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Fig. 1: Backward FTLE of inertial particles as computed from influence curves [28] (left) correlates with preferential particle settling
(center). In previous work, particle settling has been analyzed by backward FTLE on tracer particles [66] (right), which shows
resemblance but is not as accurate. Here, in the DOUBLE GYRE with dp = 200 µm, start time t0 = 0 and integration duration τ = 9.

Abstract— Inertial particles are finite-sized objects that are carried by fluid flows and in contrast to massless tracer particles they
are subject to inertia effects. In unsteady flows, the dynamics of tracer particles have been extensively studied by the extraction of
Lagrangian coherent structures (LCS), such as hyperbolic LCS as ridges of the Finite-Time Lyapunov Exponent (FTLE). The extension
of the rich LCS framework to inertial particles is currently a hot topic in the CFD literature and is actively under research. Recently,
backward FTLE on tracer particles has been shown to correlate with the preferential particle settling of small inertial particles. For
larger particles, inertial trajectories may deviate strongly from (massless) tracer trajectories, and thus for a better agreement, backward
FTLE should be computed on inertial trajectories directly. Inertial backward integration, however, has not been possible until the recent
introduction of the influence curve concept, which – given an observation and an initial velocity – allows to recover all sources of inertial
particles as tangent curves of a derived vector field. In this paper, we show that FTLE on the influence curve vector field is in agreement
with preferential particle settling and more importantly it is not only valid for small (near-tracer) particles. We further generalize the
influence curve concept to general equations of motion in unsteady spatio-velocity phase spaces, which enables backward integration
with more general equations of motion. Applying the influence curve concept to tracer particles in the spatio-velocity domain emits
streaklines in massless flows as tangent curves of the influence curve vector field. We demonstrate the correlation between inertial
backward FTLE and the preferential particle settling in a number of unsteady vector fields.

Index Terms—Inertial particles, finite-time Lyapunov exponents, backward integration, preferential particle settling.

1 INTRODUCTION

Inertial particles are small objects with a certain diameter and density,
which are immersed in and transported by fluid flows, e.g., sand parti-
cles in air. The trajectories of inertial particles are not tangential to the
underlying flow, but can be understood as tangent curves of a higher
dimensional vector field [25, 28] and thus they have recently gained
recognition as a new problem to apply ideas and methods from the vast
body of flow visualization research to, including integral geometry [23],
vortex extraction [25], finite-time separation [26] and vector field topol-
ogy [27]. In traditional flow visualization of massless tracer particles,
Lagrangian coherent structures (LCS) were established as effective
means to capture the dynamics of unsteady flows. Recently, Haller [30]
reviewed the work on LCS for massless particles and pointed out that
the well-formed theory for massless particles is now underway to be ex-
tended to the inertial case. Recent work [47, 66] focused on hyperbolic
(forward) LCS in inertial flows via finite-time Lyapunov exponents
(FTLE), i.e., material surfaces that separate locally the strongest. Back-
ward FTLE is an established indicator for reverse-time hyperbolic LCS,
which reveal attractors in the flow. Alternatively, preferential particle
settling can be seen as a brute force method that emits a large number
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of particles and finds attractors via density estimates. Sudharsan et
al. [66] have shown that for small particles, backward FTLE on tracer
particles correlates with inertial preferential particle settling. However,
the larger a particle the more its trajectory deviates from the track of a
massless tracer particle. Thus, we argue that for a stronger agreement
with preferential particle settling, FTLE should be computed from iner-
tial backward trajectories. However, inertial backward integration is
problematic in theory and practice, due to the strong repelling behavior
in the phase space [27]. Recently, Günther and Theisel introduced
influence curves [28], which allow to recover the origin of an inertial
particle for a given initial velocity (in contrast to approximations [31]).

