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Abstract
Stream surfaces are well-known and widely-used structures for 3D flow visualization. A single surface can be
sufficient to represent important global flow characteristics. Unfortunately, due to the huge space of possible
stream surfaces, finding the globally most representative stream surface turns out to be a hard task that is usually
performed by time-consuming manual trial and error exploration using slight modifications of seed geometries.
To assist users we propose a new stream surface selection method that acts as an automatic preprocessing step
before data analysis. We measure stream surface relevance by a novel surface-based quality measure that prefers
surfaces where the flow is aligned with principal curvature directions. The problem of seed structure selection can
then be reduced to the computation of simple minimal paths in a weighted graph spanning the domain. We apply
a simulated annealing-based optimization method to find smooth seed curves of globally near-optimal stream
surfaces. We illustrate the effectiveness of our method on a series of synthetic and real-world data sets.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1 Introduction
The visualization of 3D flow and vector fields is one of the
core topics in Scientific Visualization. Although a variety of
techniques has been proposed, 3D flow visualization is still
challenging and bears a number of open problems. Stream
surfaces are well-accepted structures for the visualization of
3D vector fields. In fact, deep and comprehensive research
has been done on the problem how to integrate and how to
graphically represent stream surfaces. However, the question
which surface to integrate and present has been rarely stud-
ied in the literature. A common manual technique to solve
this problem is an interactive expert-driven trial and error ap-
proach: a certain simple seed structure (e.g., a straight line)
is moved around until relevant flow features are sufficiently
visualized. This is a time-consuming task that requires a lot
of experience, and the restriction to a particular seed curve
geometry is a dramatic reduction of the search space of all
possible stream surfaces. In fact, most stream surfaces can-
not be obtained by straight seed curves.

This paper presents an automatic tool that assists the user
with stream surface selection, i.e., we solve the following
problem: given a 3D steady vector field v(x), find a stream
surface that describes the properties of v best. Note that we
are focusing on one representative stream surface, i.e., it is
not the goal to densely cover the domain with surfaces. Fur-
thermore, we search for a view-independent solution.

Until now there has not been a formal description of what
a good stream surface is. Hence, we introduce a new qual-
ity measure for stream surfaces. Our quality measure prefers
surfaces where lines of curvature are aligned with stream
lines on the surface as well as possible. This quality mea-
sure is motivated by the fact that for such surfaces com-

mon line renderings of the geometry and the flow coincide
and are therefore not interfering with each other. To make
such a quality measure applicable, we show that it can be
computed without explicitly estimating curvature fields on
stream surfaces. Based on our quality measures, we provide
a completely automatic algorithm for finding globally opti-
mal stream surfaces. The utility of the quality measures and
the extraction method is then demonstrated for a number of
data sets. The contributions of the paper are:
• an analysis of the problem of stream surface selection,

leading to the fact that it can only be solved by a global
technique, and that the search space (the number of possi-
ble stream surfaces) is huge,

• a set of quality measures for stream surfaces, rewarding
surfaces whose lines of curvature are as well as possible
aligned with stream lines on it,

• a proof that such a quality measure can be computed with-
out estimating the curvature tensor on the stream surface,

• an algorithm to select a globally optimal stream surface
that is based on simulated annealing.

Definitions and notations. We make use of the following
formal concepts: Given is a 3D steady differentiable vector
field v(x) over the domain D. Let J(x) be the Jacobian ma-
trix field of v. To ease the formal presentation, we assume
D = IR3 to prevent boundary effects for the integration. This
is not a limitation: in practice, integration is stopped when
reaching the domain boundary. We use the concept of a flow
map φ: φ

t(x) describes the location of a particle seeded at
x after integrating in v over a time period t. Let x(s, t) be a
differentiable parametric surface in D, and let n(s, t) be its
unit normal. Then the defining property of x being a stream
surface is v(x(s, t))Tn(s, t) = 0 for every (s, t) of the surface
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domain. One way to obtain a stream surface is to start with
a parametric seed curve s(s). A stream surface can then be
written in parametric form as x(s, t) = φ

t(s(s)).

2 Related Work

There is a large body of research on stream surface integra-
tion as well as stream surface rendering. A number of ap-
proaches is available to select suitable stream lines. Only few
approaches exist for automatic stream surface selection.

Stream surface integration. The problem of stream sur-
face integration is well-understood. Approaches range from
Hultquist’s classical advancing front line method [Hul92] to
more advanced global time-scaling algorithms by Schulze et
al. [SGRT12]. We refer the reader to the survey by Edmunds
et al. [ELC∗12] for an overview on stream surface integra-
tion and perception-improving rendering methods.

Stream surfaces for interactive flow exploration. Seed
structures for stream geometry are usually placed manu-
ally. Seeds for stream ribbons and particles can be interac-
tively moved around for real-time exploration [KKKW05].
The appearance of stream ribbons and surfaces can be en-
hanced using illustrative techniques as shown by Born et
al. [BWF∗10]. Hummel et al. [HGH∗10] apply screen-space
curvature approximations to enhance integral surface visu-
alizations. These approaches focus on the visual representa-
tion and not on finding representative stream surfaces.

Stream line selection. The problem of finding good distri-
butions of stream lines on 2D manifolds is well-researched.
Turk and Banks [TB96] are first to propose an image-based
algorithm, and Jobard and Lefer [JL97] propose a direct
method to solve the stream line placement problem. Stream
line placement in 3D flow is a more difficult problem. Sev-
eral approaches have been proposed to find well-distributed
seeds in data space as well as occlusion-aware methods
that work in view space [MCHM10] or apply clustering
[CYY∗11]. We again refer to the survey by McLoughlin
et al. [MLP∗10] for an overview on advanced stream line
seeding in both 2D and 3D flows. Note that the problem of
stream line selection is less complex than our problem since
the search space is significantly smaller: there is a unique
stream line that passes through a point.

