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Abstract
Direct Numerical Simulations of premixed combustion produce terabytes of raw data, which are prohibitively large
to be stored, and have to be analyzed and visualized. A simultaneous and integrated treatment of data storage,
data analysis and data visualization is required. For this, we introduce a sparse representation tailored to DNS
data which can directly be used for both analysis and visualization. The method is based on the observation that
most information is located in narrow-band regions where the chemical reactions take place, but these regions are
not well defined. An approach for the visual investigation of feature surfaces of the scalar fields involved in the
simulation is shown as a possible application. We demonstrate our approach on multiple real datasets.

Categories and Subject Descriptors (according to ACM CCS): I.6.6 [Simulation and Modeling]: Simulation Output
Analysis—

1. Introduction
Direct Numerical Simulation (DNS) is an extremely precise
method for simulating turbulent combustion processes. It
resolves the underlying equations on a high-resolution grid
without any modelling assumptions. A single DNS run pro-
duces terabytes of multiple time-dependent 3D scalar fields
that have to be stored, analyzed, and visualized. Due to the
sheer size of the data, storing it in raw form is prohibitively
expensive. This in turn prevents effective analysis and visual-
ization. Existing approaches only focus on a subset of these
problems, and fail to use the synergies an integrated approach
has to offer. We introduce a sparse data representation tai-
lored to DNS data of premixed combustion that can directly
be used for further analysis and visualization, and that retains
the possibility of reconstructing the full scalar fields.

Our approach is based on the observation that most of the
relevant information is located in narrow-band regions where
the chemical reactions take place, the so-called flame fronts.
The different scalar fields behave similarly in these regions.
In the presence of turbulent flow, the flame front develops
complex, wrinkled shapes. The differences between scalar
fields affected by turbulence, and their development over time
give meaningful insights into the chemical process and its
interaction with turbulent flow. An integrated approach for the
visual analysis of such DNS data must solve three problems:

1. Handling the enormous size of the simulation data
2. Analyzing the behavior of the scalar fields

3. Visualizing the differences between the scalar fields

The sparse data representation presented here considers all
these problems. We fit domain-aware models to the data,
exploiting its characteristics and transforming it into a lower-
dimensional parameter space that retains all relevant infor-
mation. In this space, the analysis and visualization can be
carried out without accessing the original data. If necessary,
the original scalar fields can still be reconstructed.

The paper is organized as follows: In Section 2, we pro-
vide background information and present related work. The
sparse data representation is introduced in Section 3. Section
4 presents our visual analysis approach, and Section 5 dis-
cusses our results and presents feedback from domain experts.

2. Background and Related Work

DNS owes its precision to the lack of any modeling assump-
tions and the high resolution of the simulation grid. Important
DNS applications are presented in [HTERT04]. Most of the
simulated variables are related to chemistry. Simulations of
practically relevant reactions are complex and involve tens or
even hundreds of chemical variables. Due to both the high
resolution and the large number of variables, a simulation
run produces terabytes of raw data. These amounts cannot
be stored or transferred efficiently, prompting the need of
methods for either analyzing on-the-fly or reducing them.

Analysis of such raw data is usually done in a post-
processing step: Bremer et al. [BWT∗09] present a framework
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for exploring burning clusters in combustion simulations by
generating a level-set-based topological hierarchy; Akiba et
al. [AMCH07] display multiple superimposed isosurfaces
and direct volume renderings. Further post-processing meth-
ods are described in Zistl et al. [ZHJT09]. All approaches
rely on the raw data being available after the simulation, thus
ignoring problem 1. If the raw data is too large to be stored
completely, post-processing can not be performed at all.

To address this issue, on-the-fly visualization methods have
been developed. They process and render simulation data
while being produced, operating in parallel with the simula-
tion on the same supercomputer. This type of in-situ visual-
ization is discussed in [Ma09], while [YWG∗10] describes a
specific renderer for volume and particle data. These methods
provide a superior way of monitoring the simulation progress.
However, they do not offer a solution to problem 2. Since
they only output rendered images, more detailed analysis still
has to be performed on the huge original data sets.

