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ABSTRACT
The synthesis of textures of arbitrary size from smaller samples is a much-noticed problem in the field of computer
graphics. While the proposed solutions deliver very good results for regular and near-regular textures, the synthesis
of irregular textures is in need of improvement. In this paper, the well-known Image Quilting algorithm is analyzed
and its idea is enhanced by replacing the square shape of the patches by a hexagonal shape. In addition, rotation
and mirroring of patches are introduced. A penalty map is used to enforce even usage of source data and transfor-
mations to make feature repetition less noticeable and improve synthesis from multiple source images. This leads
to considerably better results for complex textures like wood, smoke or water waves.
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1 INTRODUCTION
In the field of computer graphics, textures are used to
describe the visual properties of a surface. For realis-
tic results, it is often convenient to use a scan or pho-
tograph of a real-world surface and map it to a virtual
object. When more source data is required than is avail-
able, a bigger texture can be synthesized from a small
sample. This paper analyzes the popular Image Quilt-
ing algorithm [1] and improves it in several aspects to
overcome some of its shortcomings.

1.1 Previous Work
Many algorithms have been proposed to synthesize a
texture of arbitrary size from a source texture, using
various fundamentally different approaches. This al-
lows for a basic categorization of texture synthesis al-
gorithms into three classes:

Statistics-based: Many of the first algorithms for tex-
ture synthesis were based on image statistics. In his
works on texture discrimination, Bela Julesz [2] intro-
duced a new model for the human observer’s perception
of texture. According to Julesz, two images are per-
ceived as being the same texture when some appropriate
set of image statistics matches. This idea was applied in
various publications on textures synthesis. Heeger and
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Bergen [3] used Laplacian and steerable image pyra-
mids to iteratively modify a noise image until the pyra-
mids’ histograms match closely. This method delivers
convincing results for many stochastic textures, but fails
to capture distinct structures. De Bonet [4] proposed
a similar method that delivers satisfying results for a
wider range of textures, but requires fine-tuned thresh-
old parameters and therefore sacrifices usability. Other
algorithms were proposed by Zhu et al. [5] and Simon-
celli and Portilla [6], but the above-mentioned problems
regarding structures could not be solved completely.
Pixel-based: These algorithms synthesize a texture one
pixel at a time. Arguably the first algorithm to use this
idea was proposed by Popat [7]. In his approach, condi-
tional probability functions are derived from the source
texture and used to synthesize a new pixel in the out-
put texture. While able to produce comparatively good
results at that time, the algorithm is prone to ‘growing
garbage’. Paget and Longstaff [8] solved this problem
by synthesizing the low frequencies first and gradually
adding high frequency detail. The main problem with
pixel-based algorithms being speed, Wei and Levoy [9]
used tree-structured vector quantization to improve the
performance of pixel-based approaches considerably.
Patch-based: The first patch-based texture synthesis
algorithms were proposed by Xu, Go and Shum [10]
and Liang et al. [11]. These algorithms copy whole
patches from the source texture and paste them into
the result, smoothing the overlapping edges with cross-
edge filtering. While solving the issues with captur-
ing structures in statistics-based algorithms and the lack
of speed common to pixel-based methods, these algo-
rithms introduced their own set of problems like im-
plausible blending and noticeable repetition. The Im-
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Figure 1: Texture spectrum based on [13]. Textures are classified anywhere from regular to stochastic. The
proposed improvements target mainly irregular and near-stochastic textures.

age Quilting algorithm by Efros and Freeman [1] im-
proved the blending by using a cut through the overlap
region for the which the difference in pixel values is
minimal. Kwatra et al. [12] don’t use a fixed patch size,
but apply a graph cut technique to find optimal patch
regions. Beyond translations, they also suggest using
other transformations like rotation and scaling and pro-
vide some results for the use of rotation by multiples of
90◦and mirroring.

1.2 Texture classification
Lin et al. [13] suggest a classification of textures on an
axis between regular and stochastic, as seen in Figure 1.
Regular textures are perfectly periodic patterns, where
the pixel values repeat in equal intervals without any
variation. With real-world textures this is very uncom-
mon and slight variations in pixel values due to fabri-
cation inaccuracy or measurement noise are almost al-
ways present. Therefore, these textures are called near-
regular textures.

In the center of the spectrum are irregular textures.
They are periodic at their core but feature some stochas-
tic component, may it be a non-periodic deformation or
a considerable random variation in color.