In this paper, we generalize influence curves to general equations
of motion in unsteady spatio-velocity phase spaces and apply this to
compute backward FTLE of inertial particles. Using the equations
of motion described in Crowe et al. [17] and the ones in Haller and
Sapsis [31], we show that inertial backward FTLE based on influence
curves is in agreement with preferential particle settling, see Fig. 1.
We demonstrate the impact of the initial velocity and gravity, which
have both been neglected in [66]. We further show that for massless
flows, streakline vector fields [72] are a special case of our generalized
influence curve description. Further, we demonstrate that influence
curves can be used to calculate other Lagrangian measures in backward
time, e.g., finite-time mass separation [26] and accumulated curvature.
We test our technique on a number of analytic and real-world flows in
2D, and one example in 3D.

2 BACKGROUND AND RELATED WORK

Finite-sized objects are relevant in many application areas and as cate-
gorized by Sudharsan et al. [66], inertial particles were used to assess
turbulence [5, 6, 8, 18, 52, 53, 63], gravitational settling velocity and set-
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tling time [40, 41, 49, 55, 65], and the preferential particle settling after
advection for a certain duration. The latter found applications in meteo-
rology [12, 59, 62], sand saltation modeling [61], soiling of cars [54],
plant spores and pathogens carried by atmospheric flow [13], urban
pollution [68], the tracking of toxic elements [44], plankton dynamics
in jellyfish feeding [46], visual obscuration in helicopter landing [37]
and the capture of inertial particles in aquatic systems [19].

In the following section, we introduce into the modeling of iner-
tial particles and review recent work on the extraction of finite-time
Lyapunov exponents (FTLE). Afterwards, we touch upon visualization
work regarding inertial particles, including the meaning of FTLE for in-
ertial particles. Finally, we discuss the difficulties of inertial backward
integration, which motivates our method.

2.1 Equation of Motion of Inertial Particles
Inertial particles have a finite size and thus, in contrast to massless
tracer particles, they are affected by inertia and gravity. Today’s most
accepted form of the equations of motion goes back to the seminal
work of Maxey and Riley [42]. The properties of their model and the
history of its improvements were recently documented by Farazmand
and Haller [20].

Depending on the application, assumptions can be made that simplify
the equations considerably. The majority of the examples in this paper
uses the model described in Crowe et al. [17], i.e., we assume that
particles are very small and that the density of the surrounding air is
far smaller than the density of the particles. The model assumes one-
way coupling, i.e., particles have no influence on the underlying flow.
Also, particle-particle interactions are neglected. These assumptions
are common in practice [7,10,15,37,48,52,67] and lead to a simplified
set of equations of motion, as described next.

2.1.1 Inertial Phase Spaces
Under the aforementioned assumptions, Günther and Theisel [25, 26]
described the trajectories of inertial particles as tangent curves of a high-
dimensional phase space p̂, which models both the rate of change of
particle position x and particle velocity v. For an unsteady underlying
flow u(x, t) in n-D with n ∈ {2,3}, the autonomous governing m-D
vector field, with m = 2n+1, becomes:

p̂ =
d
dt

x
v
t

=

 v
u(x, t)−v

r +g
1

 with

x
v
t

(0) =

x0
v0
t0

 (1)

where g is a gravity vector (if not mentioned otherwise we set g = 0),
and x0, v0 and t0 are the initial particle position, velocity and time.
Response time r is defined by particle diameter dp and particle density
ρp, as well as the viscosity µ of the surrounding air:

r =
d2

p ρp

18 µ
> 0 (2)

Throughout the paper, we set as particle density ρp the density of dry
sand, i.e., ρp = 1600kg/m3. The diameter dp was set between 200 µm
and 500 µm. The surrounding medium was assumed to be air, thus the
viscosity was set to µ = 1.532·10−5 kg/(m·s). Given these parameters,
r is in our experiments in the range r ∈ [0.232, 1.450].