Automatic stream surface selection. Only few methods
have been proposed for automatic selections of stream sur-
faces. Cai and Heng [CH97] present the first method to com-
pute starting points for stream surfaces automatically. Their
approach is based on implicit stream surfaces presented by
van Wijk [vW93]. The resulting surfaces can either be ex-
tracted as isosurfaces or rendered directly via volume render-
ing. However, the necessary stream function integral of the
vector field can only be computed for curl-free flow. Theisel
et al. [TWHS03], Weinkauf et al. [WTHS04], and Peikert
et al. [PS09] automatically find seed curves from topologi-
cal structures. Unfortunately, their methods may either ex-
tract too many or not enough stream surfaces. Recently Ed-
munds et al. [EML∗12] use isolines on domain boundaries

Figure 1: Stream surface parameterizations. a) Different
seed curves s describing the same stream surface. Among all
stream surfaces there is a unique orthogonal-optimal one s0.
b) Different orthogonal-optimal seed curves produce differ-
ent stream surfaces, here for the example of a constant v.

as seed curves and propagate stream surfaces into surround-
ing space. Their method is limited to the existence non-
vanishing flux on domain boundaries. In a follow-up work, a
clustering approach of local flow properties is applied to find
seed curve locations [ELM∗12]. However, no surface-based
measure is applied to evaluate the optimality of resulting
stream surfaces. Since stream surfaces are global structures
due to integration, our new approach is based on a global
flow field analysis and optimization by measuring optimal-
ity of complete stream surfaces. In particular, our method is
independent of vector field topology, or the existence of curl
or outflow boundaries.

3 On the Complexity of the Search Space

In this section we give a deeper analysis of the problem.

Why a global surface-based approach? All other stream
surface selection methods mentioned above have in common
that they are local methods: stream surface are exclusively
selected by the quality of seed curves, i.e., by considering v
and its derivatives along the curves. Even if their seed curves
perfectly fulfill such local criteria [ELM∗12], nothing pre-
vents the stream surfaces from being integrated into areas
where they are either less interesting or even lead to poor
visualizations by hiding interesting structures. Instead, it is
necessary to evaluate the quality of stream surfaces that are
integrated from these seed curves. This requires a surface-
based quality measure, which is global by construction due
to the domain-wide stream surface integration. We introduce
such a surface-based quality measure in Section 4.

Why only one stream surface? Common approaches for
stream line selection focus on finding a set of stream lines
that cover the domain in a certain way. The situation for
stream surfaces is different: even a single surface can cover
the complete screen space. Moreover, it is known that even
in low numbers stream surfaces tend to hide each other, lead-
ing to cluttered visualization. Also, having a look into classic
literature where 3D flow illustrations are used reveals that
many examples of 3D flows are only illustrated with a sin-
gle carefully chosen stream surface [AS92, Dal83]. This as-
sumption fails for highly turbulent flow for which surface-
based approaches are generally considered unsuitable.

How complex is the search space? Before proposing a so-
lution, we analyze how complex the problem of stream sur-
face selection is. In other words: we answer the question how
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many stream surfaces exist for a 3D vector field. Consider a
point q ∈ D and a normal n with nTv = 0. We analyze how
many different stream surfaces exist that pass through q and
have the surface normal n there. Every stream surface can be
described by a seed curve s(s) with

s(0) = q , ṡ(0)T n = 0 , ṡ(0)×v(q) 6= 0 , (1)
where ṡ := d

ds s(s) denotes the tangent vector of s. Note that
different seed curves fulfilling (1) describe the same stream
surface. In fact, a seed curve s′(s) = φ

λ(s)(s(s)) for any
differentiable function λ(s) with λ(0) = 0 gives the same
stream surface in a different parametrization. Among all
seed curves describing the same surface there is one unique
representative: the seed curve fulfilling (1) and additionally
the ordinary differential equation (ODE) ṡ(s)T v(s(s)) = 0
for any s. We call such a seed curve an orthogonal-optimal
seed curve s0. Figure 1 (a) illustrates the concept.

In order to find the number of different stream surfaces,
we have to find the number of different orthogonal-optimal
seed curves, i.e., curves that are the solution of the ODE
with the initial value ṡ(0) = v(q)× n. Note that this ODE
is underdefined: solving it as an initial value problem for
a certain s does not give a unique direction of continua-
tion but a one-parametric family of directions. Thus, the set
of different orthogonal-optimal seed curves is an infinite-
dimensional infinite set. Figure 1 (b) exemplifies this with
the aid of a constant vector field where two different stream
surfaces through the same point with the same normal are
shown. From this it follows that the cardinality of the num-
ber of different stream surfaces through q with normal n is
above the cardinality of IRn for any natural number n.

4 Quality Measures for Stream Surfaces
Using perceptual arguments we investigate the question
which intrinsic properties characterize a good stream sur-
face. Their graphical representation is challenging because
two pieces of information have to be simultaneously pre-
sented: the surface shape and the flow on the surface. The
shape is usually represented by (non)-photorealistic render-
ing techniques [BWF∗10]. To show the flow on the sur-
face, most 2D steady flow visualization techniques can be
adapted to stream surfaces, such as image based techniques
[LvWJH04], stream lines [SLCZ09], or elementary tech-
niques [PGL∗12]. However, the perception of the shape and
the flow are not independent – see for example the work by
Laramee et al. [LvWJH04], where image-based flow visu-
alizations on the surface limit the perception of the shape.
Hence, it is desirable to find stream surfaces where the repre-
sentation of their shapes and the embedded flows yield sim-
ilar structures and therefore do not interfere with each other.

In non-photorealistic rendering of shapes, standard tech-
niques for surface representation are line rendering and
hatching [DC90, SS02]. It is known that lines of curva-
ture are good candidates for representing the surface shape
[RKS00]. A variety of user-studies show that lines of curva-
ture improve the perceptibility of surfaces [KHSI04,SW04].
If these lines are stream lines at the same time, they can rep-

Figure 2: Stream surface quality. a) A stream surface of high
quality: the stream lines (•) are aligned with the lines of cur-
vature (•), b) a stream surface of lower quality. c) Setting of
the local alignment error: α is the angle between v and one
of the principal directions p1, p2 of the surface x.

resent both shape and flow. Hence, our approach is to search
for stream surfaces where the stream lines are aligned with
the principal directions as good as possible. Figure 2 (a,b) il-
lustrates the setting. Our experiments indicate that this align-
ment measure characterizes representative stream surfaces
of a flow domain. Note that recently curvature approxima-
tions have already shown to be beneficial for integral surface
rendering [HGH∗10].

To formulate a local alignment error, consider a stream
surface x(s, t) at a certain point, and let κ1, κ2 be the princi-
pal curvatures and p1, p2 the corresponding principal direc-
tions of x in its tangent space [BKP∗10]. Furthermore, let v
be the velocity at x, and let α be one of the angles between
v and one of the principal directions. Figure 2 (c) gives an
illustration. Then, we define the local alignment error

ea = cosα sinα (κ2−κ1) . (2)
Note that e2

a neither depends on the choice of the principle
direction nor on its orientation, and it vanishes if v is aligned
with one of the principal directions and at umbilical points.

