
Technical Section

Adaptive and robust curve smoothing on surface meshes$

Kai Lawonn n, Rocco Gasteiger, Christian Rössl, Bernhard Preim
Department of Simulation and Graphics, University of Magdeburg, Germany

a r t i c l e i n f o

Article history:
Received 31 July 2013
Received in revised form
10 January 2014
Accepted 14 January 2014
Available online 25 January 2014

Keywords:
Surface curve
Smoothing
Cutting
Geodesic

a b s t r a c t

Smoothing surface curves are an important step for surface processing applications, such as segmenta-
tion, editing and cutting. Various applications require smooth curves that follow the given initial curves
closely. One example is surgical planning, in which virtual models are cut open, as in resection planning
for liver surgery. There are several approaches to smoothing a surface curve that are based on energy
minimization or on interpolating the control points with (piecewise) polynomial curves. These methods,
however, do not ensure that the smoothed curve remains close to its initial location. This paper presents
a new method for smoothing piecewise linear curves on triangular surface meshes based on a local
reduction of the geodesic curvature. The method preserves the closeness to the initial curve. Moreover,
the user can adjust the degree of closeness such that the smoothed curve will result in a locally
straightest geodesic. We prove that the curve's geodesic curvature decreases in each iteration step, and
we use it as an abort criterion. Experiments also confirm robustness to geometric and parametric noise.
Finally, we evaluate our method for two surgical planning instances, the decomposition of cerebral
aneurysms and resection planning for liver surgery.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Curves on surfaces play an important role in many application
domains, such as engineering or image-based medicine, where, for
example, surface cuts or segmentations are required [1,2]. One
common requirement for such curves on surfaces is smoothness.
This goal is typically achieved by smoothing an initial curve that
might be roughly sketched by a user and that frequently shows noise.

For the Euclidean space R2, there are several methods for
smoothing a given curve appropriately. In recent years, several
approaches have been proposed that generalize these methods on
two-dimensional surface meshes and in Riemannian manifolds
of arbitrary dimension. Given an initial curve, most of these
approaches minimize certain energy functionals, such as the
curve's length or its total curvature. Often, the energy term is
designed such that a curve equations to the surface features. This
arrangement leads to a curve that deviates strongly from the initial
curve. For certain applications, such as treatment planning in
surgery, this difference between the smoothed curve and the
initial curve (where the initial curve was defined by a medical
expert) should be small. Thus far, the existing solutions for this

scenario suffer from a lack of convergence for noisy or irregularly
tessellated surfaces. Furthermore, some of the existing approaches
are limited to closed surface curves.

In this paper, we propose a novel method for performing local
smoothing of initial, jagged curves on triangulated surfaces based
on iterative smoothing. Our approach reduces a geodesic curvature
while simultaneously controlling the deviation from the initial
contour. The balance between smoothness and closeness is
expressed by a single parameter. An additional parameter bounds
the number of iterations, either directly or as an error threshold.
Our method ensures that the curve is always located on the
surface, and the final result is comparable to different surface
tessellations. Both requirements are necessary for applications
such as surface cutting in medical applications, for example,
resection treatment planning in surgery. Our experiments show
that this method is applicable to such scenarios with clinical
datasets. We provide results for synthetic benchmark surfaces.

In summary, the contributions of this work consist of an
adaptive and novel approach to smooth surface curves that
accomplishes the following:

� preserves closeness to the initial curve with respect to some
bounding envelope,

� uses a single parameter to balance the closeness versus the
smoothness with respect to the geodesic curvature,

� uses an abort criterion based on a theoretical proof for decreasing
the curve's curvature, and

� is robust toward geometric and parametric noise.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2014 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cag.2014.01.004

☆This article was recommended for publication by A. Shamir.
n Corresponding author.
E-mail addresses: lawonn@isg.cs.uni-magdeburg.de (K. Lawonn),

gasteiger@isg.cs.uni-magdeburg.de (R. Gasteiger),
roessl@isg.cs.uni-magdeburg.de (C. Rössl),
preim@isg.cs.uni-magdeburg.de (B. Preim).

Computers & Graphics 40 (2014) 22–35

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2014.01.004
http://dx.doi.org/10.1016/j.cag.2014.01.004
http://dx.doi.org/10.1016/j.cag.2014.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2014.01.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2014.01.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2014.01.004&domain=pdf
mailto:lawonn@isg.cs.uni-magdeburg.de
mailto:gasteiger@isg.cs.uni-magdeburg.de
mailto:roessl@isg.cs.uni-magdeburg.de
mailto:preim@isg.cs.uni-magdeburg.de
http://dx.doi.org/10.1016/j.cag.2014.01.004


2. Related work

Smoothing surface curves are an important step for geometric
processing, such as surface segmentation, editing, and cutting
[2–4]. In most of these applications, an initial contour is defined
either by direct user interaction or by (semi-)automatic feature
detection. These initial contours are usually non-smooth and
require a surface curve smoothing stage. This paper focuses on
this smoothing stage.

A very intuitive way to smooth a polygonal line is by corner
cutting, which is well known as a subdivision scheme for planar
curves (see [5,6]). Morera et al. [7] presented a generalization of
subdivision algorithms for curves on surfaces. The resulting sub-
division curve consists of points located anywhere in the interior
of the surface triangles. Hence, the polyline that connects these
points is not a surface curve (according to our definition of a
surface curve in Section 4), and it might “miss” essential parts of
the surface. Usually, approaches to smoothing surface curves
should guarantee that the resulting curve is a part of the surface.
For discrete surfaces that are represented as polygonal meshes,
this arrangement means that there are curve samples on the edges
of polygons such that every line segment of the curve is a part of a
surface polygon. Existing smoothing methods can be classified into
methods that minimize energies or methods that approximate the
given curve with (piecewise) polynomial curves.

Lee and Lee [8] and Lee et al. [9] combined automatic surface
segmentation and cutting. After an initial feature contour is
detected, a subsequent smoothing of the contour is performed
by minimizing an energy-like functional. This functional is
designed to meet different goals: to move the contour towards
nearby features, to minimize the length of the contour, and to
smooth the shape. Lai et al. [10] used a feature-sensitive curve
smoothing for surface feature classification. They minimized a
discretized tension spline energy with a subsequently projected
gradient descent to obtain the smoothed boundaries. Kass et al.
[11] represented curves as so-called snakes. A snake is a closed
curve that evolves by minimizing internal forces, such as curva-
ture, distances to features, or length, and external forces, such as
distance to a feature. This approach is usually applied to image
segmentation. Extensions to 2-manifold domains [3,4,12,13] are
successfully used to detect features on polygonal meshes. Most of
these methods ensure an adaptive sampling of the snake depend-
ing on the mesh resolution. For snakes, a rapid movement toward
the features is typically expected, and their initial shape is not
important. Thus, none of these methods strives for closeness to the
initial curve. In a different setting, Martínez et al. [14] focused on
minimizing the local length of a given curve to obtain a geodesic
on the surface. This approach is implemented by iteratively
reducing the local length between two subsequent curve vertices.
Similar to the previous methods, the resulting geodesic can differ
strongly from the shape of the initial curve.