One way to achieve both flexibility and storage-efficiency
is to compress the data before storing it. The compressed data
can then be decoded and analyzed with any method. Numer-
ous compression methods exist, but few are well-suited for
DNS data. The 3D-SPIHT (Set Partitioning In Hierarchical
Trees) algorithm [KXP00] uses a global wavelet transform to
compress volume data. A blockwise wavelet-based approach
tailored to visualization applications is proposed in [NS01].
Fout et al. [FMA05] describe a vector quantization approach
designed for fast decompression using graphics hardware,
enabling fast volume rendering of compressed data. These
approaches provide high-accuracy, lossy compression for
general volume data. However, they do not take into account
the special requirements of analyzing combustion data, thus
ignoring problems 2 and 3.

Our work focuses on DNS of premixed combustion: gener-
ally, a mixture of chemical species react and form products,
as described in [FJT11]. Reactions do not happen simulta-
neously in the whole mixture. Rather, flame fronts spread
out from spots of ignition. Reactions only occur in these
thin zones, consuming fuel and oxidizer and leaving hot
products behind. During the reaction, intermediate, unstable
compounds form, which only occur in the flame front and
quickly react with other compounds to form stable end prod-
ucts. Outside of the flame front, and therefore in most of the
simulated volume, concentrations of chemical variables are
close to constant. Inside, these variables vary most rapidly
along the shortest path across the front, and their values are
therefore highly correlated.

To simplify the investigation of the flame shape, a flame
surface representing the flame front is commonly defined as
the surface separating burned and unburnt gases. It is con-
tained in the flame front and its surface normal is aligned
with the gradients of the scalar variables. Interaction with
turbulence causes this flame surface to become wrinkled, pro-
ducing areas of high curvature. The flame surface can be
defined in different ways based on the scalar fields of the

simulation. Often it is defined as an iso-surface, surface of
maximum value, or surface of steepest slope. These feature
surfaces are similar, but their differences give meaningful
insights into the combustion process. Our sparse representa-
tion directly captures these feature surfaces and enables their
analysis and visualization (see Figure 8).

3. A Sparse Representation for DNS Data

To address problem 1, and enable addressing problems 2 and
3, we introduce a sparse representation for DNS data. The
transformation into the sparse form consists of three steps:
First, points are seeded on the flame surface. Second, the
values of the simulation variables are sampled along lines
orthogonal to the flame surface, emanating from these points.
Third, the resulting profiles are approximated by models,
reducing each profile to a set of model parameters.

As mentioned before, simulation variables vary most along
the shortest path across the flame front. This direction is
approximately orthogonal to the flame surface. We exploit
this by representing the 3D scalar fields of the variables as a
set of profiles on 1D lines. These profile lines are anchored at
points pi on the flame surface and oriented along its normal ri.
By giving the lines a limited length, we discard information
from outside of the flame front, where the variables are almost
constant. The placement of the profile lines is dependent on
the flame surface curvature, seeding more lines in highly
curved areas and less in planar regions (see Figure 1).

Variables are grouped into three classes: Reactants have
high concentrations outside of the burnt region and low con-
centrations inside, products are the opposite, and intermedi-
ates occur near the flame surface between unburnt and burnt
regions but have low values on either side. This behavior
can be modeled with few degrees of freedom, reducing the
amount of data even further. The information that has to be
stored in the sparse representation consists of the locations
and directions of the profile lines, pi and ri, the model pa-
rameters for each variable and profile line, and the full flame
surface mesh for subsequent visualization. We now describe
how the lines are seeded, how the profiles are extracted from
those lines, and how these profiles are then approximated by
simple models.

3.1. Strategy for Seeding Profile Lines

Commonly, the flame surface in premixed combustion is
defined as the 0.5-isosurface of a combustion progress vari-
able [PV12]. This variable is defined as T−Tu

Tb−Tu
, where Tu and

Tb are the temperature of the burnt and unburnt gases, and
varies between 0 and 1. The choice of the isovalue is very
robust. Our experiments show that variations of ±0.1 lead
to isosurfaces with Hausdorff distances less than 2% of the
longest side of the simulated domain. Anchor points pi for
profile extraction are distributed on this surface, which we
extract using CGAL [BO05]. This yields a mesh with approxi-
mately uniformly-spaced vertices and edges of approximately
the same length as the voxel size in the original data. Since
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Figure 1: Cross section scheme of flame surface with seeded
points p: profiles sampled from profile lines p(t) at different
locations on the flame surface. The minimum, inflection, and
maximum of the sigmoidal shape are indicated by the blue,
green and red dots. If the sampled line enters or leaves the
burning region multiple times, multiple sigmoidal shapes can
occur (bottom right box). Seeding density is dependent on
the surface curvature (see green vs. red circle).

this results in a large number of vertices, we select only some
of them as seed points, using a rejection sampling based on lo-
cal surface curvature. We estimate the principal curvatures κ1
and κ2 at each vertex (see, e.g., [KWTM03]). The curvatures
are then transfomed into a seeding density by a logarithmic
function:

ρ(κ1,κ2) =
ln(1+

√
κ2

1 +κ2
2 )

q
.