Another common model explicitly incorporates the density ratio R
between inertial particles and the surrounding medium, which allows
to include buoyancy effects [31], i.e., it allows to distinguish between
aerosols (R < 2/3), neutrally buoyant particles (R = 2/3) and bubbles
(R > 2/3). Expressed as an autonomous ODE we get:

p̂ =
d
dt

x
v
t

=

 v
R
St (u(x, t)−v)+ 3R

2
Du(x, t)

Dt +(1− 3R
2 )g

1

 (3)

with St being the Stokes number (St→ 0 for massless particles) and

Du(x, t)
Dt

= ∇u ·u+ut , R =
2ρ f

ρ f +2ρp
. (4)

Here, ρp and ρ f denote the density of a particle and the fluid, respec-
tively. Variants of this phase space have been used in [2, 9, 66, 71],
where gravity-free and/or neutrally buoyant particles were assumed.

While the majority of the examples in this paper uses Eq. (1), our
generalization of the influence curve concept is independent of the
underlying spatio-velocity phase space, i.e., the phase space can be
substituted by a different model, which we demonstrate in Section 5.2.

2.1.2 Inertial Flow Maps and their Derivatives
The motion of inertial particles is governed by an ODE, such as Eq. (1)
or Eq. (3). The flow map is a shortened notation, which maps a particle
seeded at (x,v, t) to its destination after pathline integration for duration
τ . Following [28], we consider the m-D flow map of phase space p̂ as

φ̂(x,v, t,τ) =

φ(x,v, t,τ)
ψ(x,v, t,τ)

t + τ

 (5)

where φ denotes the location and ψ the velocity of an inertial particle
after integration duration τ when starting the integration at location x
at time t with initial velocity v. Later, we require flow map derivatives
of the inertial phase space. The gradient of φ̂ is an m×m matrix

∇φ̂(x,v, t,τ) =

φx(x,v, t,τ) φv(x,v, t,τ) φt(x,v, t,τ)
ψx(x,v, t,τ) ψv(x,v, t,τ) ψt(x,v, t,τ)

0T
n 0T

n 1

 (6)

where φx, φv, ψx, ψv are n×n matrices describing the partial derivatives
of φ̂ with respect to x, v, and φt , ψt being the start time partials.

2.2 Finite-Time Lyapunov Exponents
Lagrangian coherent structures are an established tool for the anal-
ysis of unsteady flows [30]. A frequently employed indicator for
hyperbolic LCS is the finite-time Lyapunov exponent (FTLE) [60],
which we formally introduce in the following for traditional tracer
particles. Given is an unsteady vector field u(x, t). The flow map
φ τ

t (x) = φ(x, t,τ) maps a particle seeded at (x, t) to its destination
after pathline integration for duration τ . The (spatial) gradient of the
flow map ∇φ(x, t,τ) = ∂

∂x φ(x, t,τ) describes the behavior of particles
released close to each other. Hyperbolic LCS are defined as material
surfaces that are locally separating the strongest, thus we are interested
in the separation behavior of the nearby released particles, which is
characterized by the right Cauchy-Green deformation tensor ∇T∇. Its
largest real eigenvalue λmax denotes the (squared) largest magnitude of
separation. Accounting for the exponential growth and normalizing by
duration τ yields the finite-time Lyapunov exponent (FTLE) [29, 32]:

FTLE(x, t,τ) =
1
|τ|

ln
√

λmax(∇T∇), (7)

In the literature, a variety of alternative LCS extraction techniques
can be found (see [45] and [30] for an overview) that typically exploit
differential properties of the flow map and/or Lagrangian properties of
the flow around tracer trajectories. Haller and Yuan [29, 32] proposed
to release particles from a discrete grid and to compute the flow map
gradient by finite differences of the reached particle destinations. This
is the approach we used. The flow visualization community proposed
alternative methods, such as localized FTLE [34], streak surface-based
extraction [69] and timeline tracking [35]. A benchmark comparison
of further computation methods was compiled by Kuhn et al. [36].