The error ea has a related differential geometric interpre-
tation providing an additional motivation for the measure:
following Euler’s theorem the normal curvature κn of x in
the direction v is κn = κ1 cos2

α + κ2 sin2
α , which gives

ea = 1
2

d
dα

κn. Hence, ea is the directional derivative of κn in
flow direction. Surfaces that minimize e2

a therefore have low
normal curvature variation in the direction of v. The process
of curvature variation minimization is generally termed sur-
face fairing, which follows the principle of simplest shape:
the surface should be free of any unnecessary details or os-
cillations (see, e.g., [BKP∗10]). Hence, minimizing e2

a glob-
ally yields stream surfaces that do not only capture local flow
details but rather represent global flow features.

The error ea is not yet suitable for minimization, because
it requires a local estimation of the curvature tensor of x. We
consider the first and second partial derivatives of x from
which the surface curvature can be computed:

xs = ṡ xt = v xss = s̈ xst = J ṡ xtt = Jv . (3)
From (3) it is straightforward to compute κ1, κ2, p1, p2. In-
serting these values into (2) gives

ea =
nT J(v×n)
‖v‖2 . (4)

(The step from (2) to (4) is a straightforward computation for
which we provide an accompanying Maple sheet.) Equation
(4) shows a remarkable property: the local alignment error at
x with normal n does not depend on the seed curve but only
on n, v, and J. In other words: all stream surfaces through a

submitted to EUROGRAPHICS 2013.



4 Martinez Esturo et al. / Global Selection of Stream Surfaces

Figure 3: Stream surface quality. A simple stream surface in
a saddle vector field. Superimposed are principal curvature
directions (•, scaled by |κ1−κ2|) and the local vector field
(LIC). On the surface the squared local alignment error e2

a
is color coded (low error •, high error •), which depends on
the alignment of the flow and any principal direction.

point x with normal n have the same local alignment error!
See Figure 3 for an example.

Based on ea, we compute the average squared alignment
error by integrating e2

a over the stream surface:

Ea =
1
A

∫ t1

t0

∫ s1

s0

e2
a ‖xs×xt‖ ds dt (5)

for the stream surface x(s, t) with (s, t)∈ [s0,s1]× [t0, t1] and
surface area A. The measure Ea is non-negative and compa-
rable for stream surfaces of different area.

The error Ea will be the target function for minimization.
However, Ea has trivial minimizers, e.g., stream surfaces in
laminar flows with almost vanishing Jacobian: in these areas,
nearly planar stream surfaces minimize (5) because ea van-
ishes. To exclude these trivial solutions, we expect a good
stream surface to have non-vanishing average normal curva-
ture. Setting E = xs

Txs, F = xs
Txt , G = xt

Txt , L = nTxss,
M = nTxst , and N = nTxtt , the normal curvature is the ratio
of first and second fundamental forms [BKP∗10], i.e.,

κn =
L ds2 + 2M ds dt + N dt2

E ds2 + 2F ds dt + G dt2 . (6)

Since the tangential direction v corresponds to (ds,dt) =
(0,1), inserting (3) in (6) gives

κn =
nT Jv
‖v‖2 .

To obtain a comparable measure we compute the average
squared normal curvature

Kn =
1
A

∫ t1

t0

∫ s1

s0

κ
2
n ‖xs×xt‖ ds dt . (7)

We will later minimize deviation of Kn from a prescribed K0.
A third quality measure solves the ambiguity of the seed

curve of a stream surface: we expect a good seed curve to be
as perpendicular as possible to the flow. We define

Ep =
1
`

∫ s1

s0

(
vT ṡ
‖v‖‖ṡ‖

)2

‖ṡ‖ ds (8)

where ` is the arc length of s. Without loss of generality we
assume s to be arc length parameterized such that `= s1−s0.
Finally, we have to consider the area A of the stream surface
as a fourth quality measure.

The aim is to find a stream surface that minimizes these
four quality measures. Direct numerical optimization of this
problem is hardly feasible due to the search space complex-

Ribbon
Integration

Domain
Discretization

Simulated Annealing
Path Optimization

Weighted
Domain Graph

Optimal
Stream Surface

Figure 4: Algorithm overview. We discretize the domain us-
ing a domain graph of refined cubic cells (left) and perform a
stream ribbon integration for each edge to assign edge costs
wi by (9) (middle, low costs •, high costs •). A simple path
of minimal costs computed using simulated annealing then
yields an optimal seed structure (right).

ity. Instead, we develop a combinatorial approach yielding
near optimal stream surfaces w.r.t. our quality measure.

5 Automatic Seed Curve Selection

Using the stream surface quality measures we are now able
to present our stream surface selection strategy. The algo-
rithm consists of the following major steps that are executed
automatically for a user-provided flow domain and a set of
parameters. See Figure 4 for an overview of the method.
First, we create a spatial graph that densely covers the do-
main. Then, a stream ribbon integration is performed for
each edge of this graph. The quality of each stream ribbon
defines a cost value for each grid edge. We then perform a
global optimization for paths of approximate minimal costs
using a simulated annealing algorithm. In a final smoothing
step on the resulting path, we obtain the seed curve for the
integration of the resulting stream surface.

Domain graph. In order to perform a global optimization
on the space of stream surfaces we need a suitable discretiza-
tion of this space or equivalently of the space of seed curves.
For this discretization we use the following inclusion prop-
erty for seed curves of stream surface:

Given a seed curve s(s), s0 ≤ s ≤ s1, of a stream sur-
face x, this curve can be subdivided at a point s(ss) into two
curves sa(sa), s0 ≤ sa ≤ ss and sb(sb), ss ≤ sb ≤ s1, such
that s ≡ sa ∪ sb holds. Likewise, when sa and sb are used
as seed curves for new stream surfaces xa and xb, then also
x ≡ xa ∪ xb holds because both xa and xb share the unique
streamline starting at s(ss). One can therefore always extend
a stream surface with another stream surface if their corre-
sponding seed curves connect in a common point.

This allows a domain discretization with short curve seg-
ments joining at common points. We use linear curve seg-
ments and the following subdivision scheme: we first create
a grid of uniform cubic cells that covers the whole domain.
The edges of these cells are all axis-aligned. In order to pro-
vide more directional degrees of freedom, each cell is sub-
divided by inserting vertices at the six face centers and the
cell center, which are connected by face diagonals and cell
diagonals, respectively. Figure 4 (left) shows this setting.

The sets of all vertices V and all edges E define an undi-
rected domain graph G = (V,E) with vertices embedded in
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D. Let P be the set of all simple paths in G, i.e. paths with no
vertex repetitions. We use simple paths to approximate the
seed curves: any simple sequence of edges yields a piecewise
linear seed structure candidate. Possible candidates are eval-
uated w.r.t. the quality of the stream surfaces that they define.
The quality measure can be evaluated for each edge indepen-
dently to define edge costs. Due to the inclusion property, the
quality or equally the costs of a path results in a summation
of associated edge costs.