There are several variants and extensions of the aforemen-
tioned approaches that achieve smoothing by “fitting” (piecewise)
polynomial curves. Morera et al. [15] generalized Bézier curves in
the Euclidean space R2 to geodesic Bézier curves on triangulated
surfaces. The points on the initial curve are used as control points
for the geodesic Bézier curves located on the surface. Hofer and
Pottmann [16] determined spline curves in manifolds by minimiz-
ing quadratic energies. Although most of the presented methods
converge to smooth surface curves, they do not guarantee a
closeness to the initial curve shape. Hofer and Pottmann [16]
overcame this issue by adding more control points on the initial
curve, but this approach requires more user interaction.

Another class of methods depends mainly on the surface
features. These methods are designed to move the curve close
to the features [3,4,12,13]. However, depending on the field of

application, both closeness and the independence of the surface
features are important, i.e., the smoothing of the curve should not
be related to the underlying surface features. Our approach is
inspired by the work of Martínez et al. [14] in terms of minimizing
the geodesic curvature between the curve segments. In addition,
this method allows for adjusting the closeness to the initial curve.
Our method neither depends on nor equations to the surface
features. It is largely independent of the particular surface tessel-
lation and is robust against noise.

Our approach smoothes the curves by reducing their geodesic
curvature, i.e., the curve should evolve as straight as possible
without unnecessary oscillations. In the limit, we obtain geodesics
on the surface meshes. There are several algorithms for computing
such geodesics. Our approach finds a geodesic that connect two
surface points, i.e., we solve a boundary value problem. In contrast,
these algorithms either integrate a geodesic curve given a starting
point and a direction (see Polthier and Schmies [17]), which means
that they solved an initial value problem, or they computed all of
the geodesics that emanate from a given vertex globally. The latter
usually involves evolving fronts on the surface or the solution of a
linear system. Mitchell et al. [18] presented an algorithm that finds
the shortest path between two given points based on a continuous
variant of Dijkstra's algorithm. Surazhsky and Surazhsky [19]
extended this algorithm to obtain computationally efficient and
accurate approximations. Therefore, they gained an exact solution
more quickly. Bommes and Kobbelt [20] generalized [19] to handle
arbitrary polygons on the mesh. Kimmel and Sethian [21] used the
eikonal equation to generate a propagating front. The propagating
front starts from a set of points and spreads over the mesh to
calculate the distances from the start set. Recently, Crane et al. [22]
proposed a method for computing geodesics using heat kernels on
meshes. The gradient of the heat kernel is used to find an
approximation of the eikonal equation. Therefore, the gradient of
the heat kernel forms a new vector field. Afterward, the new
vector field is used to solve the Poisson equation and the resulting
scalar field recovers the final distances.

3. Motivation and requirements

The motivation of our approach is to achieve smooth surface
curves from initial jagged curves for medical surface cutting applica-
tions. In contrast to non-medical applications, the smoothing
requires a closeness to the initial curve shape, which is defined by
domain experts such as physicians or bioengineers. In most cases, the
initial curves indicate relevant anatomical landmarks or surface
regions on which data analysis or treatment planning is performed.
In particular, we focus on the decomposition of vascular structures
such as aneurysms for visual exploration purposes and on liver
resections for preoperative treatment planning. For these applica-
tions, a patient-specific surface mesh is given, along with one or
multiple user-defined cutting contours on the mesh, which represent
a virtual resection or a decomposition for further analysis. In practice,
the surface mesh is usually generated by the Marching Cubes
algorithm and is based on a binary segmentation mask from medical
image data, such as CT or MRT. The cutting contours are obtained by
placing reference points on the mesh, which are connected by
shortest path algorithms, such as breadth-first search, Dijkstra's
algorithm [23] or similar approaches. The initial curves are contin-
uous, and their segments are located entirely on the surface
triangulation but suffer from a jagged curve shape. These noisy
curves are distracting and would result in unpleasant surface cuts,
which require more mental effort by the expert to conceive the cut
shape. Moreover, the outlined anatomical landmarks and surface
regions exhibit smooth shapes in reality but are approximated by the
jagged curves. This arrangement can lead to inaccurate data analysis,

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–35 23



such as area or volume estimation. Thus, an appropriate smoothing
of these initial curves which preserves the closeness to the initial
shape is essential to support the visual perception and data analysis.

3.1. Characterization of the input data

The curve smoothing algorithm operates on an arbitrary
triangular surface mesh. For the clinical application of our work,
surface extraction by Marching Cubes is highly efficient. However,
the generated meshes often suffer from poorly shaped triangles.
The resulting surface often contains noise: vertex distortions in the
normal direction (geometric noise) and in a tangent space (para-
metric noise). These distortions are introduced due to beam
hardening artifacts and noise in the image data. Furthermore,
the binary segmentation mask can lead to block or staircase
artifacts. Common approaches for image noise reduction, as well
as binary mask and mesh smoothing, can reduce these artifacts.
The degree of smoothing, however, must be carefully adjusted to
prevent the elimination of relevant surface features and to
preserve the volume [24]. There can also be “topological noise,”
such as small handles or tunnels, which should be removed. Thus,
some artifacts are still expected in the surface mesh. In practice,
this circumstance also complicates or even hinders a (semi-)
automatic remeshing to reduce the parametric noise, i.e., to
improve the triangle quality. In summary, we identify the initial
situation as follows: first, the given surface can show geometric,
parametric and topological noise. Second, preprocessing of these
data is not a viable option. Instead, we require algorithms that are
robust enough to address these data.

This scenario is typical for medical research applications, such
as investigations of simulated blood flow in cerebral aneurysms for
rupture risk assessment [25]. Here, avoiding time-consuming and
largely manual data preprocessing provides a significant benefit.

3.2. Goals of curve smoothing

Our overall goal is to construct a smooth curve based on the
initial curve and the underlying surface mesh. By smooth, we refer
to minimizing / reducing the initial geodesic curvature to obtain a
surface curve that is “as straight as possible.” However, the
difference between the resulting smooth curve and the initial
curve should be small because the initial curve is assumed to
represent the region where the cut should occur. Given these two
conflicting goals, several requirements must be fulfilled.

Adaptiveness: The resolution of the evolving curve must adapt
to the local mesh tessellation. This adaption requires a refinement
and simplification of the curve during the smoothing steps.

Surface domain: For the subsequent surface cutting, the
smoothed curves must be located on the surface. Thus, the
smoothing must be performed entirely on the surface, and every
inserted or merged curve point must be located on the surface.

Robustness: The smoothing must be robust with respect to both
the surface artifacts and the poor triangulation. In particular, any
oscillating behavior must be avoided.

4. Overview and notation

The proposed algorithm consists of three main steps:

1. Initialization: The user provides the initial curve, the desired
curvature of the final curve, and its maximum distance to the
initial curve.