Due to the focus of their work, Lin et al. do not elabo-
rate on the stochastic end of the spectrum. For the pur-
pose of this paper, stochastic textures are defined as
textures that consist mainly of random noise, although
this noise may only affect the brightness of each pixel
with a strongly biased color hue. Near-stochastic tex-
tures feature defining structures, but with random vari-
ation and no perceptible repetition.

1.3 Motivation
As shown in Lin et al. [13], patch-based algorithms pro-
duce very good results for regular and near-regular tex-
tures. Convincing results for pure stochastic textures

can be achieved using statistics-based methods as de-
scribed by Simoncelli and Portilla [6]. In contrast, the
synthesis of near-stochastic and irregular textures ad-
mits of improvement.

One of the most prominent approaches for near-
stochastic and irregular textures is the Image Quilting
algorithm [1]. Despite the good results, the underlying
idea is very simple and leaves enough room for
improvements.

Like most patch-based algorithms, Image Quilting is
suitable for the left part of the texture spectrum as
shown in Figure 1. However, when synthesizing near-
stochastic or irregular textures like wood, smoke or wa-
ter waves the algorithm’s results quickly deteriorate.
Noticeable repetition or vanishing of distinct features
decrease similarity to the source texture.

In this paper, the Image Quilting algorithm is ana-
lyzed and improved to provide better results for near-
stochastic and irregular textures. The perfect result
would be a method that delivers convincing results for
all texture types alike. When looking at the existing ap-
proaches, this seems unrealistic. Therefore, a deterio-
ration of results for the other texture types is acceptable
if it benefits the results for near-stochastic and irregular
textures.

2 ALGORITHM
This section provides a quick overview of the Image
Quilting algorithm as proposed by Efros and Freeman
and suggests several improvements to achieve better re-
sults for the targeted texture types. For a complete def-
inition of Image Quilting refer to [1].

2.1 Image Quilting
The Image Quilting algorithm divides the output image
into equal blocks that overlap by a certain amount of
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Figure 2: From left to right: original image and Image Quilting results with 0.01 and 0.2 error tolerance. High
error tolerance avoids repetition to some extent, but also leads to more visual inconsistencies.

pixels. For each of these blocks, the input texture is
searched for a set of blocks for which the error in the
overlap region satisfies some error constraint. In the
original implementation, the error is computed as the
sum of squared distances (L2 norm) between between
RGB color values. Each block for which the error is at
most 1.1 times the best possible error (i.e. the error of
the best-matching block) is added to the set. From this
set, one of the blocks is chosen at random.

An error surface is calculated for the overlap region of
the previously chosen blocks and the new one. A min-
imum cost path through this surface is calculated and
used as the boundary of the new block, which is then
pasted onto the result image.

The original algorithm uses a dynamic programming
approach to find a path through the error surface. For a
vertical overlap between two blocks B1 and B2 with the
error surface e defined as the error for every point in the
overlap region, the cumulative error is computed as:

Ei, j = ei, j +min(Ei−1, j−1,Ei−1, j,Ei−1, j+1) (1)

The minimum error of the last row in E can be used to
trace back and find the shortest path. The calculation
of a path through a horizontal overlap follows the same
principal.

This approach, while being exceedingly fast and pro-
ducing adequate results most of the time, is not guar-
anteed to find the optimal path. As can easily be seen
from the formula, the gradient of all paths found is con-
stant in the first dimension. This may not be true for the
optimal path. Throughout this paper, the Dijkstra al-
gorithm [14] is used as a substitute in all self-provided
images. The boundary cut could be further improved,
as described by Long and Mould [15].

2.2 Rotation and Mirroring
When using Image Quilting to produce a texture that is
larger than the input, some regions will inevitably occur
more than once. This becomes a major problem when
dealing with near-stochastic and irregular textures that
have non-repeating distinct features.

One simple approach is to identify these distinct fea-
tures by some measure and prevent multiple use of the
particular image regions. This would lead to an artifi-
cial lowering of the frequency of these features, chang-
ing the appearance of the result and potentially decreas-
ing the similarity to the input texture.

A better solution is to include variations of the source
image. Rotation and mirroring can be used to make the
repetition of features less noticeable for a human ob-
server, as suggested by Kwatra et al. [12]. To integrate
this into the Image Quilting algorithm, a number of ro-
tated and / or flipped images are taken into account in
addition to the original source image. The number of
rotations can be chosen freely. The complexity of the
algorithm increases linearly with the number of images,
i.e. O(n), where n is the number of images taken into
account.