Edge costs. The cost wi > 0 of each edge ei ∈ E aggre-
gates intrinsic properties of narrow stream ribbons xi ⊂ D
(i.e., of stream surface with short seed curves). We calcu-
late each xi by performing a stream surface integration us-
ing each edge as the seed geometry. Integration is performed
for a predefined maximum time range and is stopped at the
domain boundary. There are no special requirements at this
stage: we use Hultquist’s algorithm [Hul92]; any other adap-
tive method for stream surface integration is applicable as
well. A stream ribbon is integrated for each edge of the do-
main graph. This is the most time-consuming step of our
method (see Section 6.4). However, this way edge costs are
based on truly nonlocal features of the vector field.

There are two remarks on this step that are worth not-
ing: As ribbons are integrated independently, we use a par-
allelized computation. Also, we observe that reliable edge
costs generally do not require ribbons of high resolution.
Therefore, a relatively coarse tessellation of the stream sur-
face meshes is sufficient.

Edge costs are modeled as weighted combinations of the
quality measures defined in Section 4, which are evaluated
on each stream ribbon xi. Edge costs shall be minimal if a
linear combination of quality measures is minimized.

We compute a discrete approximation of the surface inte-
grals (5) and (7) by quadrature, which samples local values
of ea and κn at each triangle center and weights samples by
triangle area. This yields values E i

a and Ki
n for the ribbon xi

with surface area Ai. Similarly, E i
p is an approximation to the

line integral (8), which is also evaluated by quadrature.
The absolute values of these measures differ and cannot

be compared between data sets. In order to have parameters
that are independent of the data, a normalization of measures
is required that yields relative values. We normalize E i

a, Ki
n,

E i
p, and Ai to the range [0,1] to obtain Ē i

a, K̄i
n, Ē i

p, and Āi. For
the curvature-based measures E i

a and Ki
n we apply an addi-

tional log-transformation. This is due to the fact that curva-
tures are not bounded and can become very large. Moreover,
they are not equally distributed, meaning that only in small
regions large values appear, while large regions have rather
small values for ea and κn.

We model the final cost for an edge of length `i by
weighted quadratic contributions as

wi = `i ∑
x∈{a,n,p,A}

βx (F i
x)

2 (9)

with F i
a = Ē i

a, F i
n = K̄i

n− τ, F i
p = Ē i

p, and F i
A = 1− Āi. Cost

minima of wi minimize the alignment error (5). Moreover,

higher costs are assigned to edges that are aligned with the
flow and whose stream ribbons have a smaller surface area.
The weights βx, x ∈ {a,n, p,A} define the relative weight-
ing of cost components. Generally, a good choice is βx = 1:
we use this setting unless stated otherwise for some experi-
ments in Section 7. Then τ ∈ [0,1] remains the only param-
eter provided by the user: it steers the desired amount of av-
erage normal curvature with τ = 1 for higher and τ = 0 for
lower values. Essentially, τ captures the prescribed average
squared normal curvature K0 (see Section 4) after normaliza-
tion. If an edge is aligned with the flow, i.e. Ē i

p > δ (we use
δ = 0.8), we ignore its weight and discard the edge from fur-
ther processing by setting wi =∞. Figure 4 (middle) shows
a graph with color-coded costs for each edge.

Path costs. We define the total costs of a path pk as
cγ(pk) = (1− γ) ∑

i∈Ek

wi + γ κ(pk) .

Ek ⊂ E is the set of edges of pk. This is a linear blend be-
tween edge costs and a normalized measure of discrete poly-
line curvature κ. We include the additional path curvature
term to penalize undesirable “space-filling” paths in areas
of constant low edge costs (e.g., in laminar flow areas). The
weight 0 ≤ γ < 1 is a user parameter that trades minimal
edge costs versus straightest seed curves (see Section 6.1 for
results of different choices for γ). A simple estimation of
the (normalized) curvature of the path is sufficient, we use
κ(pk) =

1
π ∑ei,ei+1∈Ek

π−^(ei,ei+1). Here, ^(ei,ei+1) de-
notes the angle between two consecutive edges on the path.

Global optimization problem. Our goal is to find a seed
curve of the best stream surface w.r.t. the defined qual-
ity measure, i.e., most importantly, we prefer surfaces with
stream lines aligned with lines of curvature. This requires
searching for the globally best seed curve in the entire do-
main. We formulate this global optimization problem as
a combinatorial problem: the space of seed curves is dis-
cretized as the space of simple paths in the domain graph,
which covers the domain densely. The quality of a seed curve
is evaluated as the sum of edge costs in a path. The pre-
scribed arc length ` of seed curves is measured as the number
of edges in a path, giving n = b /̀`e

avge for an average graph
edge length `e

avg. Formally, we want to optimize
p? = argminpk∈P

{
cγ(pk)

∣∣ |Ek|= n
}

(10)
for an optimal simple path p? of length n. This is a combi-
natorial assignment problem on a large finite search space P.
In the literature the dual problem is called the Heavy Path
Problem [KBL12]. It is known to be NP-hard, i.e., it is prac-
tically infeasible to compute the exact solution. Instead, we
present an algorithm for computing an approximate solution
in the following sections.

Local minimal paths. A key idea for a practical solution
of (10) is to prune the search space. Instead of all simple
paths of length n in P, we consider only a subset Q⊂ P that
includes the simple minimal path starting in v of length n for
each vertex v∈V . This implies |Q|= |V |, where the paths in
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Q are determined by a local minimization. This pruning step
is justified by the fact that any other paths p /∈Q do not even
constitute local minima and are therefore not considered as
candidates for a global minimum.

The locally minimal paths can be computed for each ver-
tex using, e.g., Dynamic Programming, an algorithmic stan-
dard technique that was recently used for finding Heavy
Paths [KBL12]. However, in practice this is only feasible for
n≤ 6 due to the exponential combination complexity, which
results from the high branching factor of the graph (most ver-
tices have 16 neighbors). We therefore approximate Q with
a greedy iterative deepening depth-first search that restarts a
depth-first search phase after each d steps from the current
optimal solution. This is justified by the fact that edges of
minimal costs are distributed along line structures – hence
the depth-first search phase – in the graph due to the penal-
ization of flow-aligned edges. We use d = 5 in all our exper-
iments. This allows computing approximate local minimal
paths of length n > 15 efficiently. We implemented a lazy
evaluation of Q, i.e., locally minimal paths are computed on
demand and then stored for subsequent evaluations.

