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Fig. 1: Glyphs for different general second-order 3d tensors together with their eigenvalues plotted in the complex plane.

Abstract—Glyphs are a powerful tool for visualizing second-order tensors in a variety of scientic data as they allow to encode physical
behavior in geometric properties. Most existing techniques focus on symmetric tensors and exclude non-symmetric tensors where
the eigenvectors can be non-orthogonal or complex. We present a new construction of 2d and 3d tensor glyphs based on piecewise
rational curves and surfaces with the following properties: invariance to (a) isometries and (b) scaling, (c) direct encoding of all real
eigenvalues and eigenvectors, (d) one-to-one relation between the tensors and glyphs, (e) glyph continuity under changing the tensor.
We apply the glyphs to visualize the Jacobian matrix fields of a number of 2d and 3d vector fields.

Index Terms—Glyph-based Techniques, Tensor Field Data, Flow Visualization

1 INTRODUCTION

Glyphs are omnipresent in Scientific Visualization. Whenever multidi-
mensional information is to be visualized at a certain location in data
space or screen space, glyphs are the standard choice. For multidi-
mensional data of a certain type, there is generally not one best glyph.
Rather a number of design decisions are possible that are based on
either general or application specific design rules [1].

In this paper, we search for glyphs for general second-order tensors
in 2d and 3d, i.e., tensors that are not necessarily symmetric. Such ten-
sors appear in a variety of applications, e.g., in computational fluid dy-
namics and flow visualization as the Jacobian matrix of velocity fields
or as stress tensors in mechanical engineering. General second-order
tensors are considered as general matrices in R2×2 or R3×3 without
constraints like symmetry, i.e., the space of all such tensors has 4 or 9
dimensions, respectively.

2 A WISH LIST OF GLYPH PROPERTIES

Meaningful glyphs for general second-order tensors must satisfy a
number of requirements. In this section, we collect and motivate
desired properties of glyphs. Let J be a general 2d or 3d tensor
represented by a – not necessarily symmetric – matrix, and let G(J) be
its corresponding glyph. We stick to the interpretation of a tensor as
the Jacobian of a vector field and thus use the symbol J throughout the
paper. Nevertheless, the proposed properties are general and apply to
any interpretation or application of tensors.

(a) Invariance under isometric domain transformation. Let Q denote
an isometric map, e.g., rotation or reflection, as an orthogonal matrix.
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Then the domain transformation of the tensor should result in the same
transformation of the glyph.

G(QJQT) = QG(J) . (1)

(b) Scaling invariance. A uniform scaling of the tensor should result
in the same scaling of the glyph, i.e., for any s > 0 ∈ R

G(s J) = s G(J) .

(c) Direct encoding of real eigenvalues and eigenvectors. If J has real
eigenvalues and eigenvectors, they should be directly visible in the
glyph. This is justified by the fact that the eigenvalues and eigenvectors
capture all information of the tensor. If they are all real-valued, they
provide geometric information that is suitable for direct visualization:
direction of eigenvectors and magnitude of eigenvalues. This is the
case for symmetric tensors with orthogonal eigenvectors and also for a
class of non-symmetric tensors with real-valued but non-orthogonal
eigenvectors.

(d) Uniqueness. Obviously, a tensor J should result in a unique glyph.
We also demand the reverse: a glyph should have a unique tensor. For
any two tensors J1,J2 we demand

J1 6= J2 ⇒ G(J1) 6= G(J2) . (2)

We introduce weak uniqueness that requires (2) only for tensors of full
rank, i.e., for two lower-rank tensors may “share” the same glyph.

(e) Continuity. Continuous changes of the tensor must result in contin-
uous changes of the glyph. In particular, there should be no instanta-
neous change of the glyph appearance for a small change of the tensor.
This includes the transition from positive to negative determinant, from
orthogonal to non-orthogonal real eigenvectors, from distinct to multi-
ple eigenvalues, and from real to complex eigenvalues.

J1 ≈ J2 ⇒ G(J1) ≈ G(J2) .

We remark that requirements (a),(b),(d),(e) are identical to the con-
ditions formulated by Schultz and Kindlmann [15] for the special case



of symmetric tensors, there called symmetry preservation, invariance
under scaling, disambiguity, and continuity. They additionally demand
a property called invariance under eigenplane projections. This prop-
erty is not well-defined for general tensors as the eigenplanes may not
be perpendicular or not even real at all. We replace their property by
(c) which is stronger in some sense: it generalizes explicitly to the case
of real but non-orthogonal eigenvectors, and it makes no assertion for
the complex case.

3 RELATED WORK

Most glyphs proposed in the literature are exclusively constructed for
symmetric tensors. And among these, the majority is devoted to pos-
itive definite tensors. Rather than giving a complete review of these
special cases, we mention two representative approaches: Kindlmann’s
superquadric tensor glyphs [8] for positive definite tensors, and Schultz’
and Kindlmann’s superquadric glyphs for general symmetric tensors
[15]. We refer to the latter (and the references therein) for an in-depth
discussion of the symmetric case. In a recent paper, Seltzer and Kindl-
mann [16] design glyphs for asymmetric second-order 2d tensors. We
discuss and compare to this work in section 9.4.

There are few glyph techniques for non-symmetric tensors, that
originate either from flow visualization (for visualizing the Jacobian
of a flow field) or from mechanical engineering. A straightforward
approach is to decompose a non-symmetric tensor J into a sum of
the symmetric part 1

2 (J+ JT) and the antisymmetric part 1
2 (J− JT).

Then the symmetric part can be visualized by glyphs for symmetric
tensors, and the antisymmetric part can be encoded and visualized as a
vector. This way, however, the information about the eigenvalues and
eigenvectors of the original tensor J is lost, and no direct encoding of
this information is possible as required by (c).

In flow visualization, Globus et al. [6] propose to represent tensors
with real eigenvalues by ellipsoids. Their approach does not consider
complex eigenvalues, nor does it provide uniqueness thus lacking re-
quirement (d). De Leeuw and van Wijk [3] propose a glyph that, among
others, contains derived values from the Jacobian, where the eigenval-
ues of the Jacobian are not directly encoded, and thus lacking (c).
Theisel et al. [19] propose a glyph that lacks uniqueness (c). Palke et
al. [13] use glyphs for asymmetric tensors with complex eigenvalues.
Their approach does not cover the complete space of 2d tensors, and
they do not provide an extension to 3d. Zhang et al. [20] introduce
the eigenvector manifold and visualize the 2d eigenvectors as line seg-
ments. This way, discontinuities can occur whenever eigenvectors are
not well defined due to equal eigenvalues. Further approaches to vi-
sualizing non-symmetric tensors include [4, 11, 12]. None of these
provides glyphs for the complete space of non-symmetric tensors.