2. Smoothing: This step computes weights for an iterative Lapla-
cian smoothing of the curve. The specific choice of the weights
ensures that all of the requirements are met. During the

smoothing process, the curve points move along the surface
edges within a user-defined region. This process could require a
local adaptation: splitting and merging of the curve points.

3. Evaluation: Each smoothing step is followed by an evaluation of
the curve to decide on the termination and to identify the
critical surface vertices. Such vertices prevent a fast movement,
and they need to be handled appropriately when the curve
points are moving toward these vertices.

Steps 2 and 3 are iterated until the stopping criteria in step 3 are
fulfilled. They include the degree of smoothness and the distance
from the initial contour. Our general smoothing approach is
illustrated in Fig. 1, where one iteration with smoothing steps for
three vertices is shown.

The following notation is used in the remainder of this paper.
Let M�R3 be a triangular mesh. The mesh consists of vertices V
with associated positions xiAR3, edges E¼ fði; jÞji; jAVg and trian-
gles T ¼ fði; j; kÞjði; jÞ; ðj; kÞ; ðk; iÞAEg. We define a surface curve C as a
sequence of points piAR3, which are connected by line segments
and which lie on the surface mesh M. In particular, we consider
surface curves, where for any segment i, its end points pi and piþ1

are contained in two edges of a triangle ΔAT .

5. Initialization

The input of the algorithm consists of the initial curve and the
desired curvature, together with the maximum distance to the
initial curve. The initial curve is typically determined by the user
interaction. The user adds points on the mesh that is then
connected by the shortest paths. If three adjacent points lie on
one triangle, i.e., each point is associated with one vertex of that
triangle, then we delete the middle point to uniquely define the
curve. The initial curve could be provided by other methods, such
as feature-based segmentation. In the following, we assume that
the curve consists of a sequence of vertices that are connected by
edges, i.e., pi ¼ xj;piþ1 ¼ xk with ðj; kÞAE.

Fig. 1. Illustration of three smoothing steps to shorten the initial curve (red). The
points marked with a dot were moved along the edges to shorten the length
between the predecessor p� and the successor point pþ . In the next step, the
previous successor point should be moved. After reaching the end of the curve, the
next iteration starts. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–3524



Desired curvature: Every point on the curve is assigned its initial
geodesic curvature κg, with

κg ¼ π�2πβ
θ

where θ is the total point angle, i.e., the sum of the internal angles
of the adjacent triangles at the point, and β is one of the two curve
angles. We choose β as the minimal angle of the two curve angles
(see, e.g., [17]). If the curve intersects an edge, then we have θ¼2π,
which yields κg ¼ π�β.

Additionally, every curve point pi is assigned a desired geodesic
curvature κdðpiÞ. Our algorithm aims at moving curve points to
positions where they have the approximate desired geodesic
curvature. The desired geodesic curvature κdðpiÞ is calculated by
performing a linear interpolation between the geodesic curvature
κg and 0 using a user-specified value t, as follows:

κdðpiÞ ¼ t � κgðpiÞ; tA ½0;1�: ð1Þ

Thus, for the value of t¼1, the algorithm should return the initial
curve, and for t¼0, the smoothed curve represents the straightest
geodesic. This arrangement means that the curve is as smooth as
possible but can largely deviate from the initial curve. In this case,
we obtain the same result as Martínez et al. [14].

Maximum distances: We restrict the movements of the curve
points to an allowable region defined in terms of the Euclidean
distance from the initial curve on the surface. If the initial curve
points coincide with the vertex positions, then the allowable
region Tdist is defined as the Euclidean distances of these vertices,
which are less than dist, as illustrated in Fig. 2. Formally, the
distances can be determined for instances that have the fast
marching approach or the geodesics in the heat approach
[21,22]. The domain experts can use a slider from 0 to the maximal
distances from the initial curve on the hole surface. By interac-
tively changing the values, the user obtains visual feedback via a
contour line that depicts the corresponding distance from the
curve. Therefore, the user can decide how far the smoothed curve
is allowed to move.

For our experiments, we used an allowable region determined
by the 2-neighborhood of the vertices that coincide with the initial

curve points. If a straightest geodesic curve is desired, i.e., t¼0,
then the curve should be allowed to move freely on the entire
mesh.

6. Curve smoothing and splitting step

The core part of our method is the iterative smoothing stage
after initialization. In this process, the curve is relaxed such that
curve points move but stay on edges. This process requires special
treatment in the case where a curve point coincides with a vertex.
We construct our algorithm such that a curve point never moves
across a vertex. This approach leads to two cases for the smoothing
step for a single curve point pi:

Case 1: pi is located on an edge.
Case 2: pi is located on a vertex.

In the first case, pi can be moved in two directions. Its destination
is on the edge or on one of the vertices that span the edge. The
second case requires a splitting: as the point moves away from the
vertex, new curve segments are required. Thus, pi must be split
into multiple curve points, each of which is located on edges
incident to the vertex. We describe the two cases for a single point
relaxation and analyze their properties. One curve smoothing step
in the iteration consists of the relaxation of all of the curve points.

6.1. Case 1: pi is located on an edge

Let p≔piAC denote a curve point on an edge e, and let
p�≔pi�1 and pþ≔piþ1 denote its neighbors. If p is placed on an
edge eAE, then we apply a Laplacian smoothing that determines a
new position of p as a linear combination of p� and pþ:

LeðpÞ ¼ pþðλ �ω�projeðp� �pÞþλ �ωþprojeðpþ �pÞÞ:
In contrast to a standard Laplacian relaxation, the linear combina-
tion weights ω7 with the correction factor λ are constructed such
that LeðpÞ keeps p on the edge e. The operator proje projects point
onto the line spanned by e. Furthermore, we postulate ω7 Z0 and

Fig. 2. Movement restriction: first, the initial curve is depicted in red (a). Afterward, the geodesic distance is computed entirely on the mesh (b). Finally, the user can
interactively change the distance. The result of the allowable region is depicted in cyan, and further contours are depicted in orange (c). The final allowable region is
illustrated in (d). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–35 25



ωþ þω� ¼ 1. This arrangement leads to the following:

LeðpÞ ¼ ð1�λÞ � pþλ � ðω�projeðp� Þþωþprojeðpþ ÞÞ: ð2Þ
The crucial part remains the definition of the weights ω7 and the
correction factor λ such that convergence to the desired curvature
is achieved.

Computation of the weights: The curve point p is located on the
edge e. Let x1 and x2 denote the vertices that span e. We define

ω� ¼ distðpþ ;projeðpþ ÞÞ
distðpþ ;projeðpþ ÞÞþdistðp� ;projeðp� ÞÞ

and

ωþ ¼ distðp� ;projeðp� ÞÞ
distðpþ ;projeðpþ ÞÞþdistðp� ;projeðp� ÞÞ

;

where distð�; �Þ denotes the Euclidean distance.
First, we will prove that setting λ ¼ 1 yields a shortest path

that connect p� and pþ via a point on the edge.