5.1 Global Path Optimization by Simulated Annealing

An often successfully used meta-heuristic to approximately
solve problems similar to Equation (10) is the Simulated An-
nealing (SA) algorithm. It is a physically inspired algorithm
that models the controlled slow cooling of heated materi-
als. Slow cooling reduces defects in the crystal structure of
the material, which can be interpreted as a form of internal
energy that is optimized. The SA algorithm was introduced
by Kirkpatrick et al. [KGV83] as a general heuristic global
optimization tool for hard problems. For instance, SA was
only recently used in the visualization community by Sigg
et al. to solve the NP-hard problem of generating optimal
cutaway illustrations [SFCP12]. Further applications of SA
can be found in the survey of Suman and Kumar [SK06]. We
briefly describe the SA algorithm in the context of our prob-
lem and refer to the survey for more details on the method.

The SA algorithm introduces a system temperature T > 0
that serves as a control parameter. A candidate solution is
improved (the amount of change depends on T ), and T is
slowly decreased following a temperature schedule.

Single optimization step. We use the SA algorithm for an
iterative update of a candidate path that starts at the current
vertex vc, which is initialized randomly. A new candidate
path is randomly sampled in the domain by selecting a new
starting vertex vn in the Euclidean neighborhood of vc ac-
cording to a normal distribution with mean xc and variance√

T/2, weighted by the length of the diagonal of the domain
bounding box. Higher temperatures increase the probability
for selecting distant candidate vertices while at lower tem-
peratures variations are more local. The probability that vn
is accepted for the next iteration depends on the cost dif-
ference d = cγ(vc)− cγ(vn). Here, cγ(v) denotes the cost of
the minimal simple path pv ∈ Q that starts in vertex v. The
probability is given by the Metropolis transition probability

avc→vn = min
{

1, ed/T
}

. avc→vn guarantees that better solu-
tions (d > 0) are always accepted. Likewise, worse solutions
(d < 0) can also be accepted, as avc→vn > 0 still holds, and
the probability for these events is enlarged for higher tem-
peratures T . This property enables SA to not get stuck in
local minima but leave them once entered.

Temperature schedule. The classic SA algorithm consists
of a heating (annealing) and a cooling phase that schedule
the temperature [KGV83]. We found the heating phase re-
sults in almost equal initial temperatures in all our experi-
ments – we therefore usually skip heating and start the cool-
ing phase with a fixed value T0. In the cooling phase multiple
optimization steps are performed at a fixed temperature, and
we count the number of accepted steps ma. If ma > ms for
a fixed value ms, the temperature is lowered by multiplying
it with a constant factor 0 < λ < 1. The scaling of the tem-
perature by λ is also performed if the number of total steps
exceeds a maximum value mmax > ms. This scheme results
in an exponential temperature decay. We stop the iteration if
mmax is not reached for three consecutive times and consider
the solution to be converged to p?. We used the constant fac-
tors T0 = 1/2, λ = 0.9 that performed well in all our experi-
ments. We analyze choices for ms and mmax in Section 6.3.

5.2 Seed Curve Generation

The path p? represents a piecewise linear seed curve. We in-
terpret this as an approximation to a smooth, C2-continuous,
seed curve s? that is obtained by smoothing p? by a univari-
ate subdivision scheme. Due to the close proximity of the
spatial locations and tangential directions of p? and s?, we
expect the resulting stream surfaces to have similar behavior.

We use a simple corner cutting scheme
that yields C2-continuous cubic splines in the
limit (see, e.g., Sabin [Sab10]) with an addi-
tional endpoint interpolation rule. In each it-
eration, the scheme generates new points by
the rules yk+1

2i = 1
2 yk

i +
1
2 yk

i+1, yk+1
2i+1 =

1
8 yk

i +
6
8 yk

i+1+
1
8 yk

i+2.
Typically, three subdivisions provide a sufficiently close ap-
proximation to the smooth curve. We obtain the resulting
optimal stream surface x? by starting an integration from s?.

6 Results

We evaluate our method by a parameter description and
present results of applying our approach to both analyti-
cal and real world vector fields. Additionally, we provide a
quantitative analysis of the convergence behavior of the op-
timization and timings of our method.

6.1 Parameters

Our method requires specification of the domain graph reso-
lution. It strongly influences the runtime of the method, as it
prescribes the number of grid edges and therefore the num-
ber of stream ribbon integrations and the size of the search
space of the optimization. However, we found that even rel-
atively low resolutions yield sound results, e.g., all the an-
alytical examples have a graph resolution of 203 cells. The
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highest resolution used in this work was a 20×40×15 cells
graph for the ACOUTLET data set shown in Figure 5. In gen-
eral, we observe that a good default value for the resolution
is given by the length ratio of vector field grid cell diagonal
to domain graph cell diagonal around five (see Table 1). We
evaluate the influence of different resolutions in Section 7.

Also, depending on the concrete vector field characteris-
tics, the integration direction (i.e., forward only or forward
and backward) and the maximum integration time should be
specified. For vector fields with an inflow / outflow area (e.g.,
in the CYLINDER data set) we integrate in forward direction
only until the integration reaches the boundary. In all other
cases we integrate into both directions.

The number of edges n of the optimized paths dictates the
total length of the optimized seed curve. It is related to the
graph resolution, which specifies the range of edge lengths,
and it influences the performance of the optimization, as lo-
cal minimal path computations are cheaper for smaller n. We
require the user to supply a value for n. Note that once the
edge costs are computed, the less time-consuming path op-
timization step can be redone with a different n and γ, as
required (see Section 6.4).

For different path curvature parameters γ

we illustrate resulting minimal paths (start-
ing at the same vertex in the DELTAWING

flow) in the inset. All paths still respect the
local edge cost distribution (e.g., they still
have the orthogonal-optimal property by ly-
ing in a plane orthogonal to the flow). In-
creasing values of γ comes with increased
edge costs and therefore less optimal result-
ing stream surfaces. However, the minimal
path in terms of path costs only might not always be the
most desirable: for example, in areas of constant low edge
costs the minimal path would be a space-filling path with
high curvature, which we found to be a spurious result. In
all our experiments we found that using a value of γ = 0.2
avoids this issue and yields all results presented in this work.

6.2 Stream Surface Selection Results

We continue to present results of our approach and refer to
the accompanying video for more examples.

