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Abstract
Vector Field Topology is the standard approach for the analysis of asymptotic particle behavior in a vector field flow: A
topological skeleton is separating the flow into regions by the movement of massless particles for an integration time converging
to infinity. In some use cases however only a finite integration time is feasible. To this end, the idea of a topological skeleton
with an augmented finite-time separation measure was introduced for 2D vector fields. We lay the theoretical foundation for
that method and extend it to 3D vector fields. From the observation of steady vector fields in a temporal context we show the
Galilean invariance of Vector Field Topology. In addition, we present a set of possible visualizations for finite-time topology on
3D topological skeletons.

This is the authors preprint. The definitive version is available in the Eurographics digital library at http://diglib.eg.org/.

1. Introduction

One widely used approach to visualize a steady vector field is rep-
resenting the flow through areas of similar asymptotic behavior.
This allows for a quick overview of the fields structure and is the
basis for a number of techniques. Vector Field Topology extracts
such a skeleton: separatrices are integrated from critical points and
boundary switch points. They form lines or surfaces, respectively,
segmenting the flow into regions with the same asymptotic behavior.
This simple method has several appealing aspects. Most prominently,
only few points in the domain need to be considered for a complete
segmentation, resulting in few primitives to be visualized, overall
requiring little computational effort.

In unsteady vector fields, a straightforward application of Vector
Field Topology is generally not possible, as the domain is restricted
in the time dimension. The asymptotic behavior can thus only be
approximated in a finite time frame. Generally, the flow map has to
be densely sampled and integrated in the whole domain to extract
a segmentation, commonly Lagrangian Coherent Structures (LCS).
Several methods have been introduced for their computation. Most
prominent among them is the extraction of ridge lines in the Finite-
Time Lyapunov Exponent (FTLE) field.

Another approach to a definition of topology in unsteady flow is
a reduction to a steady flow field by substracting a certain unsteady
flow field [BPKB14, WGS07]. Instead of a costly LCS extraction,
now the much cheaper Vector Field Topology can be computed.
While Vector Field Topology is applicable to the generated field in
practice, the resulting skeleton captures the behavior for integrations

times converging to infinity, outside the finite time frame of the
original data.

In this paper, we extend and theoretically consolidate the previous
work [FRT15]. Basically, we compute a local measure of separation
relative to the asymptotic separation. However, we can simplify the
method to finite-time computations only. The measure is therefor
cheap to compute and may safely be applied to vector fields only
defined in a certain time frame.

More specifically, we segment the on flow segmentations based
on finite integration behavior within steady fields. In chapter 3 it will
be shown that this skeleton is equivalent to Lagrangian Coherent
Structures of steady fields and therefor linked to maxima of flow
separation. On the separating structures, the separation accumulated
over a finite integration time is compared against the final separation
at the saddle.

In this work, we argue that the separating structures in steady
fields coincide with the Vector Field Topology, even for finite inte-
gration times. To that end, we define path line topology by observing
steady Vector Field behavior in an unsteady domain. Additionally,
we extend both computation and visualization to 3D steady fields
and apply different rendering techniques to tackle the problem of
surface occlusion.

2. Related Work

The general frame of Vector Field Topology [HH89] and several
extensions [SKMR98,dLvL99a,WS01] have been the basis to many
further works. The 3D variant contains separatrix planes in addition
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to lines, while generally the same topological structures are extracted
[GLL91, HH91, MBHJ03, MBS∗04, TWHS03, WTHS04a]. As the
general behavior is captured in a small number of structures, it has
been utilized for the simplification, smoothing and compressing of
steady vector fields [dLvL99a, dLvL99b, TSH00, TSH01, WJE01,
LRR00, SLR03, TRS03], and vice versa the construction of such
[The02, WTHS04b]. For a more detailed discussion, we refer to the
overviews presented in [LHZP07, PPF∗11, WWL16, HLH∗16].