Theorem 6.1. Let λ¼1. Then, the partial curve spanned by the
sequence ½p� ;LeðpÞ;pþ � is a geodesic in M.

Proof. Let pn be the point on edge e such that the distance
between p� and pþ via pn is minimal, i.e., ½p� ;pn;pþ � is a
geodesic curve in M. We assume the general case that p� ;pþ ; x1

and x2 are not collinear, which would degenerate to the trivial
case. We simplify the problem by two rigid transformations: first,
we shift p� to the origin. Then, we rotate the configuration such
that the linear segment ½x1;x2�, which spans e, is located in the
xy-plane and is perpendicular to the x-axis. Finally, we rotate only
the point pþ around the edge e such that pþ lies in the xy-plane.
The first translation and the rotation of the whole configuration
preserve the lengths. The last rotation unfolds the two neighbor-
ing triangles at e into the xy-plane, i.e., it preserves the lengths as
measured on the surface mesh M. Fig. 3(a) illustrates the situation.
We show that pn ¼LeðpÞ, and it is sufficient to do this step in R2

after transformation into the xy-plane with p� ¼ ð0;0ÞT , pþ ¼
ðxþ ; yþ ÞT , x1 ¼ ðxe; y1ÞT , and x2 ¼ ðxe; y2ÞT . The line through p� and
pþ is given as xþ y¼ yþ x (with xþ a0) for the nontrivial case. We
obtain pn as the intersection of the edge and the straight line

through p� and pþ with pn ¼ ðxe; ðyþ =xþ ÞxeÞ. It remains to show
the equality LeðpÞ ¼ pn. Using Eq. (2) with λ¼ 1, we obtain:

LeðpÞ ¼
distðpþ ;projeðpþ ÞÞ

distðpþ ;projeðpþ ÞÞþdistðp� ;projeðp� ÞÞ
� projeðp� Þ

þ distðp� ;projeðp� ÞÞ
distðpþ ;projeðpþ ÞÞþdistðp� ;projeðp� ÞÞ

� projeðpþ Þ

¼ xþ �xe
xþ �xeþxe

projeðp� Þþ
xe

xþ �xeþxe
projeðpþ Þ

¼ xþ �xe
xþ

� xe
0

� �
þ xe
xþ

�
xe
yþ

 !
¼

xe
xe

yþ
xþ

 !
¼ pn;

which proves Theorem 6.1. □

Computation of the correction factor: The correction factor λ
ensures that a point on the curve will evolve on the surface such
that the desired geodesic curvature is achieved. To determine λ,
we unfold two neighboring triangles in the plane as before.
However, we rotate the planar configuration such that the line ℓ
through connecting points p� and pþ coincides with the x-axis
(see Fig. 3(b)). The point LeðpÞ along the edge e is spanned by x1
and x2.

First, we generalize Thales' theorem. Given the points p� ;pþ ,
we want to determine the function ðx; yðxÞÞ such that the enclosed
angle ∢ðp� ; ðx; yðxÞÞ;pþ Þ ¼ ϑ. Here, ϑ is the converted angle from
κd, as described in [17]. With T≔ tan ðϑ�πÞ and L≔‖pþ �p� ‖, we
obtain

yðxÞ ¼ L
2T

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

4T2þxðL�xÞ
s

: ð3Þ

This statement can be proven by using the definition of tan and by
applying trigonometric identities:

ϑ¼ arctan
x
y
þarctan

L�x
y

¼ πþarctan

x
y
þL�x

y

1�xðL�xÞ
y2

tan ðϑ�πÞ ¼ yL
y2�xðL�xÞ:

Next, we want to determine the position pn 0 on the edge e,
where ∢ðp� ;pn 0;pxÞ ¼ϑ. Thus, we must calculate the intersection
point of ðx; yðxÞÞ and the span of the edge e. Edge e intersects the x-
axis at an angle γoπ=2 in such away that the span can be written
as yðxÞ ¼ tan ðγÞðx�uÞ or

x¼ y
tan γ

þu: ð4Þ

Inserting (4) into (3) leads to

y¼ L
2T

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

4T2þ
y

tan γ
þu

� �
L� y

tan γ
�u

� �s
:

Further simplification yields

0¼ y2 1þ 1
tan γ2

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

≕α

�y
L
T
þL�2 u

tan γ

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

≕β

�uðL�uÞ:

A positive solution for y is obtained as

yn ¼ β
2α

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2

4α2þ
uðL�uÞ

α

s
:

To determine λ, we first calculate the altitude of the triangle:

d¼ jjðp�p� Þ � ðpþ �p� Þjj
jjpþ �p� jj

x

Fig. 3. We transformed the problem in the xy-plane and search for the point pn.

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–3526



and set the correction factor λ to:

λ¼ 1�yn

d
:

Then, for ϑ-π, the curve is locally a straightest geodesic with
λ-1, and Theorem 6.1 applies. Hence, the smoothing operator Le

with the weights ω� and ωþ and the correction factor λ defined
as above yields the straightest geodesic curves.

6.2. Case 2: pi is located on a surface vertex

The second case applies if the curve point p is located on a
surface vertex iAV , i.e., p¼ xi. In this case, plain relaxation as
described in Section 6.1 is not sufficient. Instead, the curve must be
locally split into multiple segments, which are spanned between
the edges in starðiÞ≔fði; jÞAEjjAVg. Given the curve segment
½p� ;p;pþ �, we partition the neighbor vertices j of i in starðiÞ into
two sequences. The first sequence N1 enumerates the neighbors
counterclockwise, starting from the edge of p� and ending on the
edge of pþ . The second sequence N2 enumerates the remaining
neighbors clockwise around vertex i. Let p1

k and p2
k denote the

positions of the vertices in N1 and N2, respectively, with the
additional end points p1

0 ¼ p2
0 ¼ p� and p1

m ¼ p2
n ¼ pþ .

Splitting: After local relaxation, p will be replaced by a new
sequence of points located on the edges E1 ¼ fði; jÞjjAN1g or
E2 ¼ fði; jÞjjAN2g. The decision between the two options is based
on a local parameterization of p1

k and p2
k: we cut the local surface

patch along ½p� ;p;pþ � and unfold the two parts using an
exponential map. The exponential map is a local map from the
tangential space around a vertex to the mesh. Around a small
neighborhood, this map is a diffeomorphism. Therefore, we use
this definition to unfold the star of a vertex on the corresponding
tangent space (see, e.g., [17]).

Smoothing: Based on the configuration described above, we
compute new curve points between pc

0 and pþ in the split curve
segment as follows. We turn counterclockwise (pk

1) and clockwise
(pk

2) around the vertex at p¼ xi. Starting with k¼0, we consider
pairs pc

k;p
c
kþ1 to determine the position of a new curve point p0 on

the line segment ½xi;pc
kþ1�, as described in Section 6.1. Then, we set

pc
kþ1’p0 and proceed with k’kþ1 until pc

k ¼ p� is reached. Fig. 4
illustrates this procedure. There can arise invalid configurations in
this process whenever a line segment is not contained in the
unfolded parameter domain. In this case, we replace the line
segment by parts of the domain boundary.