Here, q > 1 steers the seeding density. For each initial vertex,
a uniformly distributed random number r ∈ (0,1) is now
generated, and the point is selected if ρ < r. This results in
few seed points in areas without curvature, and all vertices
being selected in areas where ρ > 1. Areas of higher curvature
get more seeds than less curved ones. Hence, the storage size
of the sparse representation depends on the surface shape
rather than on the resolution of the data. Adjusting q changes
the total number of seed points and balances size vs. quality.

3.2. Extracting Profile Lines

Once the points pi are seeded, profiles of all variables are
sampled at regular intervals t j along lines pi(t j) = pi + t j · ri,
with ||ri|| = 1 (Figure 1). Due to the high resolution and
accuracy of DNS data, trilinear interpolation is sufficient.
The length of the line is chosen sufficiently large to cover the
whole reaction zone. The resulting profiles are approximated
by simple models to further reduce the required storage space.

3.3. Model-Based Data Approximation

Although the main advantage of DNS is its high precision
due to the lack of any modeling assumptions, we use models
to describe its outcome in a lower- dimensional form. These
models are sufficient to facilitate the analysis of the scalar

fields we intend. Additionally, they reduce the space needed
to store the sparse representation.

Reactants, intermediates, and products each have very sim-
ilar profiles that can be locally approximated by simple mod-
els. Reactants and products tend to exhibit profiles with a
sigmoidal shape, transitioning from a constant high/low value
in the unburnt region to a constant low/high value in the burnt
region, passing an inflection point in between. This behavior
can be expressed by a model based on a sigmoidal function.
Intermediate species have a maximum near the flame surface,
decreasing on both sides. They are approximated by a model
based on a Gaussian bell curve. Small fluctuations that de-
viate from these models may occur but are not relevant for
the general shape. Greater deviations appear if a sample line
crosses the flame surface multiple times, which happens if
multiple parts of the flame front come close to each other. In
such cases, the characteristic behavior occurs multiple times
across the profile. To handle this, the instance closest to the
anchor point is identified and isolated from the others.

3.3.1. Model for Reactants and Products

Sigmoidal shapes are commonly expressed with the logistic
function 1/(1+ e−x), which we extend with parameters γ ,
adjusting the slope at the inflection and a, determining the
limits of the function at positive/negative infinity:

s(x,a,γ) =
2a

1+ e(−2 γx
a )
−a .

While this function can roughly approximate the profiles of
reactants and products, it has too few degrees of freedom
to reproduce the different curvatures of the profiles at both
sides of the inflection point. For this reason, we use two
pieces of this function, joining smoothly at the inflection
point (Figure 2, top).

S(x,al ,ar,γ,xm,ym) =

{
s(x,al ,γ)+ ym, if x≤ xm

s(y,ar,γ)+ ym, if x > xm

where (xm,ym) is the location of the inflection point, γ is the
slope at the inflection and ym−al and ym +ar are the limits
of the function approaching negative and positive infinity.

3.3.2. Model for Intermediate Species

The profiles of intermediates resemble Gaussian bell curves.
Since minimum and maximum of the profiles of intermedi-
ate species can vary, it is necessary to extend the standard
bell curve with additional parameters ym, the value at the
maximum, and y, the limit at infinity.

g(x,xm,ym,σ ,y) = e−
1
2 (

x−xm
σ

)2
· (ym− y)+ y .

Since the profiles tend to have a steeper slope on the unburnt
side and some of them do not reach zero on the burnt side, a
two-sided model is once again needed to accurately capture
this behavior. We join the two bell curves smoothly at their
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maximum point, resulting in a model with six parameters:

G(x,xm,ym,σl ,yl ,σr,yr)=

{
g(x,xm,ym,σl ,yl), if x≤ xm

g(x,xm,ym,σr,yr), if x > xm

where (xm,ym) is the location of the maximum, σl and σr de-
termine the slope of the left and right part of the function and
yl and yr are the limits of the function approaching negative
and positive infinity (Figure 2, bottom).