In mechanical engineering, there exist several approaches to visual-
izing stress tensors [10]. Mohr’s circles [2] visualize only eigenvalues,
and are therefore lacking invariance to domain rotations (a). Haber
glyphs [7] consist of an ellipsoid and a rod for the eigenvectors. The
glyphs are continuous (lacking (e)) when the eigenvectors are not well-
defined.

The following table gives an overview of existing work on 3d gen-
eral tensor glyphs. Existing techniques are evaluated with respect to
satisfying conditions (a)-(e) from section 2. In addition, the column (f)
indicates if the technique is general, i.e., not restricted to symmetric
tensors.

method / satisfies (a) (b) (c) (d) (e) (f)
Kindlmann and Schultz [8, 15] 3 3 3 3 3 7

tensor decomposition 3 3 7 3 3 3

Globus et al. [6] 3 3 3 7 3 3

de Leeuw and van Wijk [3] 3 3 7 7 3 3

Theisel et al. [19] 3 3 3 7 7 3

Mohr’s circle [2] 7 7 3 7 3 3

Haber glyph [7] 3 3 3 7 7 3

this paper 3 3 3 3 3 3

We conclude this review with the statement that we are not aware of a
glyph for general tensors – neither 2d nor 3d – that fulfills all conditions
(a)-(e).

4 PRELIMINARIES AND NOTATION

Prior to the construction of glyphs we review some auxiliary concepts
and notation. Given is a tensor J ∈ Rn×n for n = 2,3.

Factorizations. We make use of the following matrix factoriza-
tions (see, e.g., [17]). The spectral decomposition J = XΛX−1 yields
the eigenvectors X·i as columns of X and the eigenvalues λi as entries
of the diagonal matrix Λ. For symmetric J = JT the eigenvalues
λi are real, and eigenvectors are orthogonal, i.e., X−1 = XT. For
non-symmetric tensors, the eigenvectors are no longer orthogonal, and
eigenvalues and eigenvectors may no longer be real.
The singular value decomposition (SVD) J = UΣVT yields the
orthogonal matrices U,V and the diagonal matrix Σ with real,
non-negative entries σi, the singular values σ1 ≥ σ2 ≥ . . .

The SVD can be used to construct the polar decomposition

J = (UVT)(VΣVT) = QH ,

which factors an isometry represented as the orthogonal matrix Q
and scaling/shear as the symmetric, positive definite matrix H with
λi(H) = σi(J). Q is a rotation matrix if det(Q) = +1. In R2, a
rotation matrix Q can be parametrized by an angle γ , which is given
by tanγ = Q21/Q11.

Isometry invariant tensors. Assume the tensor J represents the
Jacobian matrix of a w.l.o.g. linear vector field. Then for any domain
point x the vector v = v(x) is given as v = Jx. For a generalization, we
may interpret the restriction to a linear vector field as a local analysis
using a Taylor expansion.

Given is an orthogonal matrix Q that represents an isometric map,
e.g., a rotation. Then an isometric map of the domain QTx determines
an isometry of the vector field. We consider

v′ = v′(x) = Q v(QTx) = Q J QTx = J′x ,

and define J′ = Q J QT as a (domain) isometry of the tensor J. We call
a tensor invariant to isometry iff J′ = J.
(γ,r)-parametrization of tensors. Theisel and Weinkauf [18] pa-

rameterize a subspace of 2d tensors T using two scalar parameters γ

and r such that using polar decomposition

T = QH =
(

cosγ −sinγ

sinγ cosγ

)(1
σ2

)
,

i.e., the spectral norm of T is constrained to ||T||2 = σ1(T) = 1, and
there is no orthogonal transform in H (i.e., the right singular vectors
V = I), which can be interpreted as “factoring out” domain rotations.
The parameter γ ∈ [0,2π) determines rotation, and the parameter r ∈

[0,1] determines T’s smaller singular value σ2 =
1−2
√

(1−r)r
2r−1 ∈ [−1,1].

Here, σ2 is exceptionally equipped with a sign, which expresses the
sign of the determinant sgn(σ2) = sgn(det(T)).

This subspace suffices to study and describe all classes of 2d ten-
sors. And conversely, arbitrary tensors J can be mapped to the (γ,r)-
plane using polar decomposition and r = 1

2 + det(J)/||J||2F = 1
2 +

sgn(det(J)) σ1σ2
σ 2

1 +σ 2
2

, where ||J||2F denotes the Frobenius norm.

Theisel and Weinkauf use the (γ,r)-parametrization for designing a
distance metric on tensors. We utilize the following properties through-
out the paper: Given is a tensor J and its mapping to the (γ,r)-plane.
Then the following statements hold [18].

(i) Let r? = 1
1+sin2

γ
. Then r? ≥ 1

2 , and

J has eigenvalues


λ1 6= λ2 ∈ R for r < r?

λ1 = λ2 ∈ R for r = r?

λ1 = λ2 ∈ C else
.

(ii) det(J) = λ1λ2


< 0 for 0≤ r < 1

2
= 0 for r = 1

2
> 0 else

.



Notation. In the remainder of the paper, U,V,Q denote orthogo-
nal matrices – U,V are singular vectors from SVD, and Q denotes a
general an isometric transform, the factor from polar decomposition or
a 2d rotation matrix Q(γ) – and Λ,Σ are diagonal matrices with eigen-
values λi and non-negative singular values σi as usual in descending
order. X denotes a matrix that has unit-length eigenvectors as columns,
and we write X·i for the i-th column. The symbols γ and r refer to the
(γ,r)-parametrization of 2d tensors. Whenever the context is clear, we
omit the explicit reference to the tensor and write, e.g., λi or γ instead
of λi(J) or γ(J).

5 GLYPHS FOR 2D TENSORS

This section presents the construction of glyphs for 2d tensors that
meets all requirements (a)-(e) postulated in section 2. For the sake
of a concise and focused presentation, some details (e.g., geometric
primitives) are reviewed in the Appendix.

5.1 Preliminary Consideration
We start with a general observation that strongly influences the glyph
design:.

Proposition 5.1. It is impossible to use only shape for defining a glyph
that satisfies conditions (a)-(e). At least one more continuous value
has to be encoded in a channel different from shape.