A simple application of topology to unsteady vector fields is
unfortunately not possible. When the integration time is bounded,
asymptotic behavior cannot be analyzed. Instead, other measures
of similarity or difference have to be found for the partition of a
domain. Most commonly, Lagrangian Coherent Structures (LCS)
are extracted from the flow and define the boundaries between areas.
Several methods exist to extract these structures. A widely used
variant is the computation of the Finite-Time Lyapunov Exponent
(FTLE) [Hal01, HY00] for every point in the domain. LCS coincide
with ridges in the resulting scalar field, though the extraction of exact
ridge lines is cumbersome. A number of extensions to FTLE have
been proposed. The high correlation between shear flow and high
FTLE values has been tackled by [PPF∗12]. Performance and quality
were improved by several works [GKT16, GGSLHH09, GGTH07,
SP09, SP07, SRP11, LM10] and FTLE ridges have found a broad
spectrum of applications [Hal02, LCM∗05, SLP∗09, WPJ∗08]. As
their convergence to material structures has be proven [SLM05],
they can be used to describe the topology of unsteady vector fields
[SW10, USE13].

To circumvent the computational cost of LCS methods, an-
other approach recurring in unsteady vector field analysis is the
decomposition of the field by subtracting a background flow
[BPKB14, WGS07]. When the behavior of the data can be cap-
tured in a steady part, Vector Field Topology can be applied to effi-
ciently compute separating structures. In this situations, a finite-time
evaluation of separation is preferable to an analysis of asymptotic
behavior, as the original field does not allow for infinite integration
times. [FRT15] offer a finite-time solution to this problem: While
relying on efficiently computable topological skeleton, a finite-time
measure of separation is introduced that allows further investigation
of the separatrices within the field.

In this work, we will deduce the connection between Vector Field
Topology and LCS by proving that Vector Field Topology is Galilean
invariant. To this end, we define Path Line Topology by observing
steady vector fields in an unsteady reference frame and show that
FTLE ridges and topological skeleton coincide therein. Furthermore,
we extend the method to 3D vector fields, by applying a slightly
adapted version of the separation measures to separatrix planes.

Notation

We will use the notation established in [FRT15]: Let v be a bounded
steady vector field with Jacobian J and flow map φ(x,τ). A stream
line originating in x is a parametric curve φ(x,τ). We will further
utilize the normalized perpendicular field w(v). In the following
chapter, we will give an overview over the separation measures
introduced in [FRT15].

ε1

x

x1

w(φ(x,τ))

ε(τ)

φ(x1,τ)

φ(x,τ)

Figure 1: [FRT15] Construction of separation measure

Finite-Time Steady 2D Vector Field Topology

The separation at a given point in a vector field is described by the
distance between two massless particles that were seeded infinitively
close to each other. An overview of of the construction is given in
figure 1: To compute the separation at position x on a stream line,
a second particle is offset along the normal field w(x) to some
x1 = x+ ε1w(x). The further these line move apart, the higher the
separation. When we simplify the distance to its projection onto the
normal, i.e., the component perpendicular to the flow

ε(τ) = w(φ(x,τ))T (φ(x1,τ)−φ(x,τ)),

we can express the separation after integration time τ as

s(x,τ) = lim
ε1→0

ln
ε(τ)

ε1
. (1)

It can be shown that for the initial offset ε1 converging to 0, this
separation measure can equivalently be expressed as

s(x,τ) =
∫

τ

0
w(φ)T J(φ)w(φ) dr (2)

with φ = φ(x,r). This approach resembles the localized FTLE intro-
duced in [KPH∗09].

As will be shown in section 3, we can reduce all computations to
the topological skeleton of the field. Instead of a general stream line,
τ now moves from a source towards a saddle (or backwards from
sink to saddle) while the separation converges to a linear function

lim
τ→∞

s(x,τ) = a τ+b(x). (3)

Here, a is the derivative in direction of the corresponding saddles
eigenvector. We are particularly interested in b(x): the difference
between s(x,τ) to this final linear behavior. It becomes constant in
the linear neighborhood of the saddle. An example can be seen in
figure 2.