A number of acceleration strategies have been proposed to deliver
faster FTLE computations, such as adaptive refinement of the flow map
by Catmull-Rom interpolation [22], by the observation of filtered height
ridges [56] or around automatically detected geometric structures [4].
Further, higher order flow map approximation [70], grid advection [57]
and timeline refinement [35] schemes have been proposed. Generally, a
number of integral curve approximation methods are available, such as
hierarchical lines [33], interpolation [1, 16] and edge maps [11], which
can all be applied to accelerate the pathline integration. For interac-
tive 3D FTLE visualizations, Barakat et al. [3] proposed a technique
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that interleaves computation and rendering passes to view-dependently
sample an adaptive hierarchical FTLE field representation. Recently,
Machado et al. [39] extended streak-based topology to space-time bi-
furcation lines, which enables LCS extraction without FTLE. Günther
et al. [24] applied unbiased free path sampling to generate high quality
(ground truth) FTLE visualizations that are free of grid discretization
and ray marching artifacts, though at higher computation cost.

2.3 Inertial Particles in Visualization
The analysis of inertial particle dynamics is a relatively young field
in the visualization community. In an early work, Roettger et al. [54]
determined the soiling of cars by visualizing particle concentrations
via heat maps on the car surfaces. Günther et al. [23] simulated sand
particle motion around a helicopter in slow forward flight close to
a sediment bed. Using a flow map description, they defined inertial
integral curves independent of the underlying equations of motion.
Günther and Theisel [25] extracted Galilean-invariant vortex cores of
swirling inertial particles by extending traditional vortex extractors that
were originally devised for tracer particles to the m-D vector field in
Eq. (1). Eventually, they reduced vortex extraction to an n-D parallel
vectors problem. Later, they visualized the separation behavior of
inertial particles that differ slightly in size [26]. For this, they defined
a Lagrangian (i.e., integration-based) separation measure in the spirit
of FTLE, but instead of a spatial flow map gradient, they consider the
response time partial. Later in Section 5.3, we compute this measure in
backward time. More recently, Günther and Theisel [27] conducted a
full classification of the first-order critical points of the phase space p̂ in
Eq. (1) for the 2D steady case. They also proposed an interactive glyph
visualization that depicts the asymptotic behavior of inertial particles
for varying initial positions and/or velocities.

Hyperbolic inertial Lagrangian coherent structures (ILCS) have been
identified in [59] and [46] as ridges of a forward FTLE computation
based on the trajectories of inertial particles. Raben et al. [51] computed
FTLE for both tracer particles and inertial particles from experimental
trajectories. Inertial FTLE was not only calculated based on spatial
separation, but also on the separation in the spatio-velocity domain [21].
Sudharsan et al. [66] studied inertial forward FTLE for varying Stokes
numbers St and density ratios R and indicated that forward IFTLE
can serve as indicator for particle mixing (the fewer ridges, the better
the mixing). They also studied the behavior of inertial particles in
the context of massless tracer FTLE in backward time. They found
that backward tracer FTLE ridges correlate with high aerosol parti-
cle concentration, whereas backward tracer FTLE valleys correspond
to high bubble concentration. As we will show, the correspondence
with tracer FTLE only holds for very light particles. We argue that a
better correlation with preferential particle settling is found by LCS
calculations based on backward trajectories of inertial particles. Direct
inertial backward integration, however, is problematic in practice, as we
review in the next section. A contribution of our paper is to study the
preferential particle settling in the context of inertial backward FTLE,
by applying and generalizing the recent influence curve concept.

2.4 Inertial Backward Integration
During forward integration, inertial particles tend to cluster. Formally,
they are attracted by manifolds in the spatio-velocity domain [31, 43].
Consequentially, a backward integration always has repelling behav-
ior [27], which was illustrated in [28]. Haller and Sapsis [31] proposed
the inertial equation, which is an ODE that allows to move on the
attracting manifold in both forward and backward direction. However,
their method cannot recover the initial velocity of a particle, and for
larger particles, instabilities occur [59] that drive inertial particles away
from the attracting manifold on which their method is valid. For their
particle model, Sapsis and Haller [59] derived a threshold that character-
izes when this happens, which they applied in [58]. In order to be able
to calculate (approximating) backward inertial FTLE (attracting ILCS),
Sapsis et al. [58] calculated ILCS in the context of jellyfish feeding,
based on trajectories of the inertial equation. The inertial equation is an
approximation. For neutrally buoyant particles in gravity-free environ-
ments, a leading-order approximation is simply the underlying vector

t

x

y

influence curve

inertial pathlines

x
(c(x,τ), v0, t0)