Analytic data sets. Figure 5 (top) shows a series of au-
tomatically selected stream surfaces in well-known simple
analytic vector fields. These analytic vector fields are well-
suited to exemplify our quality concept of alignment (see
Figures 3 and 5 (bottom)), combined with a variable pre-
scribed mean normal curvature. To do so, we show results
that minimize (τ = 0) and maximize (τ = 1) mean normal
curvature while still optimizing the other quality measures
(cf. Equation (9)). We call the resulting optimal surfaces
x?τ=0 and x?τ=1. In the SADDLE field the optimal stream sur-
face x?τ=0 (with βn = 1) is planar. In fact, it is exactly the
same solution that is obtained for βn = 0, i.e., if the mean
normal curvature is ignored in the optimization. This con-
firms our theoretical proposition that the alignment measure

is minimized by surfaces of vanishing curvature. Naturally,
the absolute alignment measure Ea is higher for x?τ=1. Still,
the surface is the best-aligned solution given the additional
mean normal curvature constraint.

Note that the optimized seed structures are not necessar-
ily line segments only. We also note that these simple lin-
ear vector fields exhibit a high degree of symmetry and that
the same optimal solutions can be generated by different
seed structures. Moreover, a given solution might not be the
unique globally optimal solution. Our algorithm selects one
of the possible minimal solutions. As practical problems do
in general not have such perfect symmetries, we expect to
find unique solutions in these kinds of data sets.

Real world data sets. We apply our selection method to
a number of complex vector fields of different domains
and varying characteristics. The resulting stream surfaces
are shown in Figure 5 (middle). Again the optimal seed
structures are general curves. The CYLINDER vector field
represents the flow around a square cylinder [CSBI05].
It is a well-known and extensively studied phenomenon
[BFTW09, ELM∗12, SGRT12]. As we choose to integrate
in forward direction only, both stream surfaces x?τ=0 and
x?τ=1 are seeded at the boundary of the inflow area to max-
imize the area constraint. Additionally, both surfaces con-
form to the chosen τ parameter (low and high mean nor-
mal curvature) while still minimizing the alignment error.
This property does also hold for the DELTAWING data set.
It is a flow simulation around a triangle-shaped airplane (see
[BWF∗10,GKT∗08,GTS∗04,HGH∗10,SRWS10,SGRT12]
for other approaches using a similar data set). Here, the
mean normal curvature of x?τ=0 vanishes. In contrast, the
x?τ=1 stream surface is well aligned with the two dominant
vortex features. It is a single stream surface where both vor-
tical parts are connected by laminar flow areas above and
beneath the airplane. The ACOUTLET data set represents
the flow in the outlet of an air conditioning unit. It is used
to predict the degeneration of filters in the (hidden) dissipa-
tion grid layer. With a resolution of 1.6×107 grid cells it is
the largest data set we tested. Our method is able to select
a curved seed structure of a stream surface with a high out-
flow rate. The outlet area of a hydroelectric turbine is sim-
ulated in the TURBINE data set where the flow is split at a
bifurcation. Here, x?τ=1 is a stream surface leaving the do-
main on both sides of the bifurcation. The ANEURYSM is a
blood flow simulation at a human cerebral aneurysm, which
is a weakness of the vessel wall and potentially leads to rup-
ture and life-threatening bleeding. The selected stream sur-
face x?τ=1 is clinically relevant as it covers a large fraction
of the volume of the aneurysm. The flow of the measured
BUBBLECHAMBER data set of a bioreactor (see [SWH05])
has different flow characteristics compared to the previous
in/out-flow dominant examples. Nevertheless, the selected
x?τ=0 and x?τ=1 are still similar to the previous examples con-
cerning the planarity of x?τ=0 and the more feature capturing
property of x?τ=1. The alignment measure visualizations in
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Figure 5: Automatic selection results for analytical (top) and simulated vector fields (middle). The shown alignment-optimal
stream surfaces were integrated from the optimized seed curves (•). Surfaces x?τ=0 (•) minimize and surfaces x?τ=1 (•) maxi-
mize mean normal curvature. The surface in CYLINDERHIGH (•) is x?τ=1 extracted from a domain graph of higher resolution
compared to CYLINDER. The closeups (bottom) show e2

a and scaled principal directions of the x?τ=1 examples (cf. Figure 3).

Figure 5 (bottom) illustrate the local quality of the selected
globally optimal solutions. In all examples the largest por-
tion of the principal directions are well-aligned with the flow
as prescribed by the alignment measure.

Our method optimizes for flow alignment of the shape
of stream surfaces in combination with additional intrinsic
stream surface properties. We expect our automatically se-
lected globally optimal results computed this way to be rel-
evant for the shown application areas. This is indicated by
the fact that the stream surfaces we find are very close to the
stream surfaces presented in other approaches. See, e.g., the
related work on the DELTAWING data set, for which our au-
tomatically selected stream surface is similar to the manually
picked stream surfaces.

6.3 Simulated Annealing Convergence
For optimization we apply a heuristic search in form of the
SA algorithm, which is a randomized method. It is therefore
mandatory to analyze the quality and optimality of the re-
sults of this algorithm. To do so we performed an evaluation
run of our method on a synthetic and a simulated data set.
Given a domain graph we find the ground truth optimal min-

imal path p? using a naïve search and exact minimal path
computations using full depth-first search. Due to the high
branching factor of the graph this can only be done for a
low number of edges – we use n = 4 in this experiment. As
proposed by Sigg et al. [SFCP12], we use a fixed iteration
number ratio of mmax/ms = 10 and perform multiple SA op-
timizations per mmax. The results in Figure 6 show that the
SA optimization does converge to a single cost minimum for
high enough mmax. Moreover, the found solutions are indeed
global minima in the graph and are found in a fraction of
the time required by naïve search. We use mmax = 200 in all
given examples.

6.4 Timings
To evaluate the performance of our algorithm we measure
the amount of time required for each step of our method on
an Intel Core i7-2600 3.4GHz Linux PC with eight logical
CPU cores and 16GB of main memory. The resulting tim-
ings for different data sets and different graph resolutions
are given in Table 1. Our method is not able to produce re-
sults instantaneously. However, as no user interaction is re-
quired, we consider our method to be an offline process for
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Figure 6: SA Convergence. For the SPIRAL (top) and
DELTAWING (bottom) data sets we perform 100 SA opti-
mizations per mmax and fixed n = 4. Graphs show the mean
path costs and optimization times (•) and the 95% confi-
dence interval (•). SA optimization converges to the globally
optimal path p? (shown right) for both data sets. Ground
truth solution of p? are found in 55s (SPIRAL) and 61s
(DELTAWING), respectively, by a naïve search.

global data analysis. Still, all results in this work are com-
puted within a few minutes by our method that has no previ-
ous knowledge of the given data set. Although we parallelize
its computation, it is obvious that the full stream ribbon in-
tegration is the most time-consuming part of our method. It
depends on both the graph resolution and data set character-
istics. For example, integration in the simple TORNADO field
(2.5 · 107 triangles on all ribbons) can be done in a fraction
of the time required for the CYLINDER (1.1 · 108 triangles
on all ribbons) data set, although the total number of ribbons
is three times higher. Also, edge costs computations are pro-
portional to both the number of stream ribbons and the num-
ber of total triangles, but in general they are cheaper than
integration. The optimization using the SA algorithm turns
out to be the fastest part of our algorithm. This is because
the SA optimization reuses the results of previous compu-
tations in a highly condensed way in form of edge costs.
Moreover, the whole graph is not necessarily visited in the
optimization due to the stochastic nature of the algorithm. In
the same way our algorithm can be further optimized: sur-
face integration can be deferred by combining the SA opti-
mization with edge cost computations and only needs to be
performed when edge costs are evaluated for the first time.
This lazy on demand surface integration then only has to be
performed for a fraction of the whole domain.