While s(x,τ) describes the perpendicular separation for integra-
tion towards the saddle, b(x) captures the more expressive difference
to the final linear behavior: The linear neighborhood of the saddle
can easily be seen as the constant section. Lower values of b(x)
indicate asymptotically less separating areas and vice versa. As can
be easily shown, s(x,τ) only differs by a translation at each point
along the separatrix. For b(x) follows:

Theorem 1 Given are two points x, y on the same separatrix such
that y = φ(x,τy). Then

b(y) = b(x)+ s(x,τy)−a τy.
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Figure 2: [FRT15] Behavior of s(x,τ) for a separatrix.

When integrating outwards from a saddle c, the algorithm to
evaluate b(x) becomes rather simple:

• Compute a
• Start integration at a point x0 in the linear neighborhood of the

saddle. This property can be easily verified.
• Starting with b(c,0) = 0, integrate b(c,τ) by evaluating s(φ(c,τ))

locally. At each step, only local derivatives are used.
• Stop in the neighborhood of a source or sink.

To map this to a more visually expressive representation, we can
introduce the function

h(x) = a ek b(x).

In the linear neighborhood, h(x) stays constant at a, making it
possible to compare separation strengths of different separatrices. k
is the only parameter needed throughout all computations. It steers
the visual impact of deviations from the final separation.

An example of a small vector field is shown in figure 3 with all
measures mentioned above.

3. On the relation of FTLE and Vector Field Topology for
Steady Vector Fields

In this section, we study the relation of the two well-known concepts
FTLE and Vector Field Topology in steady vector fields. The ridges
will serve as the theoretical basis of our method.

For steady vector fields, both FTLE and Vector Field Topology
(VFT) can be computed. Hence the question for their relation arises.
In particular the relation of the limit of FTLE for an integration time
converging to infinity and VFT is of interest since VFT captures
the asymptotic behavior. It is known [Sad15] that FTLE and VFT
sometimes show similar structures. Is is assumed that VFT is not
Galilean invariant, and thus cannot coincide with FTLE. In fact,
VFT heavily relies on the location and tracking of critical points. To
illustrate this, [Sad15] shows an example of a changing topological
skeleton after adding a constant vector field.

x0x1x2x3

saddle csource s

(a) Construction of a simple vector field on a 12×3 grid with a source, a
saddle and a full separatrix in between. Velocity is interpolated bilinearly.

τ
τx3

τx2
τx1

s(x0, τ)

x0

b(x3)
b(x2) b(x1)

(b) Graph of s(x,τ). Note the differing spacing of
x0, . . . ,x3 in space and over integration time τ.

source s saddle c

b
h, k = 0.05
h, k = 0.25

(c) Graphs of b(x) and h(x) for varying k. Larger
values of k enhance deviations of b(x) from 0.

Figure 3: [FRT15] s(x,τ), b(x) and h(x) on an example data set.

Here we introduce a slight modification of the concept of VFT.
We use the fact that VFT aims at segmenting the flow in areas of
similar asymptotic behavior, and that the extraction of critical points
turns out to be the realization of this idea for studying the asymptotic
behavior of stream lines. In our modification, we consider VFT as
an approach to segmenting the path lines of a steady vector field
into regions of similar asymptotic behavior (instead of stream lines
that are usually related to VFT). We call this the Path Line Topology
(PLT) of a steady vector field.

After a formal introduction, we show the following properties:

• Path Line Topology is Galilean invariant.
• For steady vector fields, Path Line Topology and Vector Field

Topology coincide.
• For steady vector fields, separatrices starting from saddles in

the Path Line Topology are FTLE ridges for integration times
converging to infinity.

We stress again that we are interested in a topological segmenta-
tion of steady vector fields only. However, analyzing the Galilean in-
variance in a steady vector field v(x) requires the observation of v in
a frame of reference moving with a constant speed: x‘ = x+x0 + tr
where x0,r are certain constants. The observation in such a moving
frame transforms the steady vector field v(x) into an unsteady vector
field w(x, t) = v(x‘). This means that for analyzing the Galilean in-
variance of steady VFT, we have to define VFT for unsteady vector
fields as well. For this we have different choices as long as they
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coincide with the classical VFT in the steady case. One such choice
is the path line topology introduced below.