Proof. Consider tensors J that are constant under domain rotation, i.e.,

Q J QT = J (3)

for any rotation matrix Q(γ). Choose two such tensors of equal
scale (norm) J1 =

[
1 0
0 1
]
,J2 =

[0 −1
1 0

]
. Then (1) and (3) require that

QG(J1) = G(J1) and QG(J2) = G(J2), i.e., an arbitrary rotation of
the glyph gives the same glyph. The only shape that fulfills this require-
ment is the circle. Hence, both J1 and J2 must be encoded as the same
circle. If glyphs are only determined by shape, this violates the require-
ment for uniqueness (d). In general, every tensor of the form J = Q(γ)
is constant under domain rotation and must therefore be mapped to the
circle. Thus, we need at least one additional continuous channel to
encode the angle γ in the glyph: We use color.

In the following, we separate the construction into designing shape
and mapping color.

5.2 Shape
Given is a tensor J ∈ R2×2 with eigenvalues λ1,2. The basic geometric
primitive for the construction of the shape of the associated glyph is the
characteristic ellipse of J that we define as the point set that satisfies

xT(JJT)
−1x = 1 . (4)

This implicit curve is an ellipse that interpolates for λ1,2 ∈R the eigen-
vectors scaled by eigenvalues, i.e., the columns of ±XΛ. Note that in
general, the eigenvectors X are not orthogonal. For complex eigenval-
ues, the orthogonal axes of the ellipse are spanned by the left singular
vectors U. The Appendix gives a proof of these properties.

We parameterize the implicitly defined characteristic ellipse as a
piecewise rational quadratic Bézier curve [5], where each piece is an
arc with the the scaled eigenvectors (or left singular vectors if λi ∈ C)
as end points. Each piece is defined by three control points bi and
weights wi. Due to end point interpolation, b0,b2 are given by the
scaled eigenvectors with standard weights w0 = w2 = 1. The center
control point is

b1 = ω (b0 +b2) with weight w1 = cosα/2 ,

with
ω =

1
1+ cosα

(5)

where α is the angle enclosed by b0,0,b2 (or two eigenvectors, respec-
tively). This results in two rational pieces for the smaller and larger
enclosed angle, and the remaining two pieces can be determined from

symmetry. Figure 2a shows an example, and the Appendix gives a
construction of the parametrization.

We consider the mapping of J into the (γ,r)-plane, and use γ and
r to distinguish different cases based on properties (i) and (ii). Each
case determines a modification of the characteristic ellipse, and each
modification is defined in a way that guarantees requirements (a)-(d)
and in particular (e), the continuous transition between the different
cases. We emphasize this by explicitly reviewing the transitions as
special cases. All modifications are described for one rational piece
(bi,wi), i = 0,1,2, with α = ∠(b0,0,b2). The same modification is
applied equally to all pieces. Let r? = 1

1+sin2
γ

.

Case 0≤ r < 1
2 . J has real eigenvalues and a negative determinant

λ1λ2 < 0. The glyph for this “saddle” configuration should be a con-
cave shape that conveys the directions and magnitude of eigenvectors
and eigenvalues, which can be interpreted as “inflow” and “outflow” if
the tensor is a Jacobian matrix of a vector field. Each arc of the charac-
teristic ellipse is modified such that the center control point is moved
to 1

2 |cosα| (b0 +b2). This yields a concave shape as b1 is closer to
the origin 0 than 1

2 (b0 +b2). Figure 2b shows an example.

Case r = 1
2 . At this transition, rank(J) = 1, and one of the two

real eigenvalues vanishes, i.e., λ1λ2 = 0. As a consequence, the char-
acteristic ellipse “degenerates” to a line segment. The behavior is
continuous as for h→ 0, both r = 1

2 ±h result in the same glyph.

Case 1
2 < r < r?. This is probably the simplest case of a positive

definite (λ1,2 > 0) or negative definite (λ1,2 < 0) tensor J. The glyph
should be convex and clearly indicate the directions and magnitude
of eigenvectors and eigenvalues. We modify the smooth characteristic
ellipse such that there are sharp bends in these directions, i.e., the curve
should be only C0-continuous at the end points±XΛ of the elliptic arcs.
Note that X is orthogonal only for symmetric J. For general tensors,
the indicated directions do not coincide with the principal axes of the
characteristic ellipse.

For each arc, we move the center control point towards 1
2 (b0 +b2)

as follows: Define the ratio τ = λ1/λ2 of eigenvalues and τ? =
min{τ,1/τ} ∈ [0,1], and let

ω
? = (1−|sinγ|)

(
(1− τ

?) 1
2 + τ

?
ω
)
+ |sinγ| ω . (6)

The new position of the center control point is b1 = ω? (b0 + b2).
In order to ensure that sharp bends develop more rapidly near the
transitions r = 1

2 and r = r?, we suggest to apply an additional transfer
function and to replace τ? in the above formula by f (τ?) with f (t) =
4(t− 1

2 )
3 + 1

2 . Figure 2c shows an example.
The amount of “sharpening” is maximal at the transition r = 1

2 –
think of the “degenerated stick” as a “diamond” – and it gradually
fades out towards the smooth characteristic ellipse as r→ r? and the
smaller angle enclosed by two eigenvectors vanishes.

Case r = r?. At this transition, the eigenvalues are equal λ1 = λ2,
and the eigenvectors are parallel, i.e., the smaller of the enclosed angles
is zero. The shape of the glyph is the characteristic ellipse without
modification.

Case r? < r ≤ 1. J has complex eigenvalues λ1 = λ2. The prin-
cipal axes of the characteristic ellipse are spanned by the left singular
vectors of J. No modification is applied.