7 Discussion and Limitations

We discretize the search space of seed structure candidates
by edges of the domain graph. We will therefore only find
solutions that are contained in the graph. We observe that
increasing the domain graph resolution does only lead to lo-
cally finer solutions in the neighborhood of the coarser so-
lutions. The global location of the optimum does not change
as long as the domain is not undersampled. Consider the
CYLINDERHIGH surface in Figure 5 as an example for an
optimum with increased graph resolution of the CYLINDER

data set. Both surfaces have very similar position and shape,

Data set DR Edges SR EC SA
n= 4

SA
n= 8

SA
n = 16

TORNADO 2.0 ≈ 2 · 105 43 11 0.7 1.1 2.2
ACOUTLET 7.2 ≈ 2.5 · 105 308 80 1.6 2.3 3.1
ANEURYSM na ≈ 2.2 · 105 270 71 1.7 2.5 4.7
BUBBLECHAMBER 0.5 ≈ 1.1 · 105 60 17 0.9 2.8 6.3
CYLINDER 5.9 ≈ 7 · 104 179 45 0.7 1.6 3.1
CYLINDERHIGH 4.4 ≈ 3 · 105 406 103 1.9 2.8 3.3
DELTAWING 4.0 ≈ 1.4 · 105 170 44 0.6 1.0 2.1
TURBINE 5.7 ≈ 1.8 · 105 253 66 1.4 2.1 2.8

Table 1: Timings. For each data set the table shows grid cell
to graph cell diagonal length ratio (DR), the total number
of graph edges, and the total computation time (in seconds)
of each phase of our algorithm: stream ribbon integration
(SR), edge costs computation (EC), and simulated annealing
optimization applied to three target edge numbers (SA).

although the seed geometry changed slightly. However, the
improvements in quality come at a linear expense of perfor-
mance (see Table 1). We observed that the used graph resolu-
tions are sufficient to find curves that are close to continuous
seed structures of globally optimal stream surfaces. An ex-
planation is that for each edge we obtain a global optimality
estimation due to stream ribbon integration and stream rib-
bon evaluation. The change in global estimation for a higher
graph resolution will only be large at the boundary of sepa-
rating flow structures, such that in the majority of the domain
the estimations stay similar. Therefore, the location of the
optimal solution is also unlikely to change due to the higher
domain graph resolution.

We optimize for a single stream surface that strives to de-
scribe a data set best. This can also be seen as a limitation
of our current approach, which is not optimizing for multiple
distinct and “distant” stream surfaces simultaneously. A sim-
ple greedy adaption of our method is to apply the optimiza-
tion iteratively and modify edge costs according to a distance
measure of ribbons to already found optimal solutions. Still,
our experience is that multiple stream surfaces quickly tend
to occlude each other making visualizations much harder to
interpret compared to a single, globally optimal surface. We
regard this problem as future research. Additionally, we note
that our method will not always converge to a single distinct
optimal stream surface in highly turbulent flows. However, it
is well-known that surface-based approaches are not suitable
to visualize these types of data sets.

8 Conclusions

We presented a novel automatic approach for the selection
of stream surfaces in 3D vector fields. Instead of using lo-
cal flow properties for the selection, our method evaluates
global surface-based quality measures on integrated stream
surfaces. We showed that our new stream surface quality
measure, which is based on flow alignment of principal di-
rections, yields competitive results in a variety of data sets.

Until now we have only used intrinsic surface-based
properties to define quality. Investigation of view- and
application-dependent surface qualities is an interesting di-
rection for future work, as our selection algorithm can handle
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different cost functions without modification. An interesting
direction for further research is the extension of our method
to time-dependent vector fields to also evaluate and automat-
ically select path, streak, and time surfaces.

Acknowledgments

We thank Tino Weinkauf for resampling the CYLINDER data
set. The DELTAWING and ACOUTLET data is courtesy of
Markus Rütten, DLR. Axel Seeger and Klaus Affold pro-
vided the BUBBLECHAMBER flow. Gábor Janiga simulated
the ANEURYSM flow. The TURBINE flow is part of the visu-
alization system AMIRA. The primary author has been par-
tially funded by the Studienstiftung des deutschen Volkes.

References

[AS92] ABRAHAM, SHAW: Dynamics, the geometry of behavior,
2nd ed. Addison-Wesley, 1992.

[BFTW09] BÜRGER K., FERSTL F., THEISEL H., WESTER-
MANN R.: Interactive streak surface visualization on the gpu.
TVCG (Proc. Vis) 15, 6 (2009), 1259–1266.

[BKP∗10] BOTSCH M., KOBBELT L., PAULY M., ALLIEZ P.,
LEVY B.: Polygon Mesh Processing. AK Peters, 2010.

[BWF∗10] BORN S., WIEBEL A., FRIEDRICH J., SCHEUER-
MANN G., BARTZ D.: Illustrative stream surfaces. TVCG (Proc.
Vis) 16, 6 (2010), 1329–1338.

[CH97] CAI W., HENG P.-A.: Principal stream surfaces. In Proc.
Vis (1997), pp. 75–81.

[CSBI05] CAMARRI S., SALVETTI M.-V., BUFFONI M., IOLLO
A.: Simulation of the three-dimensional flow around a square
cylinder between parallel walls at moderate Reynolds numbers.
In AIMETA XVII (2005).

[CYY∗11] CHEN C.-K., YAN S., YU H., MAX N., , MA K.-L.:
An illustrative visualization framework for 3d vector fields. CGF
(Proc. PG) 30, 7 (2011), 1941–1951.

[Dal83] DALLMANN U.: Topological structures of three-
dimensional flow separations. Tech. rep., DFVLR, 1983.