Note that observing v in a continuously moving frame of reference
does not mean to add a constant field to v. In fact, adding a constant
vector field to v changes both the topological skeleton and FTLE
and is therefore not directly related to Galilean invariance. (To be
precise: invariance under adding a constant field is a sufficient but
not necessary condition for Galilean invariance.)

Path line topology

Let v(x, t) be a 2D unsteady vector field, Jacobian J with non-
vanishing determinant, and let

fv =
1

det(J)

(
det(vy,vt)
det(vt ,vx)

)
(4)

be the 2D feature flow field [TS03]. Then we introduce path line
topology by defining the new vector field

v̂ = v− fv (5)

and analyze the topological skeleton of v̂ instead of v: we extract
and track the critical points of v̂, classify them by an eigenanalysis
of the Jacobian Ĵ of v̂, and integrate separatrices as path lines in v̂
starting from the saddles in v̂ in the direction of the eigenvectors of
the Jacobian Ĵ of v̂.

Properties of path line topology

In the following we restrict ourselves to the analysis of the critical
points of path line topology instead of the complete topological
skeleton. We show three things:

1. If v is steady, the critical points of v and v̂ coincide.
2. If a vector field u is obtained by observing a steady vector field v

under a moving frame of reference, then fu = r = const.
3. Critical points of v̂ are Galilean invariant.

Point 1 follows directly from the definition of v̂: if v is steady, we
have vt = 0 which gives fv = 0. Point 2 can be shown by applying
basic differentiation rules to w(x, t) = v(x+ x0 + tr). It has the
following interpretation: fv is a local estimator of the moving frame
of reference. Point 3 follows from the relation

v− fv = J−1a (6)

that was introduced in [GT15] (where a= Jv+vt is the acceleration)
and the well-known fact that both J and a are Galilean invariant.

FTLE in the limit

We assume a steady vector field v(x) with the following properties.

• v is bounded, i.e., ‖v‖ does not exceed a certain threshold.
• From every point of its domain, v can be (forward) integrated

with an integration time converging to infinity, i.e. the particle
does not leave the domain.

In particular, we expect a particle integration in v to either

• remain at its starting point x if x is a critical point, or
• converge towards a critical point with increasing integration time,

or
• remain on an attracting closed orbit with increasing integration

time.

These properties are rather common. Even when the domain is finite,
no-slip boundaries often ensure that particles can not move outside.

Before analyzing the FTLE limits of v, we study the FTLE be-
havior of a 2D linear vector field vl . Since in this case the Jacobian
is constant, FTLE of vl is constant for a fixed integration time τ. We
are interested in the limit of FTLE for τ→ ∞. Given is the linear
vector field

vl = Jx (7)

with the constant Jacobian J that induces the flow map φτ(x). Let
λ1,λ2 be the eigenvalues of J, and let e1,e2 be the corresponding
eigenvectors. Furthermore, let µ1(τ),µ2(τ) be the eigenvalues of
the Cauchy-Green tensor (∇φτ(x))T (∇φτ(x)). Then the following
holds:

lim
τ→∞

{
1
τ

ln
√

µi(τ)

}
= {Re(λi)} . (8)

(8) says that for a linear vector field, FTLE converges to the real
part of the largest eigenvalue of J for increasing integration time. To
show (8) , we use the fact that for a linear vector field (7) the flow
map can be written in a closed form

φ
τ(x) = E D E−1 x (9)

with

E = (e1,e2) , D =

(
eλ1τ 0

0 eλ2τ

)
. (10)

This gives also a simple closed form for the gradient:

∇φ
τ(x) = E D E−1. (11)

From this it is a straightforward exercise in algebra to show (8).