3.3.3. Fitting the Models to the Profiles

We now approximate the profiles by fitting the models. For
the sigmoidal model, we need the position, value and first
derivative at the inflection point as well as the minimum and
maximum values of the profile on both sides of the flame
front. For the Gaussian model, the location and value of the
maximum near the flame front have to be known, as well
as the minimum values yl and yr. To robustly determine
these feature points, we have to account for the two types of
deviations that may occur in the profiles as described above:
small fluctuations, and the profile entering and leaving the
reaction zone multiple times.

To eliminate small fluctuations, we filter the profiles with
a Gaussian kernel [J0̈5]. The kernel size depends on the size
of the fluctuations but can be chosen quite small. For the
test data (see Section 3.5) we used a size of 6 voxels, which
translates to σ = 1. Extrema are found at zero-crossings of
the first derivative of the filtered profile. Possible shifts of the
extrema due to the filtering are corrected by mapping each
maximum to the largest maximum, and each minimum to the
smallest minimum in the radius of the filter size, taking care
that extrema do not switch sides. For finding inflection points,
we use the same approach but on the second derivative.

Due to the possibility of crossing the flame surface mul-
tiple times (see Figures 1 and 2), we can find more feature
points on the profile than we need for our models. We have
to identify the ones closest to the anchor point. For the sig-
moidal model, this is the inflection nearest to the center of the
profile. The position and value of this point determine xm and
ym of the sigmoidal model, while γ is determined by the first
derivative at the inflection. The values of the first minimum
and maximum left and right of the inflection (depending on
the sign of γ) determine al and ar. The positions of these
extrema, xl and xr, are the boundaries of the portion of the
profile that the model is fitted to. The rest of the profile, pos-
sibly containing other crossings of the flame surface, is not
considered, as those other crossings are already captured by
other profile lines seeded there. For the Gaussian model, the
maximum nearest to the center determines xm and ym, while
the values of the closest minima to both sides determine xl
and xr, as well as yl and yr. Further extrema are ignored. For
both models, if there are no extrema on either side of xm, the
values at the ends of the profiles are chosen instead.

While the feature points on the profile already determine
all parameters for the sigmoidal model, the values for σl and

−10 0 10
0

1

2

·103

γ =S′(x = xm)

xm

ym

xl xr

ar

al

t

Model S(x)
Data V (x)

−10 0 10
0

0.5

1

·10−4

ym

xm

yl
xl

yr

xr

σl

σr

t

Model G(x)
Data V (x)

Figure 2: Sigmoidal model (top) and Gaussian model (bot-
tom) with examples of models fitted to a profile.

σr of the Gaussian model still have to be found. We obtain
an initial guess for σl/r by transforming the intervals of the
profile between xl and xm and between xm and xr into the
interval [0,1] and regarding them as halves of two symmetric
probability density functions (pdf). The variance of a discrete
random variable X with the pdf p(x) and expected value
µ is given by: Var(X) =

∫
p(x) · (x− µ)2 dx. Since for a

normal distribution, the variance is σ2, we can directly use
this equation on our transformed profiles. We then refine this
estimate with a simple optimization scheme such as Newton’s
method to find the optimal fit.

With this, the original data is now described by the flame
surface mesh, the pi and ri of the profile lines, and the
model parameters for each profile line and variable. For
the sigmoidal model, this is (ali,ari,γi,xmi,ymi,xli,xri) for
each profile line. For the Gaussian model, the parameters
are (xmi,ymi,σli,yli,σri,yri,xli,xri). In the following, we de-
scribe the reconstruction of the dense scalar fields from this
sparse representation.

3.4. Reconstructing the Scalar Fields
If desired, the scalar fields on the original grid can be re-
constructed from the sparse representation by interpolation.
We sample the fitted models in regular intervals between the
respective xl and xr of each line and variable. We then ap-
ply standard interpolation methods to this set of points to
reconstruct the data on the original grid.

We compared two local interpolation methods for scattered
data. The first method is a k-approximate-nearest-neighbor
(kANN) [AMN∗98] interpolation scheme that weighs the
values of the k approximate nearest neighbors using Shepard’s
inverse distance weights. The second interpolation method
first generates a tetrahedral mesh from the data points using a
Delaunay triangulation. The values inside the mesh cells are
then linearly interpolated. This always produces a continuous
solution if there are no degenerate mesh cells.
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Interpolation methods providing higher smoothness exist.
However, these are more computationally expensive and it is
not guaranteed that they produce results closer to the original
data than the simpler methods.