[DC90] DOOLEY D., COHEN M. F.: Automatic illustration of 3d
geometric models: Lines. In Proc. i3D (1990), pp. 77–82.

[ELC∗12] EDMUNDS M., LARAMEE R. S., CHEN G., MAX N.,
ZHANG E., WARE C.: Surface-based flow visualization. C&G
36, 8 (2012), 974–990.

[ELM∗12] EDMUNDS M., LARAMEE R. S., MALKI R., MAS-
TERS I., CROFT T. N., CHEN G., ZHANG E.: Automatic stream
surface seeding: A feature-centered approach. CGF (Proc. Euro-
Vis) 31, 3 (2012), 1095–1104.

[EML∗12] EDMUNDS M., MCLOUGHLIN T., LARAMEE R. S.,
CHEN G., ZHANG E., MAX N.: Advanced, automatic stream
surface seeding and filtering. In Proc. TPCG (2012), pp. 53–60.

[GKT∗08] GARTH C., KRISHNAN H., TRICOCHE X., BOBACH
T., JOY K.: Generation of accurate integral surfaces in time-
dependent vector fields. TVCG 14, 6 (2008), 1404 –1411.

[GTS∗04] GARTH C., TRICOCHE X., SALZBRUNN T., BOBACH
T., SCHEUERMANN G.: Surface techniques for vortex visualiza-
tion. In Proc. VisSym (2004), pp. 155–164.

[HGH∗10] HUMMEL M., GARTH C., HAMANN B., HAGEN H.,
JOY K.: Iris: Illustrative rendering for integral surfaces. TVCG
(Proc. Vis) 16, 6 (2010), 1319–1328.

[Hul92] HULTQUIST J. P. M.: Constructing stream surfaces in
steady 3d vector fields. In Proc. Vis (1992), pp. 171–178.

[JL97] JOBARD B., LEFER W.: Creating evenly-spaced stream-
lines of arbitrary density. In Proc. EG VisSci (1997), pp. 43–56.

[KBL12] KHABBAZ M., BHAGAT S., LAKSHMANAN L. V. S.:
Finding heavy paths in graphs: A rank join approach. CoRR
1112, 1117 (2012), 1–16.

[KGV83] KIRKPATRICK S., GELATT C. D., VECCHI M. P.: Op-
timization by simulated annealing. Science 220, 4598 (1983),
671–680.

[KHSI04] KIM S., HAGH-SHENAS H., INTERRANTE V.: Con-
veying shape with texture: experimental investigations of tex-
ture’s effects on shape categorization judgments. TVCG 10, 4
(2004), 471 –483.

[KKKW05] KRÜGER J., KIPFER P., KONDRATIEVA P., WEST-
ERMANN R.: A particle system for interactive visualization of
3D flows. TVCG 11, 6 (2005), 744–756.

[LvWJH04] LARAMEE R. S., VAN WIJK J. J., JOBARD B.,
HAUSER H.: Isa and ibfvs: Image space based visualization of
flow on surfaces. TVCG 10, 6 (2004), 637–648.

[MCHM10] MARCHESIN S., CHEN C.-K., HO C., MA K.-L.:
View-dependent streamlines for 3d vector fields. TVCG (Proc.
Vis) 16, 6 (2010), 1578 –1586.

[MLP∗10] MCLOUGHLIN T., LARAMEE R. S., PEIKERT R.,
POST F. H., CHEN M.: Over two decades of integration-based,
geometric flow visualization. CGF 29, 6 (2010), 1807–1829.

[PGL∗12] PENG Z., GRUNDY E., LARAMEE R. S., CHEN G.,
CROFT N.: Mesh-driven vector field clustering and visualization:
An image-based approach. TVCG 18, 2 (2012), 283–298.

[PS09] PEIKERT R., SADLO F.: Topologically Relevant Stream
Surfaces for Flow Visualization. In Proc. SCCG (2009), pp. 43–
50.

[RKS00] RÖSSL C., KOBBELT L., SEIDEL H.-P.: Line art ren-
dering of triangulated surfaces using discrete lines of curvature.
In Proc. WSCG (2000), pp. 168–175.

[Sab10] SABIN M.: Analysis and Design of Univariate Subdivi-
sion Schemes. Springer, 2010.

[SFCP12] SIGG S., FUCHS R., CARNECKY R., PEIKERT R.:
Intelligent cutaway illustrations. In Proc. PacificVis (2012),
pp. 185–192.

[SGRT12] SCHULZE M., GERMER T., RÖSSL C., THEISEL H.:
Stream surface parametrization by flow-orthogonal front lines.
CGF (Proc. SGP) 31, 5 (2012), 1725–1734.

[SK06] SUMAN B., KUMAR P.: A survey of simulated annealing
as a tool for single and multiobjective optimization. JORS 57, 1
(2006), 1143–1160.

[SLCZ09] SPENCER B., LARAMEE R. S., CHEN G., ZHANG
E.: Evenly spaced streamlines for surfaces: An image-based ap-
proach. CGF 28, 6 (2009), 1618–1631.

[SRWS10] SCHNEIDER D., REICH W., WIEBEL A., SCHEUER-
MANN G.: Topology aware stream surfaces. CGF (Proc. Euro-
Vis) 29, 3 (2010), 1153–1161.

[SS02] STROTHOTTE T., SCHLECHTWEG S.: Non-photorealistic
computer graphics: modeling, rendering, and animation. Morgan
Kaufmann Publishers Inc., 2002.

[SW04] SWEET G., WARE C.: View direction, surface orienta-
tion and texture orientation for perception of surface shape. In
Proc. GI (2004), pp. 97–106.

[SWH05] SAHNER J., WEINKAUF T., HEGE H.-C.: Galilean
invariant extraction and iconic representation of vortex core lines.
In Proc. EuroVis (2005), pp. 151–160.

[TB96] TURK G., BANKS D.: Image-guided streamline place-
ment. In Proc. GRAPHITE (1996), pp. 453–460.

[TWHS03] THEISEL H., WEINKAUF T., HEGE H.-C., SEIDEL
H.-P.: Saddle connectors - an approach to visualizing the topo-
logical skeleton of complex 3d vector fields. In Proc. Vis (2003),
pp. 225–232.

[vW93] VAN WIJK J. J.: Implicit stream surfaces. In Proc. Vis
(1993), pp. 245–252.

[WTHS04] WEINKAUF T., THEISEL H., HEGE H.-C., SEIDEL
H.-P.: Boundary switch connectors for topological visualization
of complex 3d vector fields. In Proc. VisSym (2004), pp. 183–
192.

submitted to EUROGRAPHICS 2013.