(φ τ
t0(c(x,τ), v0), ψτ

t0(c(x,τ), v0), t0 + τ)
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Fig. 2: Illustration of influence curve concept. The influence curve is the
union of all spatial locations from which an inertial pathline integration
(with initial velocity v0 and start time t0) for duration τ reaches the
observation point x (constant vertical line) at time t0 + τ . Note that
the influence curve is computed per observation point x and that it is
parameterized by the integration duration τ with which the returning
inertial pathline is released from curve point c(x, τ). For massless
particles, this illustration depicts a backward integrated streakline.

field u(x, t), i.e., backward integration simply follows tracer particle
trajectories. These trajectories have been shown to be not applicable to
extract topological structures such as separatrices of inertial flow [27].

While direct backward integration of an inertial pathline is highly
problematic, Günther and Theisel [28] proposed an alternative solution
to integrate backward to a certain point in time. Instead of following an
inertial pathline, they integrate influence curves, which are the inertial
equivalent to a type of backward-integrated streakline. Influence curves
can be computed as tangent curves of a derived vector field that is based
on forward integrated flow map gradients only. In [28], these curves
were defined for the phase space in Eq. (1). In the following section, we
describe a generalization of the influence curve concept, which enables
inertial backward integration in other phase spaces.

3 GENERALIZED INFLUENCE CURVES

Günther and Theisel [28] introduced the influence curve of an obser-
vation point x as a curve containing all points from which inertial
integration with initial velocity v0 and start time t0 ends in x after a cer-
tain integration duration τ . See Fig. 2 for an illustration. All influence
curves can be defined as a family of parametric curves c(x,τ) so that

φ(c(x,τ),v0, t0,τ) = x (8)

for all x, curve parameterization τ and the family parameters v0, t0.
The family of all influence curves can be characterized as pathlines

of an n-dimensional unsteady vector field h(x, t), starting at t = t0:

d c
d τ

= h(c(x,τ), t0 + τ). (9)

For a certain phase space p̂ = (px, pv, 1)T in which particle trajectories
arise as tangent curves, vector field h has a simple form:

h(x, t) =− φx
−1
[

φv pv(x, v0, t0)+φt

]
−px(x, v0, t0) (10)

where φx = φx(x,v0, t0, t − t0), φv = φv(x,v0, t0, t − t0) and φt =
φt(x,v0, t0, t − t0) are inertial flow map derivatives that can be com-
puted by forward integration, cf. Eq. (6). The expressions px and
pv denote the spatial and velocity subspace of the underlying phase
space, respectively, in which inertial particle trajectories arise as tan-
gent curves. With this, influence curves can be extracted via pathline
integration in h. The derivation of h follows an idea similar to the
streakline vector field of Weinkauf and Theisel [72]. Given a point on
the influence curve, h points in the direction, from where an inertial
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Fig. 3: Illustration of inertial particle settling (left) and inertial backward FTLE by the help of influence curves (right).

pathline will reach the observation as well, with the integration taking
a little bit longer. The full derivation is in the appendix of [28].

Günther and Theisel [28] did not give the general form in Eq. (10),
but inserted the phase space of Eq. (1) directly:

h(x, t) =− φx
−1
[

φv

(
u(x, t0)−v0

r
+g
)
+φt

]
−v0 (11)

Later in Section 5.2, we will compute influence curves in the phase
space from Eq. (3). The corresponding influence curve vector field is:

h(x, t) =− φx
−1
[

φv

(
R
St
(u(x, t0)−v0)

+
3R
2

Du(x, t0)
Dt

+(1− 3R
2
)g
)
+φt

]
−v0 (12)

In the following, we compute inertial backward FTLE in the influence
curve vector field h(x, t).