Case r = 1. In the limit, J is a rotation matrix Q(γ) as with r = 1
its singular values must be equal σ1 = σ2. This follows from the defi-
nition of the (γ,r)-parametrization using the constrained-norm tensor
T with ||T||2 = σ1(T) = 1: with r = 1 we have also σ2(T) = 1. Then
J is invariant to domain rotation, and also the glyph must be invariant
to rotation. The shape of the glyph is just the characteristic ellipse,
which is a circle for σ1 = σ2. Figure 6 shows different shapes in the
(γ,r)-plane.
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b1

c2 = b0
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Fig. 2: (a) Characteristic ellipse of a non-symmetric tensor with real eigenvalues. The black arrows denote the eigenvectors scaled by the
eigenvalues (XΛ ), and the green arrows show the orthogonal left singular vectors scaled by singular values (UΣ ). The four arcs are
parametrized as rational quadratic Bézier curves shown in red ( ) and blue ( ). The control polygons bi,ci are shown for two arcs (in gray ).
Joining rational pieces smoothly at b0 requires that c1,c2 = b0, and b1 are colinear. (b) For a saddle configuration, the center control points, e.g.,
b1 of the original characteristic ellipse configuration (dashed) are moved “beyond” 1

2 (b0 +b2) ( ) towards the origin to obtain a concave shape
(solid). (c) For a positive definite tensor, we introduce sharp bends to indicate the directions of the eigenvectors. The center control points are
moved closer towards 1

2 (b0 +b2) (•).

5.3 Color
We use color to encode the angle γ . For r≥ 1

2 , each glyph is filled with
a single, “flat” color.

Any continuous color map of the circle is possible. We use the
color map shown in figure 3 that maps positive and negative definite
(γ = 0 and γ = π) tensors to red and blue tones, and 90 degree rotations
(γ = π/2 and γ = 3π/2) to yellow and green tones, respectively.

The “saddle” case r < 1
2 is treated differently, because we want to

distinguish the directions of inflow and outflow and thus use two colors.
First, we have to make sure that one color gives a continuous transition
along the circle r = 1/2 in the (γ,r)-space. Let λ1 ≤ 0 ≤ λ2, and the
corresponding eigenvectors X·1 and X·2 oriented such that det(X)< 0,
further let α ∈ [0,π] be the angle enclosed by X·1 and X·2. Then we
get two γ-values

γ1 =
π

2
+α and γ2 =

π

2
−α ,

that are color-coded as described above. The inner circles in figure 3
show the two colors for the respective points in (γ,r)-space.

In addition, a partition of the glyph’s geometry is required. Let
fi(t) : [0,1]→ R2, i = 0, . . . ,3, denote the four rational pieces that
define the boundary of the glyph. With a circular shift of the “global”
parametrization by 1/2 we obtain

gi(t) =

{
fi(t + 1/2) for t ≤ 1/2

fi+1 mod 4(t− 1/2) for t > 1/2
, i = 0, . . . ,3 ,

such that each image of gi(t) : [0,1]→ R2 consists of two half-arcs
that indicate the direction of an eigenvector. This partitions the glyph
symmetrically into four patches. Figure 6 shows different shapes and
colors in the (γ,r)-plane.

6 GLYPHS FOR 3D TENSORS

We utilize the 2d construction and in particular the (γ,r) parametriza-
tion as much as possible the 3d setting for general tensors J ∈ R3×3.
This leads to two cases depending on the configuration of eigenvectors
and eigenvalues: In the first case there is one distinct pair of eigenval-
ues either having the opposite sign to the third one or being complex
conjugates. In this case, the distinct pair of eigenvectors (for real
eigenvalues) or left singular vectors (for complex eigenvalues) span a
uniquely defined base plane. In the second case, no distinctive eigen-
vectors exist because all three eigenvalues are real and positive (or all
three are real and negative). For both cases, we discuss first shape and
then color of the glyph.

6.1 Case 1: A well-defined base plane exists.
Shape. A well-defined base plane exists, if either all eigenvalues

are real and one differs in sign, or if two eigenvalues are complex

Fig. 3: The glyph’s color is determined by the angle γ . The figure
shows the color map used in this paper as the outer band (r ≥ 1/2)
of the color wheel with superimposed polar coordinate system (γ,r).
Darker circles indicate r = 1/2. The color is constant for 1/2 ≤ r ≤
1. Two colors are required for saddles (r < 1/2) to indicate “inflow”
and “outflow” directions. We use complementary colors shown in
the inner circles that also depend on the angle enclosed by the (real)
eigenvectors.

conjugates. In the first case (“saddle”), the plane is spanned by the
eigenvectors corresponding to the two eigenvalues with same sign. In
the second case (“swirling”), the plane is spanned by the left singular
vectors. It is straightforward, to extend the condition to eigenvalues
equal to zero, which require the usual “numerical caution” when deal-
ing with near zero values.

We construct the shape from eight triangular patches. One of them is
shown in figure 4a. Suppose that x1 and x2 are the scaled eigenvectors
spanning the base plane, and x3 is the remaining scaled eigenvector.
Then the intersection of the desired patch with the base plane is ex-
actly the solution of the 2d glyph in the base plane. Furthermore, we
use the information from the base plane as well as the ratio between
the associated eigenvalues and the remaining eigenvalue to determine
the shape outside the base plane. We describe the patch as a rational
bi-quadratic patch f(u,v) with a degeneracy, i.e., an undefined normal,
at x3, where the parameters w12,µ12 and ν12 (see figure 4b) are de-
termined as follows. w12 and µ12 are chosen such that we get the 2d
glyph is in the base plane: µ12 is obtained similarly to (5), and w12
is obtained similarly to (6). The remaining ν12 determines the global
convexity/concavity of the shape and is chosen as

λ12 =
λ1 +λ2

2
, ν12 =

1
2
+

1
2

sgn(λ12λ3)

(
|cosγ| |2λ12λ3|

λ 2
12 +λ 2

3

)n

where γ is from the (γ,r) parametrization of the projection of J into
the base plane, and the exponent n controls “sharpness” of the shape
near discontinuities. This patch construction is repeated eight times for
each combination of ±xi as patch corners to obtain the entire shape.
The resulting patches have the following properties.



• fu(0,v) = h(v) fu(0,0) for a certain function h(v). This means
that the partial derivative of f w.r.t. u does not change direction
along the boundary curve from x1 to x3. (A similar statement
holds for fu(1,v).) As a consequence, in case of the characteristic
ellipse as base shape, adjacent patches are G1-continuous along
the junction curves that are not in the base plane.

• If x1,x2,x3 build an orthonormal system, f(u,v) is the octant of
a sphere (see [14]).

Details of the patch construction are reviewed in the Appendix.

Color. The glyph consists of the following colors: Close to the
base plane, we color code the γ value of the 2d case in the projec-
tion into the base plane. Note that depending on the side of the base
plane, this requires two different colors. If from one side the value
γ is encoded, the view from the other side must encode −γ . For the
coloring of the regions close to x3 a binary choice is sufficient: red
for λ3 > 0, blue else. It remains to define at what v-value the “hard”
transition between the two colors takes place. We choose v = σ1

σ1+λ3
,

where σ1 = σ1(JP) = ||JP||2 is the spectral norm of the projection of
J into the base plane. This makes sure that for λ3 → 0, the color of
the whole 3d shape converges to the color of the 2d glyph in the base
plane.