3.5. Quality and Performance Evaluation

We evaluated the accuracy of the sparse representation on
single time steps of three data sets. Each time-step of data
sets SYNGAS I and SYNGAS II has 2003 voxels and 13 vari-
ables each. SYNGAS III has 1003 voxels and 3 Variables. All
data sets are from DNS computations of turbulent premixed
spherical syngas flames. SYNGAS I contains a flame with
strong wrinkles. SYNGAS II has a flame with smaller wrin-
kles. SYNGAS III contains a flame that has been torn into
smaller parts by turbulence.

First, we investigate the error from approximating the orig-
inal data by our models. We computed the average root mean
square (RMS) error between the original data of the profiles
and the fitted models. The data values in the range xli and
xri on each profile line are considered. We used normalized
RMS errors EV

fit in order to make the variables V comparable:

EV
fit =

(max(V )−min(V ))−1

∑
n
i=1 xri− xli

n

∑
i=1

∑
{ j|xli≤x ji≤xri}

|PV
i j −uV

i j|
xri− xli

.

Here, uV
i j is the value of the fitted model corresponding to

the original profile value PV
i j , while { j|xli ≤ x ji ≤ xri} are the

indices of all points on the profile between xli and xri. We
computed this error for all possible profile lines in all data
sets. As Figure 3 shows, the errors are quite low, ranging
from 0.1% to 6.3% of the respective variable’s range.

For investigating the overall error after reconstruction, We
computed the reduction ratio c for different q and compared
it to the deviation from the original data after reconstruction.
The reduction ratio is defined as the storage space needed for
the original data divided by the space needed by the sparse
representation. We used a normalized root mean square error
metric to compute the reconstruction quality:

EV
reconst =

1
|H|

∫
x∈H

∣∣∣∣ R(x)−V (x)
max(V )−min(V )

∣∣∣∣ dx ,

where V is the original data of the variable, R is the recon-
structed data, H is the convex hull of all points used to re-
construct the data, and |H| is the volume of H. The range of
values of variable V is described by max(V )−min(V ).

We compared the results of linear and kANN interpola-
tion for reconstruction. Our experiments show that for the
kANN interpolation a combination of five nearest neighbors
weighted with a Shepard weighting function using an expo-
nent of 20 gave the lowest errors. Therefore, we illustrate
the results for these parameters only. We also compared our
results to the error introduced by naïvely downsampling the
data to the same storage size needed by the sparse represen-
tation. This is the currently established way of reducing the
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Figure 5: Top: SYNGAS II: Comparison of reconstruction
results for H with q = 36 (ca. 2500 profile lines, c = 321).
Bottom: SYNGAS I: Reconstruction results of linear interpo-
lation for different sample densities for O2.

size of DNS data. For comparison with a dedicated compres-
sion algorithm, we used the well-established 3D-SPIHT algo-
rithm [KXP00] implemented in the QccPack library [Fow00]
on our data.

Figure 4 shows the reduction ratio c vs. the reconstruction
error EV

reconst for all tested methods for selected variables.
Please note that for SYNGAS II, higher reduction ratios are
achieved than for SYNGAS I, due to the flame in the former
being relatively smaller. For small reduction ratios, the down-
sampling approach naturally performs better, because it does
not introduce errors due to model assumptions. For higher
reduction ratios, which are needed in practice, our sparse
representation always performs significantly better. It is also
apparent that linear interpolation performs better than kANN
in almost all cases. As a dedicated compression algorithm,
3D-SPIHT achieves better reconstruction quality than our
approach. It is however necessary to decompress the data
back to its full size before any analysis can be carried out,
thus losing a major advantage of our sparse representation,
which captures important data features by design.

To further illustrate the performance of our approach, we
tested it on eight time steps of the data set HYDROGEN. This
data set is from a turbulent premixed spherical hydrogen

100 101 102100

101

102

q

t[min]

101

102

c

Figure 6: Reduction ratio and computation time for different
seeding densities q. Plot shows mean (solid) and standard de-
viation (dashed) over eight time steps of data set HYDROGEN

and values for the synthetic data set (dash-dotted).

flame and has a resolution of 4003 voxels and 11 variables.
This is a typical size for our cooperation partner. One time
step amounts to about 5 GB of data. The whole simulation
has hundreds of thousands of time steps. Even storing a frac-
tion of them quickly results in terabytes of data. We selected
eight time steps from a late (most complex) stage of the simu-
lation. Choosing q = 5, which retains very high accuracy for
reconstruction, we reduced them to about 30 MB each. This
means only 0.6% of the original storage space is required.