Finally, we compare the lengths of the two curve segments p1
k

and p2
k after splitting and smoothing, and we choose the shorter

one to replace the original segment ½p� ;p;pþ �. For this result, we
prove the following theorem.

Theorem 6.2. Let λ¼ 1. Performing splitting and smoothing as
described above computes the shortest surface curve connecting
p� and pþ .

Proof. For each patch N1 and N2 unfolded in the plane, we find the
curve points on the surface edges that minimize the distances
locally for each segment of the split curve if the sum of the inner
angles is less than π (Theorem 6.1). The first line from p� to pþ
over pc 0 on the line segment ½xi;pc

1� determines the remaining
points on the edges ðp;pc

2Þ;…ðp;pc
jNc j�1Þ. We must calculate the

intersection point of the line and the remaining edges. This
approach minimizes the distance between p� and pþ because
the shortest connection on a plane is a straight line. The para-
meterization preserves the length of the line on the surface and
the angle between the line and its edges. Because the parameter-
ization unfolds the fan in the plane and we can find the shortest
line from p� to pþ , we use the intersection points as candidates
for the points that lie on the edges of the neighboring set Nc.
Afterward, the resulting points are transformed back to the
surface. Furthermore, if the connection line between p� and pþ
is a non-valid line, i.e., some line parts are outside the triangle fan,
we then replace it with the shortest line between p� and pþ . □

6.3. Convergence of the algorithm

Our goal is to ensure that the algorithm terminates. If there is
no number of iterations given, then we define constraints when a
point is allowed to move. These rules ensure convergence of the
curvature. First, we show that the length of the curve decreases for
λ¼1. This approach guarantees that the length converges during
the iteration. Then, for the case λa1, we define two constraints
when a point is allowed to move. This strategy guarantees that the
curvature converges during the iteration. Finally, we define the
same abort criterion for λ¼1 and for λa1.

Theorem 6.3. Let λ¼ 1. The length of the curve decreases for every
iteration step.

Proof. In every iteration step, a virtual line sweeps over each
curve point and reduces the distance between its predecessor and
successor point. Thus, instead of proving that every iteration step
reduces the length of the curve from the previous iteration, we
show that the sweep line shortens the length of the curve in each
iteration step. For the first sweep line position, the line is placed at
a curve point p. We keep the points p� ;pþ and move p to p0 or to
p0
1;p

0
2;…;p0

n, depending on whether p lies on an edge or on a
vertex in which the distance of p� to pþ via p0 or p0

1;p
0
2;…;p0

n,
respectively, is minimal. The next sweep line position is the point
pþ , which is moved to its relative optimal position in terms of its
predecessor and successor (recall Fig. 1). As the sweep line reduces
the length of the curve in the first sweep, it also reduces the length
in the next sweep step. When the sweep line reaches the end, the
length of the curve is decreased, and thus, the length is reduced
after each iteration step. □

For λa1, we restrict our curve to change only if the geodesic
curvature decreases in every iteration step. To ensure this aspect,
we apply two different constraints to the smoothing algorithm.

Fig. 4. Locally shortest paths after cutting and unfolding the neighbors N1 ;N2 of the domain in (a) restricted to the local domains (b) and (c). We select the shorter curve.

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–35 27



First, whenever the current geodesic curvature κcurðpÞ of a certain
point p is less than or equal to the desired geodesic curvature κdðpÞ
of this point

κcurðpÞrκdðpÞ; ð5Þ
we do not allow the point to move. Second, a point p is allowed to
move only if the sum of the geodesic curvature of this point and its
predecessor and successor point after the movement is less than
or equal to the sum of the geodesic curvatures κ0 before movement

κðpÞþκðpþ Þþκðp� Þrκ0ðpÞþκ0ðpþ Þþκ0ðp� Þ: ð6Þ
Therefore, the sum of the geodesic curvatures decreases for every
iteration step. The proof is similar to the proof of Theorem 6.3. We
use both properties as an abort criterion for our smoothing
algorithm. For λa1 ðta0Þ, we showed that the sum of the
geodesic curvatures decreases for every iteration step. Further-
more, we know that ∑κZ0 is a bounded and monotonic series,
which means that it converges. Thus, the abort criterion is defined
in such a way that the smoothing process stops if the change in the
geodesic curvature from one iteration step to the next is not
significant. The case λ¼1 leads to a curve shortening flow. Recent
work addresses the convergence of this flow with closed initial
curves. Ma and Chen [26] showed that if the shortening flow exists
for a finite amount of time on a compact Riemannian manifold and
the limit of the length of the curve is greater than zero, the
limiting curve exists and is a geodesic. Furthermore, one char-
acteristic is that the derivative of the curve's length is equal to the
negative integral over the squared curvature:

d
dt
L¼ �

Z
κ2 ds:

The length also converges because it is a bounded monotonic
series; thus, the derivative becomes zero for infinite time steps,
and the curvature goes to zero as well. Therefore, we can use our
abort criterion for λ¼1 as well as for λa1.

7. Curve evaluation

After each smoothing iteration, the curve is evaluated to test
the stopping criteria and critical vertex configurations. Critical
vertices prevent fast smoothing and could lead to sharp edges.
Thus, they must be identified and handled by merging.

Abort criteria: We use two criteria to stop the smoothing
process. First, the smoothed curve should not move too far from
the initial curve. This constraint is ensured by restricting the
movement of the curve points to the allowable envelope defined
in Section 5. Whenever a point would move out of this region, the
iteration is stopped. Second, the iteration stops if the curve has
converged to the prescribed desired geodesic curvature κd. We
define a new tolerance parameter τ to relax the interpolation of
the desired geodesic curve. If every current geodesic curvature
deviates from the desired geodesic curvature by less than the
defined τ-percentage, then this relationship stops the iteration.

Critical vertices: Critical vertices are vertices that are “sur-
rounded” by curve points; they converge to these vertices but do
not cross them (see Fig. 5). This arrangement means that these
vertices prevent fast convergence of the smoothing, and they must
be treated specially.

A vertex iAV is potentially a critical vertex if there are curve
segments with the associated curve points pi;piþ1;…;piþℓ, where
a subsequence piþ1;…;piþℓ�1 is located on the edges
eiþ1;…; eiþℓ�1 connected to vertex i, and the points pi;piþℓ are
located on edges that do not contain the vertex i. After each
iteration step, we identify these candidates and “simulate” the
following merge operation: the curve points piþ1;…;piþℓ�1 are
merged to a single point located at the vertex position xi. We test if

the ratio of the lengths of the curve after and before merging
exceeds a threshold ε. In this case, we apply the merge operation.
Otherwise, we continue with the original curve. If we want to find
the straightest geodesic, i.e., the parameter t¼0 (see Section 5),
then we omit ε. This circumstance means that merging is applied
whenever the new length becomes shorter. For ta0, we suggest a
value of ε¼0.98 based on empirical observations. This arrange-
ment ensures a merging whenever the curve length from piþ1

to piþ l�1 is at least ten times shorter than the minimal distance
from pi to piþ1 or from piþ l�1 to piþ l. After merging the points
piþ1;…;piþℓ�1 to the vertex position xi, we use the median of the
desired geodesic curvature of the points and assign it to the
new point.

