriented manually to capture the
helical structure well. The high curvature in these regions causes
significant refinement.

Finally, we show another simulated data set in Figure 10 at two
different time steps. The data set consists of 100 time steps show-
ing the relaxation and decay of magnetic Borromean rings. The
four yellow APAP surfaces are anchored on the attracting plane
of a focus saddle-like center. Two blue APAP surfaces are seeded
along the repelling diagonal. The six APAP surfaces consist of up
to 4,656 vertices. The attracting region grows over time, closed
structures appear along the repelling direction.

6.1 Performance

We provide timings in Table 1 to show that our algorithm is in-
teractive. Performance was measured on an AMD Dual-Core
Opteron 2218 processor at 2.6GHz using a single core. Here, we
consider meshes of different size from n ≈ 2,000 to n ≈ 200,000
vertices. The table shows typical times for a single time step: we
solve the least-squares problem – this involves setup of the linear
system, Cholesky factorization and solving using the factor (col. 2–
4). Furthermore, we apply relaxation by a Laplacian smoothing
step (col. 5). We also measure the time for a global refinement
by splitting all triangles – in practice we refine locally, then the
number of triangles involved depends on properties of the vector
field – (col. 6), and we measure the time for growing the surface
by one layer of offset vertices (col. 7). The table shows that our
implementation is clearly interactive for moderate mesh sizes. In
our examples the number of vertices does not exceed 40,000 for an
APAP surface. Even for relatively large meshes (> 100,000 ver-
tices), the performance is acceptable. The total computation time is
dominated by the solution of the linear system, in particular by the
sparse Cholesky factorization.



Figure 9: Two views of flow around a wing visualized by five APAP surfaces combined with streamlines. The red arrow shows the main direction.

Figure 10: Six APAP surfaces at time-step 50 (left) and 78 (right) indicating the focus saddle-like structure of decaying magnetic Borromean rings.

6.2 Convergence and numerical stability
It remains to show that the minimization converges (sufficiently
fast) and is numerically stable. We carried out the following experi-
ment: we measure the residual ||Aααα+r||2 (see (13) in section 4) for
a sequence of time steps. We expect this error to converge smoothly
and rapidly to a minimum. Figure 11 shows plots of the residual for
two different vector fields: the first field is conservative (blue), we
chose the gradient field as for Figure 4a. We expect the error to
drop to zero because every APAP surface is an isosurface perfectly
perpendicular to the flow. This is confirmed by the plot. The second
example (red) is the swirl around a straight line shown in Figure 1.
Here, the global error converges to some minimal value. Note that
the global scale of the residual (y-axis) depends on the triangulation
and the vector field. Hence, only the relative change – not the ab-
solute values – is meaningful and of interest. Our experiment con-
firms that our algorithm for computing APAP algorithm reduces the
global error smoothly and finds a configuration with minimal error,
i.e., the resulting surface is as perpendicular as possible to the flow.
The experiment also shows that the rate of convergence is high, and
that in practice only few (5−20) integration steps are required.

7 DISCUSSION AND CONCLUSIONS

Although ad-hoc solutions for APAP surfaces have been applied in
different fields of visualization, a rigorous definition of such sur-
faces together with a stably converging extraction method was not
available yet in flow visualization. Our approach closes this gap.

From the standpoint of flow visualization, we see APAP surfaces
as an interactive flow exploration tool which does not intend to re-
place existing curve and surface integration methods but acts as a
complementary tool. As APAP surfaces are (nearly) orthogonal to
the flow, there is relatively few interference with traditional tech-
niques which evolve geometric objects along the flow. At the same
time, sets of APAP surfaces visualize the vector field “implicitly”
and provide an intuitive understanding of the flow. Therefore, we
think that generally flow visualizations can be enhanced by com-
bining established methods and APAP surfaces. We observe that
APAP surfaces are ideal seeding structures for streamlines yielding
even distributions.

Another argument in favor of APAP surfaces is the fact that for
conservative flows the visualization of the isosurfaces of the under-
lying scalar field is a natural and well-established choice for visu-
alization. APAP surfaces extend this to general vector fields. We
remark that since our definition is based on the concept of a mini-
mum of a function, different local minima for given configuration
are theoretically possible. We observe that our approach is not sen-
sitive to the input configuration in a sense that for small changes we
find the same minimum and hence the same surface.

Our approach to the construction of APAP surfaces has a number
of limitations. First, since the normal of the seeding surface must
not be parallel to the flow, the size of the seeding surface is limited
especially for complex flows. However, this limitation is attenuated
by our surface growing approach (section 4.3).

Second, in areas of very high vector field curvature the discrete
representation either suffers from undersampling or becomes too
large to be practical: our triangular representation of APAP surfaces
runs into excessive subdivision leading to extremely large meshes.
In particular, APAP surfaces starting in a critical point of v are un-
defined. This, however is not a serious limitation because there
are well-established topological methods to represent the flow in a
neighborhood of 3D critical points [11, 31], and it only emphasizes
that a combination of APAP surfaces and established techniques
can lead to intuitive visualizations.

Third, our current implementation is limited to meshes with
about 100,000 vertices as an interactive tool. As shown in our
examples, this is sufficient for practical data exploration. Size is
less of an issue if the APAP surface is smooth enough such that
the mesh can be coarsened adaptively. Challenging are the already
mentioned regions of turbulent flow, where an appropriate sampling
of APAP surfaces easily exceeds the practical limits. This is not
unique to APAP surfaces but an issue for surface integration meth-
ods in general. Another challenge is the appropriate handling of
“double covering” as, e.g., for the saddle (Figure 4b): this does not
impair rendering but it “wastes” triangles increasing the size of the
linear system. An automatic detection of such situations together
with an adaptation of the APAP surface topology is an interesting
problem for future research. Finally, the definition and extraction of
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Figure 11: Plot of the residual over time steps to show convergence
and numerical stability. Blue: for a conservative field (see Figure 4a),
the global error becomes zero. The seed surface was a unit cube
around the critical point. Red: The same experiment is carried out
for the spiral flow (see Figure 1) and a disk-shaped seed surface.
Here, the residual quickly converges to a minimum.

n setup factor solve smooth refine grow
2,513 6.2 6.0 1.1 1.9 24.2 3.4
5,041 12.2 15.5 3.3 2.1 42.9 6.2

15,121 36.6 70.3 12.8 7.5 115.4 11.5
35,640 116.6 267.9 28.0 35.7 286.4 34.2
70,200 200.3 663.7 73.5 56.2 445.7 33.1

136,080 385.0 2,052.0 133.8 82.3 899.4 52.6
210,600 690.5 8,172.3 238.7 147.4 1,579.6 92.8

Table 1: Timings for meshes with n vertices. We measured time to
setup and factor AT A, to solve the linear system, to smooth, refine
(all triangles), and to grow one layer. Timings are given in millisec-
onds.

APAP surfaces in time-dependent fields remains an open question.
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