6.2 Case 2: There is no unique base plane.

Shape. In this case, all pairs of eigenvectors can be chosen equally
to span a base plane. This means that depending on the particular
choice, we have three different patches for each octant of the shape.
We propose to blend patches using a weighted average. For this, two
problems have to be solved: (1.) The three patches are given in dif-
ferent parametrization, which prohibits a direct blending. (2.) The
blend weights must be chosen to ensure a smooth transition of the
shape between case 1 and case 2. To solve the first problem, we apply
a non-standard reparametrization of the patch from u,v-coordinates
to barycentric coordinates β1 +β2 +β3 = 1, which is detailed in the
Appendix.

To address the second problem, the blend weights for patch evalua-
tion are chosen as

W1 = |(λ3−λ1)(λ3−λ2)λ1λ2|
W2 = |(λ1−λ2)(λ1−λ3)λ2λ3| (7)
W3 = |(λ2−λ3)(λ2−λ1)λ3λ1|

This ensures that if, e.g., λ1 and λ2 get close to each other, W1 and
W2 get close to 0, meaning that we have the desired smooth transition
between case 1 and case 2. The same desired transition takes place for
λ3→ 0. If all eigenvalues are identical, the patches are also identical,
and all weights would equally evaluate to zero and would lead to a
degenerate patch. In this case all weights are set to an equal, nonzero
value.

Color. For color, we use the same weighted average as for shape.
For every barycentric coordinate β1,β2,β3 we have a γ value for each
patch (either the γ-value of the base plane, or γ = 0 or γ = π towards
the patch corner away from the base plane). The three γ-values are
averaged by the same blend weights W1, W2, W3. Note that this way,
one final patch can consist of up to eight different colors. However,
in practice, they can hardly be distinguished: all of them are rather
red (for outflow) or rather blue (for inflow). This is desired because
in this case all relevant information for uniqueness lies in the shape.
We have to apply this seemingly complicated color mapping to ensure
continuity between case 1 and case 2.

6.3 Eigensticks

Our 3d construction so far does not ensure uniqueness for the case
rank(J) = 2. In this case, no information about the direction of the
eigenvector corresponding to the zero eigenvalue is encoded in the
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r > 1/2

(a)

x1 x2

x3

µ12 (x1 +x2)

ν12 (x2 +x3)ν12 (x3 +x1)

(b)

Fig. 4: (a) If a base plane exists, it defines an ellipse, and every rational
piece (red ) defines a surface patch together with the two other arcs
(blue and gray ), which use a standard weight

√
2/2. (b) Similar to

2d, the control points are determined as linear combinations of scaled
eigenvectors xi. Note that without well-defined base plane, all three
possible patches are evaluated and “blended”.

Fig. 5: Flat-shaped glyph without (left) and with eigenstick (right).

glyph. This can be fixed by additionally rendering eigensticks, i.e.,
carefully scaled real eigenvectors of J as

± (λ1−λ2)(λ1−λ3)X·1 ,

± (λ2−λ1)(λ2−λ3)X·2 ,

± (λ3−λ1)(λ3−λ2)X·3 ,

with X·i denoting the i-th eigenvector. In most cases, eigensticks are
rendered inside the shape and therefore not visible. Only in the case
of flat shapes, i.e., there is one rather small eigenvalue, they become
visible. Figure 5 shows an example. Note that eigensticks also fulfill
the continuity condition for coinciding eigenvalues the corresponding
eigensticks converge to the zero vector.

7 RESULTS

Figure 6 samples the (γ,r)-plane and show the corresponding glyphs.
Figure 7 shows (scaled) glyphs that visualize the Jacobian matrix of
a 2d slice of the flow behind a square cylinder. The underlying flow
field is visualized by a LIC texture with the superimposed glyphs. The
glyphs vary significantly in scale, and there are regions of rapid tran-
sition between different glyphs. Two closeups zoom into interesting
regions.

Figure 1 shows a selection of different glyphs for 3d tensors together
with the eigenvalues in the complex plane. More examples are given in
figure 8 which includes two cases with one of the three real eigenvec-
tors getting close to zero: the corresponding glyphs have a flat shape
(not seen from the chosen perspective), and the eigensticks become
visible and convey the direction of the eigenvector associated with the
near-zero eigenvalue.

Figure 9 shows 3d glyphs in the Jacobian field of a flow that stems
from a simulation of a Rayleigh-Bénard convection. The underlying
flow field is illustrated with few illuminated streamlines.

3d glyphs that are close to rank 2 appear flat, which makes it difficult
to recognize the direction of the eigenvector corresponding to the near-
zero eigenvalue. Eigensticks as described in the previous section 6.3
remedy this deficiency. Figure 5 explicitly compares the same glyph
with and without rendering an eigenstick that emphasizes the direction
of the eigenvector.

8 HOW TO READ THE GLYPHS

The glyphs proposed in this paper encode a significant amount of in-
formation. Moreover, the requirements (a)-(e) postulated in section 2
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Fig. 6: Sampling glyphs in the (γ,r)-plane. The circles on the left figure indicate r = 1/2 (zero determinant on the transition between saddle and
definite) and r = 1 (equal eigenvalues), and the oval shape is the curve r = r? (equal eigenvectors and eigenvalues on the transition between real and
complex). The right figure shows sampled glyphs corresponding to the line segments. Left column: dashed line (γ,r) = (1− t)(0,1)+ t (π/2,1);
center column: dotted line γ = 5π/4; right column: solid line γ ∈ {0,π}.

Fig. 7: Glyphs visualizing the Jacobian matrix of the flow around a square cylinder with two closeups (rectangles). The underlying LIC image
visualizes the flow.

constrain design choices and make the appearance of glyphs different
from previous works. In this section, we show that despite this fact the
new glyphs are easy to use by providing a few simple rules on how to
read the proposed glyphs.

Shape. Convex shapes indicate that all real
eigenvalues have the same sign or positive determi-
nant, while concave shapes indicate different sign
of eigenvalues.

An ellipse in 2d indicates that there are no
unique real eigenvectors, for either case of complex
or identical real eigenvalues.