8. Algorithm

Our algorithm can be summarized with the pseudo-code shown in
Listing 1. The functions , ,
and create the input curve and com-
pute the desired geodesic curvature and a maximum distance-based
feasible region, as described in Section 5. Then, we start the smooth-
ing iteration. In every iteration, we apply the following for every
point pi: Here, the function computes the sets
N1 and N2, and selects the appropriate set
depending on the unfolded configuration. Finally,
evaluates the new position of pi (see Section 6). After each iteration,
the function is evaluated, which eventually
terminates the algorithm. Special cases are treated in the last function

(Section 7).

Algorithm 1. Pseudo-code for the algorithm.

.

We close the presentation with a few remarks. For simplicity,
we compare only the distances of the points on the current curve
to their corresponding original points. If a point is split, then we
assign the k-neighborhood distance of that point to the newly
inserted points for the allowable region test. Similarly, if the points
are merged, then we assign the maximum k-neighborhood
distance of all of the merged points to the new point. Finally,
the points are relocated only if the current geodesic curvature is

vpi+1

pi+2
pi+3

ei+1

ei+2

ei+3

ei

ei+4

Fig. 5. Critical vertex: the red curve converges toward v but does not “cross” the
vertex. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–3528



greater than the desired geodesic curvature and if the current
geodesic curvature deviates from the desired geodesic curvature
by more than τ-percentage (recall Section 7). Our experiments
demonstrate that τ ¼ 10% is a reasonable value.

9. Results and application

We evaluate our method on artificial and real-world surface
datasets to verify its robustness and convergence. By convergence,

Fig. 6. Convergence effect on different tessellations when varying the parameters t, τ, and number of iterations A for a short curve.

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–35 29



we mean that the condition t � κg0=κg is fulfilled, with κ0g being the
geodesic curvature after smoothing. The real-world data are
anatomical surfaces that are patient-specific and representative

for two medical applications: vascular models of cerebral aneur-
ysms for decomposition and liver models for resection planning.
All of the tests are performed on an Intel Core 2 Duo CPU at

Fig. 7. Testing robustness toward geometric (distortion in the normal direction) and parametric (distortion in the tangent space) noise for t¼0.1 and 20 iterations.

Table 1
Quantitative results of the robustness experiment based on cubic polynomial surfaces. For each parameter setting (#iteration, t, δ, and noise), several quantitative measures
between the two resulting curves are compared: κg¼geodesic curvature before smoothing, κg0 ¼ geodesic curvature after smoothing, ratio between κg and κg 0 , which should
correspond to t, d¼Hausdorff distance, and d%¼percentage of deviation of the Hausdorff distance to the straightest geodesic curve.

#Iteration t δ Parametric noise Geometric noise κg κg0 κg0

κg
d � 102 d%

20 0.5 0.25 0 0 13.41 6.47 0.48 0.82 58.57
20 0.1 0.25 0 0 13.38 4.98 0.37 1.39 99.28
20 0.0 0.25 0 0 13.40 4.98 0.37 1.40 100

100 0.5 0.25 0 0 13.39 6.48 0.48 0.82 21.10
100 0.1 0.25 0 0 13.41 1.41 0.11 3.17 82.20
100 0.0 0.25 0 0 13.37 0.36 0.03 3.86 100

100 0.5 0.25 0.01 0 21.75 10.37 0.48 0.41 10.63
100 0.1 0.25 0.01 0 20.18 1.98 0.10 3.03 77.22
100 0.0 0.25 0.01 0 22.05 0.45 0.02 3.92 100

100 0.5 0.25 0.00 0.01 14.31 6.68 0.47 0.74 19.39
100 0.1 0.25 0.00 0.01 14.32 1.44 0.10 3.19 83.15
100 0.0 0.25 0.00 0.01 14.17 0.32 0.04 3.83 100

100 0.5 0.75 0.02 0.03 28.52 12.38 0.44 0.57 16.32
100 0.1 0.75 0.02 0.03 30.68 2.98 0.10 1.53 44.03
100 0.0 0.75 0.02 0.03 30.13 0.87 0.03 3.47 100

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–3530



3.16 GHz. The memory requirements for the curve smoothing are
negligible compared to the memory required by the datasets.

To specify an initial curve, the user selects a sequence of
vertices connected by shortest edge paths using Dijkstra's algo-
rithm. Furthermore, the user specifies the parameter t, which
defines the globally desired geodesic curvature. Optionally, the
user can relax this specification by varying the tolerance para-
meter τ (Section 8). For all of the experiments, we use τ¼ 10%
unless otherwise specified.

9.1. Convergence and robustness

We performed two experiments to assess the convergence and
robustness of our approach. For the convergence, we investigated
the smoothing for different parameter settings and mesh resolu-
tions. Fig. 6 shows the results for varying the parameters
tAf0:05;0:1;0:01;0g and τAf10%;5%;0%g after a fixed number
of iterations AAf20;75g. We observe that, as expected for a
decrease in t, the curve changes gradually from the initial curve
to the straightest geodesic. In the second column of Fig. 6, we
subdivide each triangle into four triangles. In this case, we increase
the number of iterations from 20 to 75. We observe that for
τ¼10%, the curve converges to a smooth curve close to the original
unless we set t¼τ¼0, for which the curve converges to a
straightest geodesic. The third column of Fig. 6 represents the
comparison to a setting with τ¼5%: as expected, the result is
smoother at the cost of a larger distance from the original curve.

However, given a disadvantageous initial curve, the method
cannot ensure that the smoothed curve fulfills the condition
t � κg 0=κg , with κg 0 as the geodesic curvature after the smoothing.
This limitation can be easily seen for surfaces that have a hole, an
initial curve that wraps around this hole and t¼0.

To investigate the robustness, we add geometric noise, i.e.,
displacements in the normal directions, and parametric noise, i.e.,
displacements in the tangential directions. To be comparable, we
keep the vertices that coincide with the initial curve at their
original position. Therefore, they are not influenced by the noise.

For this experiment, we always use 20 iterations for t¼0.1 and
τ¼10% (see Fig. 7(a)). For each scenario, we notice some influence
of the noise on the result.