As can be seen in Figure 2, the error tolerance greatly
affects the distribution of the result. A low error toler-
ance is beneficial, because only the best-fitting pieces
are used in the output image. This in turn leads to an
undue preference of image regions with low contrast
and without hard edges over image regions that show
distinct features, but possibly produce a higher error. If
few such regions exist in the source data, the repetition
becomes visible as seen in Figure 2 b).

Using a higher error tolerance alleviates this problem
stochastically and gives the algorithm a bias towards
randomness. This has both positive and negative ef-
fects. It leads to a more even distribution of source im-
age regions in the output, but also globally increases



the error in the result and is not a reliable solution.
Even high values can’t prevent noticeable repetition al-
together.

To enforce an optimal exploitation of the available
source data (both original and transformed), we intro-
duce a penalty map. This map stores the previous uses
of an image region with the respective transformation
encoded as gray levels. For every possible combination
of rotation angle and mirroring, a penalty map is
created. These maps are initially black, i.e. filled with
zeros, because no source region in any transformation
has been used. For every block that is chosen during
the algorithm, the source image region is lightened
in the penalty map for the corresponding rotation and
mirroring values. During the calculation of the error
values, the penalty map is queried and, if the the region
in question has been used before (i.e. the value in the
penalty map is greater than zero), the error is increased.
This is implemented as follows:

• When a block is found, a blurred dot is additively
drawn to the map at the center point of the chosen
source region. The blur radius should roughly cor-
respond to the size of the blocks.

• After the error e in the overlap region is summed up,
the pixel at the center point of the source region in
question is queried. The new error e′ is calculated as
e′ = e+ p e c2, where c is the gray-scale value of the
pixel in range [0,1] and p is a user-defined parameter
to adjust the penalty map influence.

The introduced penalty maps have another beneficial
side effect. While it is trivial to use the Image Quilting
algorithm to synthesize a texture not from one but from
multiple source textures, the result is often unsatisfac-
tory due to one source being overused. Penalty maps
encourage an even usage of image regions across im-
ages. This means that if the requested result image re-
quires more than the provided source data, all the avail-
able source data is used evenly on both image and im-
age region level.

2.3 Hexagons
With difficult textures like the wood texture used in Fig-
ure 2, the best possible block sometimes still leads to
a visible crack or error. This is aggravated by both a
high error tolerance value and a high penalty map influ-
ence, which is giving preference to less-used, but pos-
sibly higher-error blocks. On the other hand, as seen
in section 2.2, lowering these values can lead to notice-
able and unwanted repetition of distinct features and is
therefore not an option.

When looking closely at the results, one thing becomes
obvious: an underlying pattern of equal squares was

Figure 3: Hexagonal tiling and the resulting overlap re-
gions.

used to construct the images. This regular grid structure
further emphasizes the (not easily avoidable) error. By
using a different, less obvious structure the error could
be concealed without nominally being lowered.

The idea of the Image Quilting algorithm can in theory
be used with any tessellation of the plane. For the sake
of simplicity, a regular tessellation (i.e. a tessellation
using only congruent regular polygons) should be used.
The three regular tessellations of the plane are trian-
gular, square and hexagonal tessellation [16]. Squares
were used in the original Image Quilting algorithm. Of
the remaining two, hexagons were chosen as the more
‘interesting’ shape. Triangle-based Image Quilting may
have its own benefits that are yet to be analyzed.

The hexagonal shape breaks up the all too common
rectangular pattern. Overlapping areas do not only oc-
cur horizontally or vertically, but also at a slanted an-
gle. Together with the arbitrary number of rotations,
this better represents the structure of complex textures
and leads to improved results. A hexagon cannot ex-
ceed the borders of a source image. The size of the
hexagons is set by the user and should be chosen de-
pendent on the size of the features present in the source
data.

A positive side-effect of the hexagonal structure can be
observed when synthesizing some near-regular or reg-
ular textures. If a texture is horizontally uniform in an
area bigger than the overlap region of two horizontally
adjacent squares, this can lead to a shift that breaks up
the regular structure of the texture. The hexagons used
in our variation are more ‘interlocked’ than the squares,
making this case less likely to happen. For an example,
see section 3.1.