An ellipsoid, i.e., a smooth shape without discontinuities, in 3d is
only possible as a sphere, i.e., for three identical real eigenvalues (see
figure 1, left). Shape discontinuities at sharp corners in 2d and in
addition sharp edges in 3d (see figure 1, 2nd left) encode the direction
of real eigenvectors for symmetric and asymmetric tensors without
rotation.

Color. Red indicates positive real eigenvalues,
i.e., an outflow, and blue indicates negative real
eigenvalues, i.e., an inflow.
Yellow indicates counterclockwise swirling, and
green indicates clockwise swirling.

9 DISCUSSION

In this section we verify that the proposed glyphs fulfill the require-
ments (a)-(e) postulated in section 2, and we discuss our various design
decisions.

9.1 Fulfillment of requirements
(a) Invariance under isometric domain transformations. The property
holds because all constructions are based on scaled eigenvectors
XΛ of J (in the real case) or on scaled left singular vectors UΣ (in
the complex case) and their linear combinations for determining
control points. Both, X and U are invariant under isometric domain
transformations Q, as for J = XΛXT = UΣVT, QJQT has eigenvectors
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Fig. 8: Selection of glyphs for 3d tensors with their eigenvalues plotted in the complex plane. Note that the two center glyphs feature visible
eigensticks due to one of the three eigenvalue getting close to zero.

Fig. 9: The glyphs depict the Jacobian matrices of a flow field from the simulation of a Rayleigh-Bénard convection. The illuminated streamlines
give an impression of the flow.

QX and singular vectors QU and QV regardless of the dimension.

(b) Scaling Invariance follows directly from the construction.

(c) Direct encoding of real eigenvalues and eigenvectors. This follows
also directly from the construction as all scaled eigenvectors appear
visually as points or curves of C0 continuity, i.e., as sharp bends due to
discontinuities of the glyph’s tangent field.

(d) Uniqueness. In 2d, it is sufficient to show that for every point in the
(γ,r) phase space there is a different glyph, i.e., two such glyphs are
not identical after rotation. For real eigenvalues, this follows directly
from (c) because a tensor is uniquely defined by its eigenvalues and
eigenvectors. In the complex case, the glyph is the characteristic ellipse.
Since its aspect ratio uniquely encodes r and its color uniquely encodes
γ , the glyph must be unique. Note that uniqueness also holds for 2d
tensors of rank 1: they are encoded as sticks of a unique color that
depends on γ .

In 3d, in the case of a well-defined base plane and non-zero third
eigenvalue, the property follows from the 2d case in the base plane and
the unique visibility of the third eigenvector. In the case of three all
positive (or all negative) real eigenvalues, all eigenvectors are visible
and the property follows from (c). With this, weak uniqueness in 3d is
shown.

A special case in 3d is rank(J) = 2, then the glyph is a 2d figure
in the plane of the non-zero eigenvectors. In this case, the direction
of the eigenvector corresponding to the 0 eigenvalue is not encoded in
the glyph’s shape and color. Hence we do not have uniqueness. The
solution is the optional addition of the eigensticks (section 6.3) that
ensures the uniqueness of this case.

Another special case in 3d is rank(J) = 1, which gives a stick as
glyph. To ensure uniqueness in this case, we additionally have to
encode the eigenplane of the zero eigenvalues. Since the space of all
possible eigenplanes is two-parametric, it cannot be encoded solely by
color, hence, the glyph is not unique in this case. We decided not to
introduce additional features to remedy this for the sake of avoiding
further visual clutter only for a case of minor practical relevance.

(e) Continuity. To show continuity, we have to consider all cases of
equal eigenvalues – and therefore undefined eigenvectors – as well
as all transitions from real to complex eigenvalues. In 2d, equal real
eigenvalues result in a circular glyph, whereas at the transition between
real and complex eigenvalues, the glyph is always the characteristic
ellipse.

In 3d, the following additional events have to be checked. The
first case is the transition from a unique base plane to all positive
(or all negative) real eigenvalues: the choice of the blend weights (7)
ensures that in the transition event exactly one weight is non-zero,
which gives continuity. The other case is the event of equal eigenvalues
if all eigenvalues are real and positive/negative: here also only one
weight is non-zero, giving continuity.

9.2 A critical review of requirements

The set of requirements determines the glyph design and should be
chosen carefully because every desired property constrains the space
of admissible glyphs. In the extreme case, this space may even be
empty for contradicting requirements. More generally, the imposed
conditions may be “too strong” in the sense that the admissible glyphs
do not feature an intuitive interpretation anymore. This, however, is
crucial in any application of glyphs. In this case, one option is to
remove or to relax certain conditions, e.g., demanding only partial
fulfillment like “almost everywhere”.

We strongly advocate for meeting all requirements (a)-(e) for the
general design of tensor glyphs: these properties constitute a standard
choice that was established by Schultz and Kindlmann [15]. Moreover,
Kindlmann and Scheidegger [9] proposed three general visualization
design principles: representation invariance, unambiguous data repre-
sentation, and visual-data correspondence. The conditions (a), (b), (d),
(e) formally implement these principles and guarantee their fulfillment.
Missing in this list is condition (c): the direct visual encoding of real
eigenvalues and eigenvectors, if present, seems to be nontrivial. At
the same time, this information is of such importance for the charac-
terization of a tensor in essentially every application that condition (c)



appears as an obvious choice for glyph design. For the example of
Jacobian matrices of vector fields, the eigenvalues and eigenvectors
give a direct classification of the flow around critical points.

For sure, different applications may require emphasis on different
properties of the tensor and therefore relax certain conditions in favor
of a more intuitive interpretation. However, this holds for the particular
application or task and comes at the cost of loosing possibly important
parts of the information. For a generic glyph design that is not a
priory tailored toward a specific application, the theoretically sound
and hence “safe” option is to implement all conditions (a)-(e). This is
not necessarily complicated: In section 8 we give few simple rules on
how to read the proposed glyphs. This gives evidence that it is rather
easy to learn reading the new glyphs.

Finally, this work focuses on the generic construction of a design
space for 2d and 3d glyphs that meet all of the mentioned requirements,
which has not been done before. It does neither formally measure the
intuitiveness of glyphs nor does it systematically explore this space
with the goal of finding glyphs within the constraints that are in some
sense “optimal” for a specific application. Possible directions are dis-
cussed below.