For a scalability test, we generated a synthetic data set
with 9003 voxels and 11 variables. This is three times the
maximum volume our cooperation partner is able to simulate.
We created noise based on an isotropic turbulence frequency
spectrum [FE03]. This noise was added to a low frequency
component to emulate larger flame structures with smaller sur-
face pertubations. Thresholding produces a surface on which
average profiles of the different variables were superimposed.
Domain experts confirmed the similarity of the result to real
simulations, making it suitable for scalability tests. Since
each profile line has to be processed separately, the run time
of the algorithm is approximately linear in the number of
seed points, and thus depends indirectly on the flame surface
area and structure. Figure 6 shows run times and compression
ratios for the synthetic data set and HYDROGEN. Data set
volume and flame surface area of the synthetic data set are
one order of magnitude higher than that of HYDROGEN. This
results in a run time which is also one order of magnitude
higher, confirming the scalability of our approach.

We have shown that full scalar fields can be reconstructed
with good agreement to the original data from a sparse repre-
sentation requiring a small fraction of the storage space. This
representation explicitly captures features such as the points
of steepest slope of reactants and products and the point of
maximum concentration of intermediate species. In the fol-
lowing section, these feature points are used to visualize the
relations between feature surfaces of different variables.

4. Extraction and Visualization of Feature Surfaces

The models used in the sparse representation directly cap-
ture the characteristics of the scalar fields in the vicinity of
the flame surface. This information can directly be analyzed,
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thus solving problem 2 discussed in Section 1. The model
parameters xl , xm and xr (see Figure 2) describe three classes
of feature points on the profiles: minimum (min), maximum
(max) and inflection point (infl). These feature points span
feature surfaces that represent alternative definitions of the
flame surface (such as the surface of maximum heat release),
or inner and outer bounds of the burning region (e.g. min-
imum and maximum fuel concentration). Investigating the
shapes and local distances of these surfaces gives insight into
the local combustion process and how it is affected by turbu-
lent flow. We now describe the construction of those feature
surfaces and their subsequent visualization.

4.1. Feature Point Construction

As shown in Figure 7 (left), each class of feature points can
be transformed into a point set in space. By considering all
profile lines pi(t) = pi + t·ri, which have been sent out from
the flame surface S (Figure 7, left), the position of a feature
point p(t f ) with f ∈ {min,max, infl} is given by

p(t f ) = p+ t f ·r.

Such a feature point set is a discrete sampling of a continuous
feature surface S f . In the following, we discuss our approach
of constructing this feature surface from a feature point set.

4.2. Feature Surface Construction

Remember that during the transformation to the sparse rep-
resentation, an isosurface mesh M representing the flame
surface S was extracted. The profile lines were seeded at ver-
tices of this mesh. For each point pi on the flame surface we
therefore know the position of a point on the feature surface
S f by the corresponding shift value t fi and the direction of the
profile line ri (Figure 7 (left)). Hence, the idea is to transform
the flame mesh M into a feature mesh M f , representing the
feature surface.

The simplest way to implement this transformation would
be to move the vertices m j ∈M of the flame mesh M along
the direction vectors r of the profile lines to a related feature
point, given by the shift value t f . Unfortunately, the values for
t f and r are only known at vertices where profile lines have
been seeded (see Section 3.1, Figure 7). Thus, the first step
of the transformation is to obtain this information for each
vertex m j of the flame mesh M. We use a diffusion-driven
approach to obtain the directions r′j and shift values t ′f , j for
each mesh vertex from the original ri and t f ,i. For this, we fix
the original values at the vertices corresponding to points pi
and diffuse them over the rest of the mesh until convergence.
Different diffusion methods can be used to obtain results
of varying smoothness. For simplicity, we use an explicit
weighted averaging scheme, iteratively replacing the values
at each vertex with the sum of its neighbors, weighted with the
neighbor’s inverse distance. After this process has finished,
directions and shift values are known for each vertex m j
(grey arrows and dots in Figure 7 (right)). This process is a
preprocessing step that has to be performed only once before
visualization and does not further impede performance.
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Figure 7: Construction of feature points and feature mesh.
Left: Feature points are constructed by shifting the anchor
points pi on the flame surface S along their direction vectors
ri by amount t f taken from the model parameters (here, xm of
a gaussian model). The resulting points pi(t f ,i) are located on
feature surface S f . Right: Directions and model parameters
for mesh points m j are obtained from points pi by diffusion
(grey arrows and dots). Feature mesh M f is then constructed
from flame surface mesh M by shifting all vertices along their
corresponding directions by their corresponding values of t f .