2.4 Parameters
The algorithm is controlled by various parameters,
which are described and summed up in this section.



The size of the result is controlled by the vertical and
horizontal hexagon count. These parameters should be
chosen generously, so that the desired pixel size can be
cut from the result.

The size parameter controls the overall size of the
hexagons. This value depends solely on the source
data and should be big enough to capture the relevant
structures, but not bigger.

The overlap parameter determines by how much pixels
the hexagons overlap each other. A bigger overlap can
lead to better results, but also increases computational
cost. A value of 1

6 of the hexagon diameter, similar to 1
6

of the block size suggested by Efros and Freeman [1],
is a good starting point.

The influence of the penalty map can be controlled with
the penalty factor p. If the result shows noticeable repe-
tition, this factor should be increased. Depending on the
implementation details, especially the brightness of the
blurred dot described in section 2.2, this value can vary
widely. In our implementation, values between 100 and
800 were used, with a brightness of 10% in the center
of the blurred dot.

During each step of the algorithm, a set of possible
hexagons is assembled from which one is chosen
randomly. The error tolerance t determines which
hexagons are added to the set. Only those hexagons for
which e≤ min(e)∗ (1+ t) are taken into consideration.
Efros and Freeman [1] suggested a value of 0.1.
The penalty map alleviates the need for a high error
tolerance. A value of 0.01 was used in most of our
tests.

Additional transformations are controlled by the inte-
ger directions parameter d and the boolean flip param-
eter. The first controls the number of rotations, each
by a multiple of 360

d degree, while the second deter-
mines whether each image should additionally be mir-
rored horizontally. The total number of images taken
into account equals d with disabled or 2d with enabled
flip. Additional transformations should only be used
when the source data requires them.

3 RESULTS

The algorithm was tested with a wide range of source
textures. The algorithm is compared to the original
Image Quilting algorithm using the images provided
in [1]. In addition, we also used some complex tex-
tures that are very hard to synthesize with existing al-
gorithms.

While the proposed modifications of the Image Quilting
algorithm can improve results, there are textures that
require only part of the features or none at all. This can
also be seen in the following comparison.

3.1 Comparison
Some results of the comparison with the original Im-
age Quilting algorithm can be seen in Figure 4. For the
targeted texture types, i.e. irregular and near-stochastic
textures, our algorithm shows improvement.

Neither the original algorithm nor our modified ap-
proach were able to produce convincing results for (1).
The source texture does not show enough to clearly im-
ply a pattern. The colors seem to be randomly dis-
tributed. On the other hand, the texture shows strong
regularity in terms of shape. The Image Quilting al-
gorithms are not able to capture these structures accu-
rately.

(2), (11) and partly (6) show shadows and highlights
that imply strong directional light. Our approach per-
haps could have produced better results than the origi-
nal algorithm if the textures were evenly lit. However,
under the given conditions, rotation would lead to im-
plausible lighting in the result image and severely de-
teriorate the perceived quality. For (6), rotation is ar-
guably a valid choice because the structure is chaotic
enough and the flawed lighting is not immediately ob-
vious. For the other two we decided to not use rotation.
The results for (2) and (11) are virtually unchanged.

In (3), the Image Quilting result show obvious repeti-
tion, which in our result is prevented to some degree
thanks to an even distribution of different rotations. On
the downside, the structure is not preserved as well as
in the comparison image. We believe though that a set
of parameters exists for which the structure is not dis-
torted.

For (4), the original result was not perfect but our ap-
proach indeed seems to produce more visible inconsis-
tencies. Better results could probably be achieved when
experimenting with different shape and overlap sizes.

In (5), there is indeed more repetition in our result, but it
is also closer to the source image. In the Image Quilting
result, small portions of the available data with low con-
trast were used frequently. This is exactly the problem
described in section 2.2. With our approach, the simi-
larity in distribution can be controlled with the penalty
factor p. Another example for this problem of the Im-
age Quilting algorithm can be seen in (12). The fea-
ture distribution in our result closely matches the dis-
tribution in the source image, leading to a considerably
better result while still avoiding noticeable repetition.
Likewise, our results for (8) and (10) show less repeti-
tion and more even distribution compared to the Image
Quilting results. For (9), the result was already very
good with the original algorithm and couldn’t be im-
proved any further.