9.3 Design decisions

The space of all possible solutions to the construction of glyphs fulfill-
ing (a)-(e) is huge. In this paper we give only one sample (and to the
best of our knowledge the first one). This raises the question how to
further explore the space.

Color schemes. We use a rather straightforward color scheme to
encode one continuous value, in 2d this is γ . We do so to ensure
comparability with similar approaches [15, 19] that proposed similar
colors. Other and in particular more perception-oriented color maps
are possible. We remark finally that [15, 19] only use few discrete
colors whereas proposition 5.1 states that we have to use a continuous
color wheel.

Encoding of eigenvectors. Our approach is based on an encoding of
the eigenvectors as discontinuities in the glyph’s shape. Even though
the human visual system reacts rather sensitive to discontinuities in
a shaded scene, perception can be increased by ridge enhancement
methods. This makes illustrative techniques interesting candidates for
rendering our shapes. The main challenge here is to ensure a smooth
cease and disappearance of the enhancements in the case of equal
eigenvalues.

Perceptional considerations. Small changes in the tensors should
lead to equally small changes in the perception of the glyphs. In order
to proceed in this direction, we first need a metric in the space of all
tensors, and it seems not at all obvious which one to choose! Only then
a study on the perception of the glyphs is meaningful.

Similarity to existing special cases. Another design goal for glyphs
could be the similarity to well-established glyphs in special cases, e.g.,
to Schultz’ and Kindlmann’s superquadrics [15] for symmetric tensors.
Our current approach disregards this goal.

9.4 Comparison with existing techniques

Parallel to this work, Seltzer and Kindlmann developed and published
an approach with the same goal: glyphs for general second order ten-
sors [16]. Their construction applies only to the 2d case, seemingly
without a straightforward extension to 3d, and we give a comparison
with our 2d construction.

Seltzer and Kindlmann use a parametrization of the space of 2d
tensors that is similar to the (γ,r)-plane: They span the space in terms
of three parameters D,S,R that generate isotropic, traceless symmetric,
and antisymmetric parts of the tensor. They similarly factor domain
rotations and constrain the Frobenius norm ||T||F =

√
D2 +S2 +R2 =

1 (instead of the spectral norm as for γ,r), which, after projection, leads
to a planar parameter space defined by barycentric coordinates. Given
a tensor T := J/||J||F with ||T||F = 1, the following relations hold for
D,S,R in [16] and γ,r:

tanγ =
R
D

and r = 1−S2 .

Fig. 10: The proposed glyphs for symmetric positive definite 3d ten-
sors in a similar arrangement as in [8]: In contrast to Kindlmann’s
superquadric glyphs, the shape discontinuities prevent view-dependent
visual ambiguities.

The first equation can be easily verified as follows. In 2d, the polar
decomposition of a matrix J =

[
a b
c d

]
can be expressed in closed form:

find a rotation matrix, parametrized by angle γ , that makes J symmetric.
This leads to tanγ = c−b

a+d and with Eq. (9) in [16] to the above equation.
The second equation is already given as Eq. (37) in [16]: in det(T) =
1/2−S2 substitute r = 1/2−det(T) from section 4.

Seltzer and Kindlmann give an interpretation of the (D,S,R)-
parametrization: D = 0 refers to traceless tensors, for S = 0 tensors
are rotations (without shear or nonuniform scaling) and hence exhibit
rotational symmetry, and R = 0 refers to symmetric tensors without ro-
tation. In the (γ,r)-space this refers to γ ∈ {π/2,3π/2} or r = 0 and any
γ for traceless tensors, r = 1 for rotational symmetry, and γ ∈ {0,π}
for symmetric tensors. Finally, the loci of det(T) = 0 are S2 = 1/2
and r = 1/2, respectively. Note that the projection of D,S,R to planar
barycentric coordinates is nonlinear, and the projection of the algebraic
curve S2 = 1/2 is a conic section rather than a line.

Seltzer and Kindlmann also show – similar to this paper – that shape
alone is not sufficient to ensure a unique encoding. Different to this
work, they propose a texture on the glyph. This gives an intuitive en-
coding of the rotation/swirling at the price that continuity and rotation
invariance are not completely fulfilled anymore. Furthermore, [16] de-
mand as an ultimate design goal that for the special case of symmetric
tensors the well-established superquadric glyphs [8] appear as solution.
Our approach is different, and the glyphs differ significantly from su-
perquadric glyphs: Rather than treating symmetry as a special case,
our construction always encodes the direction of real eigenvectors (and
smoothly changes to left singular vectors in the complex case). [16]
lose this property for asymmetric tensors with real eigenvectors.

We finally compare this work to the superquadric glyphs by Kindl-
mann [8]. This refers to 2d and 3d glyphs, but only for the special case
of symmetric positive definite tensors. Figure 10 shows our glyphs in
a similar arrangement as in figure 7 in [8]. Note that our solution is
different but shares an important design goal: Due to the discontinu-
ities in the shape, there is no visual ambiguity regardless from which
perspective the glyph is rendered/viewed. This means that two of the
proposed 3d glyphs can always be distinguished in the projection to
2d images. In contrast, Kindlmann points out that for his superquadric
tensors the 2d projections are not always unique, e.g., in case the 3d
glyph is an ellipsoid.

10 LIMITATIONS AND FUTURE RESEARCH

The main theoretical limitation of or approach is the non-uniqueness
of 3d tensors of rank 1. We decided not to fix this shortcoming be-
cause we consider this case as having only low relevance in practice.
A direct road-map for future research comes from the discussion in
section 9.3. This includes in particular illustrative or stylized rendering
to emphasize relevant information such that visual perception is taken
into account and all postulated requirements are fulfilled.



APPENDIX

Characteristic ellipse
Given is a tensor J ∈ R2×2 with rank 2 and real eigenvalues λ1,2 and
eigenvectors as columns of X. Its characteristic ellipse is determined
by (4).

Proposition 10.1. The implicit curve defined by (4) is an ellipse that
interpolates ±λiX·i for i = 1,2, i.e., the eigenvectors scaled by the
eigenvalues.