We now use (8) to analyze the general vector field v. Suppose
that x lies on a separatrix of v, i.e., a forward integration from x
converges to a saddle. Since from a certain time on the distance to
the saddle decreases with exponential rate, we can assume that after
a finite time the particle is within the linear neighborhood of the
saddle – the region that is dominated by the first term of the Taylor
expansion of v around the saddle [Gar07]. Then (8) gives that FTLE
converges to the largest eigenvalue of the Jacobian at the saddle.
This gives

lim
τ→∞

FTLEτ(x)> 0 for x on a separatrix. (12)

If x is not on a separatrix but converges towards a sink, we use a
similar argumentation: we use the fact that at a sink we have only
negative real parts of the eigenvalues of the Jacobian and get

lim
τ→∞

FTLEτ(x)< 0 for x concerging to a sink. (13)

Then (12), (13) give that separatrices are FTLE ridges for increasing
integration times.

Remarks:

• Similar considerations can be made for x converging to an attract-
ing closed orbit. Also in this case, FTLE converges to a negative
value.

• Note that a linear vector field v is excluded from the consider-
ations because it fails to be bounded. In fact, for a linear field,
forward integration does not generally converge to a critical point
or closed orbit.
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(a) Angle-based transparency [HGH∗10], Two-
Sided Shading, Layer Adaptivity [CFM∗13] and
silhouettes via depth discontinuities.

0 positive

Separation Value

(b) Importance-based mapping. The colormap is
tailored to the visible separation range. Opacity
decreases linearly.

(c) Opacity Optimization [GSE∗14] on 800
patches. Areas of high separation values and
context are visually enhanced where possible.

Figure 4: Three different methods for visualizing separation on surfaces. Shadows are rendered using Fourier Opacity Mapping [JB10].

4. Extension to 3D Vector Fields

In the following, we will extend the method presented in [FRT15]
to 3D vector fields. While the visualization differs, the computation
of the separation values stays largely the same.

4.1. 3D Computation

When analyzing 3D fields, a few changes have to be made to account
for the separatrices being surfaces instead of lines.

A stream surfaces is spanned by streamlines, here originating in
a ring within the linear neighborhood of the saddle, and timelines
in an advancing front. To integrate the surface we use a variant of
the algorithm described in [Hul92]. We apply our method on each
streamline starting or ending in the linear neighborhood of a saddle’s
separating plane, thus, along the flow. We measure the perpendicular
separation along each separating surface. Therefore, we define the
surface normal as perpendicular field w(x), and can compute values
for h(x) on each point on the separating surface.

Since Jacobian and normal are changing smoothly along the
surface, it is sufficient to compute the separation for a finite number
of streamline and interpolate in between. To insert a new streamline
at places where the surface is diverging, the initial values of h(x)
can thus be interpolated from its neighbors, given that the resolution
is high enough. Note that a, the initial separation, is constant on
each separatrix, as it only depends on the common seed point.

4.2. 3D Visualization

Separating planes can form complex geometries that are difficult to
visually comprehend. In figure 4 this can be seen as a single separtrix
folds into itself with increasing integration time. Without rendering
the surface transparent, these structures would not be visible. On
this surface, separation strength is now visualized. We map h to a
colormap and opacity. Dark colors and high opacity thereby mark
regions of high separation.

Mapping to the vertex opacity and alpha blending makes it easier
to determine regions of high separation: even parts hidden by geom-
etry can be seen, as long as they have a high separation value and
thus a high opacity. Still, highly important regions may stay unseen,
especially when a high number of triangles overlaps at a pixel.

Three possible methods for mapping to color and opacity are
shown in figure 4. The surface is the same as in figure 5. All shadows
were rendered with Fourier Opacity Mapping by Jansen et al. [JB10].

In figure 4a, the surface is displayed applying angle-based
transparency and two-sided shading as described in Hummel
et al. [HGH∗10]. Additionally, layer adaptivity by Carnecky et
al. [CFM∗13] and a depth-based silhouette extraction were applied
to highlight the geometry folding. While this combination gives a
good understanding of the surface geometry, the separation function
is not encoded, as both color and transparency are used already.

In figure 4b, the computed separation values are encoded in both
color and opacity. Areas of high separation are both highlighted by
bright colors and high opacity. The geometry is still clearly visible,
especially when animated as in the accompanying video. Regions
of high separation are clearly visible from most angles, while less
important areas fade out.