(7) is a good example of the hexagonal structure’s ben-
efit for regular and near-regular textures, as described
in section 2.3. In the Image Quilting result, the cans
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Figure 4: From left to right: comparison of original image, Image Quilting result and Hexagonal Image Quilting
result.



Figure 5: Near-stochastic WATER texture synthesized from two source images. Left: source images, right: result.

are distorted in some places and are either too wide or
too narrow. This is due to the fact that each of the cans
is relatively homogeneous horizontally. When this ho-
mogeneous region is wider than the overlap region, any
offset in the homogeneous region will produce a low
error and can potentially be chosen for the result, but
can lead to visual anomalies. This is what happened
to some of the cans. To prevent this, an overlap larger
than the homogeneous region would be required. When
using hexagons instead of squares, this error does not
occur, even for small overlaps.

3.2 Near-stochastic results
For synthesis of near-stochastic texture, we took advan-
tage of the algorithm’s ability to synthesize from mul-
tiple source images. Two of the results are shown in
Figure 5 and Figure 7.

WATER was synthesized from two source images. The
pixel count of the result image is roughly doubled com-
pared to the sum of the source images. There are no vis-
ible inconsistencies in the image. Repetition is found,
but not striking.

For LIGHT COTTONWOOD, we used four source im-
ages to produce a texture with tripled pixel count com-
pared to the sum of the source images. First, we syn-
thesized an image using Image Quilting. The only triv-
ial adaption is that not one but multiple source images
are used, without penalty maps or any of the enhance-
ments described in this paper. The result shows striking
repetition and, as described in section 2.3, reveals the
underlying regular structure of patches. For the second
result, we used our proposed algorithm with hexagons,
rotation and penalty maps. In comparison, our result
contains less noticeable repetition. The patch structure
is less noticeable and the distribution of features looks
plausible concerning the available source data.

Figure 6: Result with parameters that are not adjusted
to the source image. Rotation and a high penalty factor
lead to odd behaviour here.

3.3 Performance
Without the additional transformations introduced in
section 2.2, the proposed algorithm is nearly as fast as
the original algorithm. Depending on the details of the
implementation, the hexagonal shape can introduce a
small overhead. In our tests, this overhead was negligi-
ble.

As stated in section 2.2, each additional rotation con-
tributes to the search space of the algorithm and thereby
significantly increases computation time. The duration
of the algorithm with multiple of 60◦ rotations (i.e. six
possible directions) compared to the duration with only
the original orientation increases by a factor of 6. When
mirroring is allowed, the computation time doubles be-
cause for every possible patch a mirrored version must
be taken into account by the algorithm. Again, no mea-
surable overhead is produced.

3.4 Limitations
The algorithm produces convincing results for most
textures, from regular to stochastic, but is not without
its limitations.

As mentioned in section 3.1, some textures like (1) in
Figure 4 are not handled well by the algorithm. Espe-



Figure 7: Comparison of near-stochastic LIGHT COTTONWOOD texture synthesis results from multiple source
images. Left: source images, right top: result using the Image Quilting algorithm without any of the proposed
modifications, right bottom: result using Hexagonal Image Quilting with penalty maps and rotation.

cially synthesis of textures with low-frequency features
(e.g. gradients) will not produce good results. Neither
Image Quilting nor the improved version described in
this paper is able to globally optimize the result and
‘plan ahead’ for features that are larger than the shape’s
size. In addition, the hard cut through the overlap re-
gion is not suitable for blending gradients. The output
image will show a noticeable tear.

The added features make the algorithm more power-
ful, but also require careful tweaking. Depending on
the source texture, very different parameters may lead
to the expected result and using unsuitable values can
produce undesired effects as seen in Figure 6. Methods
to automatically determine good values for the param-

eters based on the source texture would greatly benefit
the usability of the algorithm.
Various other improvements of the Image Quilting al-
gorithm have been proposed [15][17]. They could be
combined with the enhancements described in this pa-
per to further improve the results.

4 CONCLUSION
We proposed an algorithm based on the Image Quilting
algorithm by Efros and Freeman. The modifications de-
scribed in this paper make the algorithm more powerful
and can lead to better results for all types of textures.
The introduced transformations can, at the cost of per-
formance and dependent on the source texture, signif-



icantly increase the quality of results. The hexagonal
shape yields better results for most near-stochastic tex-
tures and can even improve the results for certain near-
regular and regular textures.
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