Proof. The equation xTJJT−1x = 1 defines a quadric, i.e., the implicit
curve is a conic section [5]. It is indeed an ellipse as JJT is symmetric
and positive definite and so is its inverse as (JJT)

−1
= (J−1)

TJ−1.
The tensor has spectral decomposition J = XΛX−1 with unit length

eigenvectors ||X·i||= 1 and singular value decomposition J = UΣVT.
We verify that (4) holds for xi = λiX·i for i = 1,2. In matrix notation
with xi as the two columns of XΛ we write

ΛXT (JJT)
−1 XΛ = XTVΣUT (UΣ

−2UT)UΣVTX = XTX

using the identities JJT = UΣ2UT and XΛ = UΣVTX, obtained from
the factorizations, and then exploiting orthogonality of U and V. The
diagonal entries

(
XTX

)
ii evaluate to 1 and are by construction equal

to xi(JJT)
−1xi, which shows that the equation holds. Obviously, the

same holds for −XΛ and hence −xi.

Equation (4) holds equally for non-real ±xi ∈ C, i = 1,2. However,
the interpretation of the ellipse in the real plane (for x ∈ R) changes:
the complex eigenvectors are “replaced” by the left singular vectors U,
which span the orthogonal principal axes, and it is easy to verify that
the ellipse interpolates the column vectors of ±UΣ. For rank(J) = 1,
the characteristic ellipse degenerates to a line segment.

Rational parametrization of the characteristic ellipse
The quadric (4) is an implicit representation for the characteristic el-
lipse, which can be parametrized as a rational quadratic curve [5]. A
particularly simple construction is as follows: Express the rational
curve in Bernstein-Bézier form as

f(t) =
w0b0 (1− t)2 + w1b1 2(1− t)t + w2b2 t2

w0 (1− t)2 + w1 2(1− t)t + w2 t2 , t ∈ [0,1] ,

with control points bi ∈ R. The weights wi ∈ R can always be chosen
such that at the end points w0 = w2 = 1. Figure 2a shows an example.

Assume J has eigenvalues λ1 = λ2 = 1, i.e., J = XIX−1, and con-
struct a parametrization of one arc of the unit circle that is enclosed by
the eigenvectors X·i. From end point interpolation of rational Bézier
curves the left and right control points b0 and b2 are determined as
the unit length eigenvectors X·i. The tangents of the curve at the end
points are given as tangents to the unit circle or a 90 degree rotation of
X·i. End points and tangent directions define two lines, and the center
control point b1 is determined as their intersection. Let α denote angle
enclosed by the eigenvectors. It is easy to verify (5), i.e., determine
ω in b1 = ω (b0 +b2): w.l.o.g. use eigenvectors (cos(α/2) ,sin(α/2))

to exploit symmetry, and obtain b1 = ( 1
cos(α/2)

,0), then compare to

b0 +b2 = (2cos(α/2) ,0) to determine the factor ω = (1+ cosα)−1.
The weights associated with the three control points are w0 = w2 = 1
and for the center w1 = cos(α/2). For the general construction with
unconstrained eigenvalues, i.e., arcs of an ellipse, the control points
are transformed linearly as Jbi for i = 0,1,2. The weights remain
unchanged. Due to the affine invariance property of rational Bézier
curves, mapping the circular arc results in the same curve as per-
forming the construction directly for a general ellipse. The proposed
parametrization can be applied similarly or symmetrically to all four
arcs of the characteristic ellipse. Finally, the construction is straightfor-
ward for the degenerated case when rank(J) = 1 (or cosα = −1): in
this case b1 is undefined, however, as w1 = sinα = 0 the curve is just
the line segment spanned by b0 and b2.

Surface patches

For the 3d case, we construct surface patches from three quadratic
rational boundary curves in Bernstein-Bézier form. Although, three
such curves determine a triangular rational quadratic surface patch,
such patches are parts of ellipsoids, and in particular spheres, only in
special configurations [5]. In general, a rational surface patch of total
degree four is required. We follow the construction in [14] that uses
a rational bi-quadratic patch that is “degenerated” by the map to the
triangle domain. Then the 3× 3 control points and weights (bi j,wi j)
of the patch are determined as

(x3,1) (x3,w12) (x3,1)

(ν12(x3 +x1),
√

2/2) (b11,
√

2/2 w12) (ν12(x2 +x3),
√

2/2)

(x1,1) (µ12(x1 +x2),w12) (x2,1)

with the center control point b11 = ν12 (µ12 (x1 + x2) + x3)), and
±xi = λiX·i are scaled eigenvectors. Assume that the boundary curve
from x1 and x2 is located in the reference plane. This determines the
surface patches for the 3d glyph in the case of a well-defined base plane
(see section 6) as reference plane, which gives the weight w12 and the
factor µ12 as in the 2d case.

In the case that no base plane can be established, we construct a
continuous surface patch by blending the results of the evaluation of
the three possible patches. While section 6 discusses and justifies the
choice of blend weights, we need to clarify the surface evaluation,
which defines a different, non-standard class of surface patch. Let
fi : [0,1]× [0,1]→R3, i= 0,1,2, denote the three rational patches with
base curves from xi to xi+1 mod 3. The core idea is a reparametrization
of fi(u,v) as fi(β1,β2,β3) with barycentric coordinates β1 +β2 +β3 =
1 such that

(β1x1 +β2x2 +β3x3) ‖ fi(u,v) , (8)

i.e., the barycentric combination of scaled eigenvectors that span the
patch yields a vector that is parallel to the position vector f(u,v). In
this parametrization, we can evaluate the blend patch as

f(β1,β2,β3) =
1

∑
2
0 Wi

2

∑
0

Wi fi(β1,β2,β3) ,

using the blend weights Wi defined in (7).
In order to construct the parametrization (8) – w.l.o.g. for f1 – con-

sider the roots of the norm of the cross product. Due to symmetries,
the solution can be expressed as follows. Find u(β1,β2,β3) ∈ [0,1] as
solution of the quadratic equation

(1−u)2b0 + 2(1−u)ub1 + u2b2 = 0 ,

for b0 = β2, b1 = w12µ12 (β2−β1), b2 =−β1. The expression in the
quadratic Bernstein polynomials reveals immediately that there exists
one solution u0 ∈ [0,1]. Then find v(β1,β2,β3) ∈ [0,1] similarly as the
root

(1− v)2c0 + 2(1− v)vc1 + v2c2 = 0 ,

with u := u(β1,β2,β3) = u0, ũ := 1−u, β̃ := β3−β1−β2, and

c0 =
√

2β3 (ũ2 +4w12µ12 uũ+u2) ,

c1 = ν12(β̃ ũ2 +2w12 (2µ12 β3−β1−β2)uũ+ β̃u2) , and

c2 =−
√

2(β1 +β2)(ũ2 +2w12 uũ+u2) .
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