4 INERTIAL BACKWARD FTLE AND PREFERENTIAL PARTICLE
SETTLING

A central contribution of this paper is the insight that the preferen-
tial particle settling of inertial particles correlates with FTLE on the
vector field h(x, t). Fig. 3 illustrates this correlation. Preferential
particle settling is determined by releasing a large number of uniformly-
distributed particles at time t0 with a certain initial velocity v0, and
observing where these particles arrive at time t0 + τ . Then, the prefer-
ential settling is visualized by a particle density estimate, which reveals
attracting structures. See Fig. 3 (left) for an illustration. The actual
number of emitted particles is reported later in the individual result
figures. Their transfer functions depict the particle density per unit area.
In preferential particle settling, the initial velocity v0 is prescribed at
time t0 and is the same for all released inertial particles. Note that only
inertial forward integration is involved in the computation.

Similarly, we would like to determine this attracting behavior by
means of backward LCS, i.e., we intend to calculate inertial backward
FTLE (IFTLE). As illustrated in Fig. 3 (right), we would like to com-
pute IFTLE by taking finite differences of the reached location after
inertial backward integration. But, not only is a direct inertial backward
integration numerically infeasible [27, 28, 31, 66], we do not even know
the velocity ψi with i ∈ {0,1,2,3} with which the inertial backward
integration would have to start from the observation φi. To obtain the
same trajectories that were used in the preferential particle settling, we
need to find trajectories that start with a known initial velocity v0 at
time t0 and lead to the respective observations φi at time t0 + τ .

Using influence curves, we can recover where particles that where
observed at time t0 + τ came from, when released with a particular ini-
tial velocity v0 at time t0. Thus, we integrate influence curves in h(x, t)
from φi to determine the sources xi. (The velocity ψi at the observation
φi could now be determined by an inertial pathline integration from
xi, since the trajectory will reach φi.) Since the xi are the (theoretical)

end points of an inertial backward integration from φi with velocity ψi,
and are at the same time the end points of the influence curves, we can
calculate backward IFTLE directly on the vector field h(x, t), in which
the influence curves appear as tangent curves. Fig. 1 gives an example
for inertial backward FTLE by the use of influence curves in the vector
field h(x, t) of Eq. (11). The ridges in the fields coincide and are in
better agreement than the previously used backward FTLE on tracer
particles [66], since the previous approach neglected inertia effects.

5 RESULTS AND DISCUSSION

In the following section, we present correlation results between inertial
backward FTLE and preferential particle settling in five 2D and one
3D unsteady flow for the phase space in Eq. (1). Afterwards, we
apply the phase space in Eq. (3) and demonstrate the computation
of massless streaklines by the use of the influence curve framework.
After demonstrating the applicability to other Lagrangian measures, we
discuss the implementation and performance of our system. We close
the section with a discussion of current limitations.

5.1 Inertial Backward FTLE

The results in this section are computed in the influence curve vector
field in Eq. (11), i.e., they are based on the particle model in Eq. (1), as
described by Crowe et al. [17].

5.1.1 Double Gyre

The DOUBLE GYRE [60] is a periodic 2D unsteady vector field that
is commonly used as a benchmark for FTLE computations and was
also used as primary example of inertial particle studies in the CFD
literature [66]. In this paper, we define it in the temporal-periodic
domain D×T = [0, 2]× [0, 1]× [0, 10] and use the parameterization

u(x, y, t) =
(

−0.1π sin( f (x, t)π) cos(yπ)

0.1π cos( f (x, t)π) sin(yπ) d
dx f (x, t)

)
(13)

with f (x, t) = a(t)x2 + b(t)x and a(t) = 0.25sin(t π/5) and b(t) =
1− 0.5sin(t π/5). Fig. 1 shows that FTLE on the influence curve
vector field is in better agreement with the preferential particle settling
than backward FTLE on tracer particles. Generally, we observe that
inertial backward FTLE contains less ridge structures than FTLE on
tracer particles, due to the inherent smoothing and damping by inertia.
See the video for further results with varying particle sizes dp.