In addition to the qualitative experiment, we performed a
quantitative test as well. We conducted the same experiment as
Max [27] (in the context of normal fitting): we generate random
cubic polynomials with coefficients in different ranges. The sur-
faces are of the form

f ðx; yÞ ¼ Ax2þBxyþCy2þDx3þEx2yþFxy2þGy3:

The coefficients A, B, C, D, E, F, and G are all uniformly distributed
pseudo-random numbers in the interval ½�δ; δ� and x; yA ½�1;1�.
The domain was subdivided into a 40�40 grid in such a way that
the distance of two neighboring vertices with the same x- and y-
value is 0.05. Additionally, we add parametric and geometric noise
to test for robustness. The noise value γmeans that the vertices are
translated randomly in a range of ½�γ; γ� in the domain or in the
codomain for parametric and geometric noise, respectively. Table 1
shows the results of our experiments with a smooth surface and
different types of added noise. We performed the test with several
parameters and present the averaged total geodesic curvature κg
before and κg0 after the smoothing as well as the Hausdorff
distance d between the two curves. For every parameter setting,
we generated 50 random cubic polynomials. The relative distance
d (as a percentage) expresses the deviation from the assumed
maximal Hausdorff distance of the straightest geodesic curve with
t¼0. Fig. 8 shows some results for different parameter settings.
According to a quantitative comparison, several observations can
be made. For each parameter setting, the geodesic curvature of the

curve is decreased while remaining close to its initial curve.
Thereby, the number of iterations influences how close the
resulting curvature is to the prescribed curvature. A low number
results in an increased deviation between κg0=κg and t compared to
a higher number of iterations. Furthermore, it can be seen that the
presence of noise leads to a slightly decreased geodesic curvature
compared to the non-disturbed surface. The quantitative results,
however, demonstrate an overall robustness with respect to the
noise, which corresponds to observations from the qualitative
comparisons.

As can be seen, the obtained curves are smooth and robust
toward noise, and they exhibit reasonable convergence behavior.
However, it is obvious that changing the vertex positions by
adding geometric noise will not change the geodesic curvature
(when keeping the initial curve points at their original position),
but this action has, in fact, an influence on the operation space.
Because the point can move only along the edges, changing the
vertex position will change the intrinsic position of the smoothed
curve, i.e., the relative position on the edge could have changed.
Moreover, if the vertex positions are distorted in a normal

Fig. 8. Some results of qualitative experiments regarding convergence and robustness
on cubic polynomials with different settings. The initial contour is indicated in red, and
the smoothed contour is indicated in green. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–35 31



direction, the geodesic curvature will change, and this arrange-
ment leads to a different smoothed curve. Despite the different
results, we can observe that the final curve is always smooth. Thus,
the algorithm gives robust results even if the underlying surface is
distorted in both the tangential and normal directions.

9.2. Application to large datasets

We applied our approach to benchmark surfaces and anatomi-
cal surfaces from medical image datasets. The anatomical surfaces
exhibit low regularity and a significant amount of noise. In the
experiments, we varied only the desired geodesic curvature
parameter t; the number of iterations is fixed at 20, and τ¼10%
is fixed.

Benchmark surfaces: Fig. 9 shows results for the cow and fandisk
surface meshes. The initial surface curves are red and the resulting
smoothed curves are green. The shapes of the initial curves are
nontrivial; their lengths are relatively long and show additional
close-ups. For the largest t¼0.5, we obtain a smooth curve, which
is located close to the initial curve. Decreasing t increases the
amount of smoothing, and the curves do not move significantly
away from the initial curve.

Anatomical surfaces: Fig. 10 shows results for the anatomical
surfaces: bone structures (Fig. 9(a)), a cerebral aneurysm (Fig. 9
(b)), and a liver cut (Fig. 9(c) and (d)). The smooth curves remain
close to the initial curves, and we do not observe any artifacts such
as self-intersections. The parameter choice t¼0.1 leads to a
significant and comprehensible smoothing while closely imitating
the original curve.

9.3. Comparison to the spline approximation

We compare our algorithm to a global approximation of the
initial curve with B-splines. We emulate the B-spline approxima-
tion in manifolds by Hofer and Pottmann [16,28] by assuming and
providing a global surface parameterization and resorting to a
standard least-squares approximation. We use least-squares
conformal maps [29] to construct the surface mesh parameteriza-
tion. We fit cubic B-splines with a uniform knot vector. The
Schoenberg–Whitney conditions are always satisfied by a regular-
ization term, which penalizes the length and (linearized) curva-
ture (see, e.g., [30]). This regularization not only guarantees a
solution to the linear systems that arise but also accounts for
minimizing exactly the same quantities as in [16]. We project the

initial curve to the parameter space, apply the B-spline fitting, and
map the result back onto the surface. In comparison with our new
explicit curve-smoothing algorithm, we obtain similar results (see
Fig. 11). Note, however, that the B-splines fitting requires either a
global parameterization (whose construction is a non-trivial
problem on its own) or an adapted iterative optimization scheme
with projections to a tangent space in every step [16]. In contrast,
our method is simpler and leads to similar results for our
applications. B-spline fitting, however, is more suited for surface
curves: for example, the surface curve becomes smoother if
(selected) control points are removed [16]. This smoothing in the
sense of generating fair curves is not our goal because we prefer
curves that remain close to the initial curve. In summary, we think
at the minimization of the geodesic curvature is the right choice
for our applications.

9.4. User feedback

We conducted an informal interview with a domain expert to
gain qualitative user feedback. The domain expert is actively
involved in the reconstruction and decomposition of cerebral
aneurysm surfaces as well as the exploration of their hemody-
namics based on simulated or measured flow data. The surface
decomposition involves several geometric operations, such as
cutting the aneurysm sac from the parent vessel. The interview
was designed to determine if the requirements defined in Section 3
were principally met. For several input meshes, the expert should
draw an initial curve, which roughly defines the aneurysm neck.
Afterward, the expert was asked to adjust the allowable region. After
our smoothing approach was applied to one curve, the aneurysm
surface was cut, and its result was evaluated by the domain expert.
To obtain a resulting smooth curve, the participant attempted
different parameter settings but was mostly satisfied with the values
of t¼0.1 and n¼20. The expert assessed the drawing of the initial
curve as being very intuitive and fast. The adjustment of the
allowable region was rated as a pleasant control function to keep
the smoothed curve in its eligible region. The smoothing approach
was evaluated as being visually pleasant and reasonable as well as
time-saving compared to the current definition of the neck contour
in the geometric modeling tools. However, the expert suggested
providing an overview gallery, which shows different smoothing
results based on different parameter settings. This arrangement
would lead to an effective selection of appropriate parameter values,

Fig. 9. The cow and the fandisk dataset with the initial curves (red) and smoothed curves (green) for different values of t. The figures (d) and (h) show the behavior of the curve for
t¼0. Iterations are performed until a sufficient desired overall curvature value is reached. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–3532



such as t and n, depending on the current dataset. In summary, the
domain expert rated the results positively and gave feedback on
improving of the interaction.