4.3. Feature Surface Visualization
Having constructed feature meshes, we can now approach
problem 3 of DNS data analysis: visualization. Domain ex-
perts want to visually examine the feature meshes, and in-
vestigate the differences between feature meshes of different
variables or feature point classes. In the following, we intro-
duce our approach for enabling such an analysis task.

4.3.1. Pairwise Distance Visualization
A visualization of distances between feature surfaces of two
different variables must allow for quickly identifying regions
of small or large distance, as well as the distances’ orientation.
We achieve this by displaying the local distance between two
feature surfaces color-coded on the flame surface mesh M.
This mesh serves as a neutral and common base for compari-
son, which is related to both feature surfaces.

As mentioned, corresponding vertices mV
f and mW

f of two
different feature meshes can be obtained from the vertex m
by shifting it by two different values tV

f and tW
f along the local

profile direction r′. Thus, the distance between the vertices is
simply the difference between the two shift values.

This distance is computed for each vertex and linearly
mapped onto a color map. We use a color map adapted to our
application: black for values near zero (the meshes intersect),
red to yellow for growing positive distances (one mesh is
outside of the other locally), and blue to cyan for negative
distances (the opposite applies). We introduce parameter u1 as
a scaling factor for adjusting the color contrast and controlling
how much of the data is mapped inside the displayed color
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Figure 8: Prototype of visual analysis tool for feature meshes
showing dataset HYDROGEN. Top: Graphical user interface.
Upper middle: Effect of varying color scale parameter u1.
Lower middle: Morphing between the different surfaces by
adjusting u2. Bottom: Sliding through time to observe the
development of the feature meshes (circles).

range and how much is clamped to the maximum/minimum
color. This enables a quick visual search for both extreme
difference values (by choosing a low value for u1), or an
overview of areas with positive or negative difference values
(by choosing a high value for u1). The color scale and the
effect of varying parameter u1 are shown in Figure 8.

4.3.2. Feature Mesh Visualization

We use standard computer graphics techniques to render the
feature surfaces. The distance values are mapped to the mesh
as vertex colors, and Phong shading is used to enhance the
perception of surface curvature. Larger specular highlights
improve the curvature perception but obstruct the view on
the mesh color. We therefore let the user control the specular
reflectance factor to suit their needs.

To allow for the investigation of the feature meshes’ shapes,
we provide a user-controlled linear morphing between the
flame surface mesh M and the two chosen feature meshes MV

f
and MW

f . A parameter u2 ∈ [0,2] steers the morphing, show-
ing the flame surface M for u2 = 0, the first feature surface
MV

f for u2 = 1 and MW
f for u2 = 2 (Figure 8). The morphing

itself is trivial. Since the corresponding vertices between all
the meshes are known and their topology is identical, they
just have to be linearly translated as the value of u2 changes.

Finally, we enable the user to quickly slide through the
different time steps and investigate the temporal behavior of
the feature surfaces and their relations. This allows for a quick
interactive visual analysis that would have been impossible to
achieve on the original raw simulation data, due to the large
number and storage size of time steps.

4.4. Evaluation of Diffusion Quality

By computing the shift values t f only for some of the vertices
of M, and obtaining them at the other vertices by diffusion, an
error is introduced. We quantify this error as the normalized
root mean square difference between a ground truth and the
values at each vertex after the diffusion process. The ground
truth is obtained by computing the model parameters t f for
each vertex of M as described in Section 3.3. The diffusion
error EV, f

diff for variable V and feature f is defined as

EV, f
diff = ∑

mi∈M

∣∣∣∣∣ tV
f ,i− t ′Vf ,i

max(tV
f )−min(tV

f )

∣∣∣∣∣ ,

where tV
f ,i is the true shift value for variable V and feature f

at vertex mi, t ′Vf ,i is the corresponding value obtained by diffu-
sion, and max(tV

f )−min(tV
f ) is the range of true shift values

over all vertices. We computed this error metric for all vari-
ables and time steps of data set HYDROGEN, using different
seeding densities q. The results can be seen in Figure 9.