Finally, Opacity Optimization for surfaces by Günther et
al. [GSE∗14] was applied to the surface to highlight the regions
of interest even more. This view-dependent technique balances fea-
ture highlighting and clutter removal: less important areas as at the
borders and in the twisted middle are only visible when they do not
visually occlude more important regions.

While Opacity Optimization yields the best results when ani-
mating the surface, it makes the geometry harder to understand.
Therefore, in the remainder of this work surfaces will be displayed
with the importance-based mapping. However, in an interactive
application Opacity Optimization would be the preferable method.
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Results

Borromean data set. Figure 5 visualizes the separating surface in
one time slice of the Borromean dataset, simulated by Candelaresi
and Brandenburg [CB11]. It contains the simulation of a magnetic
field around Borromean rings. As opposed to figure 4b and 4c, the
colormap in use encodes both separation strength and sign.

Benzene magnetic field. The Benzene dataset contains the normal-
ized potential field of a benzene molecule [ZSH96]. Figure 6 shows
the separatrices in the magnetic field around a benzene molecule.
Separation is encoded in color and opacity. 124 saddle points and
their respective separatrices are shown. This high number of surfaces
would normally be infeasible to visualize. As we render areas of low
separation transparent, the visual complexity is reduced since most
surfaces disappear when their separation is low (compare to fig-
ure 6c for all surfaces). It shows that the main asymptotic separation
happens around the outer hydrogen ring.

5. Discussion and Limitations

For the analysis of finite-time separation in steady fields, we have
shown that the LCS coincide with the Vector Field Topology skele-
ton. By restricting the computation to the separatrices, we do not
have to evaluate the field globally. Furthermore, in simplifying the
separation measure to the perpendicular part only, the computation
is reduced to the summation of directional derivatives along the line.

The computation of s(x) depends on the initial distance ε1 to the
saddle at which the integration is started. As mentioned earlier, this
problem can be resolved by forcing the seeding point to lay in its
linear neighborhood.

The property displayed, b(x), captures the difference of the
asymptotic separation on the separatrix to the final linear behav-
ior at the connected saddle. Within the linear neighborhood of the
saddle, b(x) is constant. This allows us to rely on finite integration
times only to capture the asymptotic behavior: b(x) is not a local
property, but contains the accumulated perpendicular separation for
particles seeded at x over a finite integration time.

For a more expressive visualization, b(x) is scaled logarithmically
in the displayed function h(x). This introduces the only parameter:
k steers the visual impact of deviations from the linear behavior. An
example can be seen in figure 3c: While the functions differ in value,
the behavior stays similar, leading to the same visual impression.

All examples given have a rather low number of critical points
compared to measured and turbulent data. This is a common problem
of topological methods: A more complicated topological skeleton
will lead to occlusion and a cluttered visualization. Still, the high
number of separatrices in the Benzene dataset (s. figure 6a) could
be visualized well with mapping separation to opacity only.

In 3D datasets more problem occur for a high number of sepa-
ratrices or surfaces folding back on themselves, as is the case in
the Borromean dataset (s. figure 5b). Simple alpha blending in this
case quickly results in a fully opaque image. Opacity Optimiza-
tion [GSE∗14] has been used to circumvent this problem. By linking
opacity – and thus visibility – to the relative importance, regions of
interest are highlighted, even when they lay inside other structures.

(a) The symmetry shown from the front.

(b) Side view. The separation decreases from the saddle outwards.

Figure 5: Single separatrix surface in the Borromean dataset.

Future research

In general steady divergence-free vector fields, a separatrix connect-
ing two saddles can occur. Changes in the computation of b(x) might
be sought to guarantee their sensible handling. Other topologically
relevant structures that can be of interest are closed streamlines and
boundary switch curves.
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negative positive0

Separation Value

(a) Top View

(b) Side View

(c) Opaque Top View

Figure 6: Three views of a Benzene molecule. The atom structure
is represented by the white mesh.
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