10. Conclusions

We presented a novel approach for smoothing surface curves
on triangular meshes by reducing the geodesic curvature of the
curves. The approach is based on an iterative Laplacian smoothing
with a careful construction of the linear operator: we proved that
the curve's curvature decreases during runtime, and we used this
property as an abort criterion. Depending on one user-defined
parameter, the result gradually changes from a smoothed curve

close to the original curve to the straightest geodesic curve. The
user can adjust the closeness of the smooth curve to its original
shape as well as the deviation from the prescribed geodesic
curvature. For these adjustments, default parameters are sug-
gested. We tested our algorithm on both synthetic surfaces and
anatomical surfaces from clinical datasets to show robustness in
terms of geometric and parametric noise. In this way, our
approach is not restricted to triangular meshes but is also applic-
able to different surface representations. Our algorithm fills a gap
for the interactive computation of smooth surface curves for cases
in which closeness to their initial curve shape is necessary, which
was demonstrated for two medical applications. We achieved
similar results in comparison with spline approximation methods,
but our approach requires less user effort and does not need a

Fig. 10. Application to patient-specific medical surface datasets: initial curves (red) and smoothed curves (green) are shown on a complex bone, an aneurysm, and a liver
surface dataset, respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–35 33



global parameterization. Informal user feedback with a domain
expert confirmed the usefulness and robustness of our approach.

References

[1] Kaplansky L, Tal A. Mesh segmentation refinement. Comput Graph Forum
2009;28(7):1995–2003.

[2] Zachow S, Gladilin E, Sader R, Zeilhofer HF. Draw and cut: intuitive 3d
osteotomy planning on polygonal bone models. In: CARS; 2003. p. 362–9.

[3] Benhabiles H, Lavoué G, Vandeborre JP, Daoudi M. Learning boundary edges
for 3d-mesh segmentation. Comput Graph Forum 2011:2170–82.

[4] Ji Z, Liu L, Chen Z, Wang G. Easy mesh cutting. Comput Graph Forum 2006;25
(3):283–91.

[5] Chaikin G. An algorithm for high speed curve generation. Comput Graph
Image Process 1974;3:346–9.

[6] Dyn N, Levin D, Liu D. Interpolatory convexity-preserving subdivision schemes
for curves and surfaces. Comput-Aided Des 1992:211–6.

[7] Morera DM, Velho L, Carvalho PC. Subdivision curves on triangular meshes. In:
Proceedings of 13th iberoamerican congress on pattern recognition (CIARP);
2008.

[8] Lee Y, Lee S. Geometric snakes for triangular meshes. Comput Graph Forum
2002:229–38.

[9] Lee Y, Lee S, Shamir A, Cohen-Or D, Seidel HP. Intelligent mesh scissoring using
3d snakes. In: Proceedings on pacific graphics; 2004. p. 279–87.

[10] Lai YK, Zhou QY, Hu SM, Wallner J, Pottmann H. Robust feature classification
and editing. IEEE TVCG 2007:34–45.

[11] Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput
Vis 1988:321–31.

Fig. 11. Comparison of our curve smoothing approach with the spline approximation method applied on a synthetic surface, demonstrated with three enlarged views. Based
on the initial curve (red), our approach (green) and the spline approximation (blue) achieve similar results. However, although the spline curve is slightly closer to the initial
curve, our approach achieves more global smoothness due to the optimization between the geodesic curvature and the closeness to the initial contour. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)

[12] Bischoff S, Weyand T, Kobbelt L. Snakes on triangle meshes. In: Proceedings of
Bildverarbeitung für die Medizin; 2005. p. 208–12.

[13] Jung M, Kim H. Snaking across 3d meshes. In: Proceedings on pacific graphics;
2004. p. 87–93.

[14] Martínez D, Velho L, Carvalho PC. Computing geodesics on triangular meshes.
Comput Graph 2005;29(5):667–75.

[15] Morera DM, Carvalho PC, Velho L. Geodesic Bezier curves: a tool for modeling
on triangulations. In: Brazilian symposium on computer graphics and image
processing (SIBGRAPI); 2007. p. 71–8.

[16] Hofer M, Pottmann H. Energy-minimizing splines in manifolds. In: Proceed-
ings on SIGGRAPH; 2004. p. 284–93.

[17] Polthier K, Schmies M. Straightest geodesics on polyhedral surfaces.
In: SIGGRAPH courses; 2006. p. 30–8.

[18] Mitchell JSB, Mount DM, Papadimitriou CH. The discrete geodesic problem.
SIAM J Comput 1987;16(4):647–68.

[19] Surazhsky V, Surazhsky T. Fast exact and approximate geodesics on meshes.
ACM Trans Graph 2005;24:553–60.

[20] Bommes D, Kobbelt L. Accurate computation of geodesic distance fields for
polygonal curves on triangle meshes. In: Proceedings of VMV; 2007. p. 151–60.

[21] Kimmel R, Sethian JA. Fast marching methods for computing distance maps
shortest paths. CPAM Report 669. Berkeley: University of California; 1996.

[22] Crane K, Weischedel C, Wardetzky M. Geodesics in heat. In: Proceedings on
SIGGRAPH; 2013.

[23] Dijkstra EW. A note on two problems in connexion with graphs. Numer Math
1959;1:269–71.

[24] Bade R, Haase J, Preim B. Comparison of fundamental mesh smoothing
algorithms for medical surface models. In: Simulation und Visualisierung;
2006. p. 289–304.

[25] Cebral JR, Mut F, Weir J, Putman CM. Association of hemodynamic character-
istics and cerebral aneurysm rupture. Am J Neuroradiol 2011;32(2):264–70.

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–3534

http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref1
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref1
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref3
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref3
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref4
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref4
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref5
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref5
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref6
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref6
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref8
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref8
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref10
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref10
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref11
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref11
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref14
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref14
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref18
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref18
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref19
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref19
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref23
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref23
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref25
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref25


[26] Ma L, Chen D. Curve shortening in a Riemannian manifold. Ann Mat Pura Appl
2007;186(4):663–84.

[27] Max N. Weights for computing vertex normals from facet normals. J Graph
Tools 1999;4(2):1–6.

[28] Pottmann H, Hofer M. A variational approach to spline curves on surfaces.
Comput Aided Geom Des 2005;22(7):693–709.

[29] Lévy B, Petitjean S, Ray N, Maillot J. Least squares conformal maps for
automatic texture atlas generation. ACM Trans Graph 2002;21(3):362–71.

[30] Hoschek J, Lasser D. Fundamentals of computer aided geometric design.
Natick, MA, USA: AK Peters; 1993.

K. Lawonn et al. / Computers & Graphics 40 (2014) 22–35 35

http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref26
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref26
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref27
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref27
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref28
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref28
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref29
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref29
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref30
http://refhub.elsevier.com/S0097-8493(14)00013-2/sbref30

	Adaptive and robust curve smoothing on surface meshes
	Introduction
	Related work
	Motivation and requirements
	Characterization of the input data
	Goals of curve smoothing

	Overview and notation
	Initialization
	Curve smoothing and splitting step
	Case 1: pi is located on an edge
	Case 2: pi is located on a surface vertex
	Convergence of the algorithm

	Curve evaluation
	Algorithm
	Results and application
	Convergence and robustness
	Application to large datasets
	Comparison to the spline approximation
	User feedback

	Conclusions
	References