5. Discussion and Conclusion

We introduced a sparse representation for DNS data of pre-
mixed combustion. This representation enables an integrated
approach for dealing with the three core problems of DNS
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Figure 9: Diffusion error (median, max and min) for selected
variables of data set HYDROGEN. Images show qualitative
results of visualization for different seeding densities q. The
plots corresponding to each variable are shifted by a constant
increment.

data analysis (see Section 1). The sparse representation en-
ables storing the simulation results with far smaller space
requirements. The space requirement is mainly dependent on
the complexity of the flame shape, not on the size or resolu-
tion of the data, i.e., the less complex the flame shape, the
less profile lines need to be seeded for an accurate representa-
tion. Via fitting of models, the sparse representation directly
captures important characteristics of the scalar fields that can
be analyzed in different ways without the need for data re-
construction. Feature surfaces derived from these models can
directly be visualized and facilitate the visual analysis of the
data. Previously existing approaches do not address all of the
issues mentioned above, restricting the ability to effectively
analyze simulation data.

Apart from the feature surfaces, further characteristics
might be extracted from the sparse representation, such as
gradient fields and their topology. Note that our approach is
specifically tailored to DNS data, but can be used for other
kinds of multi-field data where changes are only located in
narrow-band regions. Such data might be geological data of
the material within the earth’s mantle, or air field pressure
measurements of the supersonic bang of a plane.

Despite its many advantages, our approach has some lim-
itations. Seldom outliers lead to locally large distances of
the feature surface to the flame surface, which is visible as
spots in the visualization. These are however rare and indi-
cate areas of unusual behavior on the flame surface, which
also provides meaningful information. Furthermore, if the
flame surface does not capture regions that have non-zero
gradients, the information about these regions will be lost.
This might happen because, e.g., the temperature there is
below the used iso-value. Fortunately, such regions are very
rare and solely occur during the short periods of time when
a burning region ignites. Thus, practically this case is not
relevant. Finally, relying on a random process to seed the pro-

file lines might produce insufficient numbers of samples in
some regions. This might be avoided by using a deterministic
seeding approach and is left for future work.

Four experts in combustion DNS examined our apprach,
two of which were also partly involved in its development.
They stated that the extraction of feature surfaces especially
for variables that have a maximum near the flame surface is a
welcome addition to their set of analysis tools. Such surfaces
are of particular interest in the comparison of combustion
processes in laminar vs. turbulent flows. Previously, such
surfaces were often approximated by iso- surfaces of other
variables, which were assumed to be close to the desired
feature surface based on the conditions in laminar flow. This
hindered the investigation of the effects of turbulence. The
possibility of directly comparing feature surfaces with our
approach opens new possibilities in the investigation of the
effects of turbulence on combustion.

Another application proposed by the experts is the compar-
ison of experimental and simulation research. In experiments,
the flame surface is often determined by easily measurable
quantities, while more precise definitions are used in simu-
lation research. Our feature surfaces enable comparison of
these definitions and deriving models to make experiments
and simulations more comparable.

This comparison of different flame surface definitions is
also important when comparing different simulations. Since
there is no universally agreed-upon definition of the flame
surface, different researchers often use different definitions,
which could be quantitatively compared with our method.

The sparse data representation, apart from much-needed
space savings, opens possibilities of statistical analysis of the
relations of feature surfaces, which could be used to improve
combustion models for Random Averaged Navier-Stokes or
Large Eddy Simulation methods.

Our approach is currently implemented as a post-
processing step. By transforming the original data into the
sparse representation, disk space usage is reduced consider-
ably. At the same time, the data is also brought into a form
better suited for the analysis of the different feature surfaces.
In the future, we would like incorporate the approach directly
into the simulation and perform the transformation to the
sparse representation in-situ.

We have presented a sparse data representation for DNS of
premixed combustion that deals with the three core problems
of DNS data analysis: Storage requirements, analysis and
visualization. The representation accurately approximates
the original data while consuming dramatically less storage
space. The extraction and visualization of feature surfaces we
present as a possible application can be performed without
reconstructing the data on the original grid. Experts confirm
that our approach opens new and important possibilities of
investigating the process of premixed turbulent combustion.
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