5.1.2 Forced-Damped Duffing Oscillator

The FORCED-DAMPED DUFFING oscillator is a dynamical system that
exhibits chaotic behavior. It has previously been used as a synthetic
testing ground for observations of inertial particles [26]. The system
can be described and visualized as unsteady 2D vector field of the form:

u(x, y, t) =
(

y
x− x3−0.25y+0.4 cos t

)
(14)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVCG.2016.2599016

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



−0.2 1.3

IFTLE

0 9.38×106

Settling (2.5×108 particles)

0.2 1.5

FTLE

Fig. 4: Inertial backward FTLE (left, our method) and the preferential particle settling (center) correlate, whereas backward FTLE on tracer
particles (right) contains not only more ridges (winding around the main structure), but the ridges are also deformed. Here, shown in the
FORCED-DAMPED DUFFING, using Eq. (1) for dp = 200 µm, start time t0 = 0 and integration duration τ = 7.
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IFTLE
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Settling (2.5×108 particles)

Fig. 5: Changing the initial velocity v0 has no effect on the attracting
structures. Particle concentrations might change, depending on the
seeding locations, but the overall attractors remain the same. In this
example, we set v0 = (1,0)T, dp = 200 µm, t0 = 0 and τ = 5.

here, in the spatial domain D = [−2, 2]2. Fig. 4 depicts the flow for
zero initial velocity and in a gravity-free environment. Evidently, the
locations of IFTLE and FTLE ridges differ. In fact, in an animation over
the response time, ridges “move” as shown in [26] for inertial forward
FTLE. In this example here, backward tracer FTLE contains several
more ridge structures that are winding around the central structure in
the oscillator. As demonstrated, inertial backward FTLE correlates
better with preferential particle settling.

In Fig. 5, we varied the initial velocity v0 of the inertial particles.
Note that changing the initial velocity has no effect on the underlying
phase space. Thus, it does not affect the attracting structures that inertial
particles are drawn too. In fact, for sufficiently long integration time,
the initial velocity has only little impact and particles cluster on the
same structures, regardless of their initial velocities. Of course, the
distributions might change, depending on the seeding locations, but the
attractors are nevertheless the same.

Adding gravity, however, as in Fig. 6 does have an effect on the
underlying phase space, as gravity is explicitly part of it. Thus, here,
the structures in the preferential particle settling change and are also
observed in the inertial backward FTLE field. Note that FTLE on tracer
particles (see later Fig. 11 (right)) does not model gravity and would
thus produce the same result for the settings in Figs. 5 and 6.

5.1.3 Square Cylinder Flow

The SQUARE CYLINDER flow [14] is a Navier-Stokes simulation of the
3D time-dependent flow around an obstacle. The uniformly resampled
version of this vector field sequence was provided by Tino Weinkauf.
Fig. 7 shows results of our inertial backward FTLE computation for
the central 2D slice. Inertial particle dynamics are not bound by incom-
pressibility and thus the largest eigenvalue of the Cauchy Green tensor

−0.2 1.3

IFTLE

0 9.38×106

Settling (2.5×108 particles)

Fig. 6: Setting gravity to g = (0,−1)T changes the shape of the inertial
particle attractor. Here, for dp = 200 µm, t0 = 0 and τ = 5. See Fig. 5
for the same setting without gravity.

might become smaller than one, which results in a negative FTLE value.
This can be seen at the vortex centers of the von Kármán vortex street.
Due to inertia the particles are pushed away from the vortex cores and
they cluster on the interfaces between the vortices. Backward FTLE
on tracer particles, on the other hand, does not model these effects and
suggests an increased particle concentration inside the vortices, which
is incorrect.

5.1.4 Boussinesq Flow
The BOUSSINESQ flow is a 2D unsteady flow that was provided by
Tino Weinkauf. The simulation is based on Gerris Flow solver [50]
and uses the Boussinesq approximation to generate the turbulent vortex
behavior. The domain contains a convection that develops around a
heated cylinder. As shown in Fig. 8, this flow contains more vortices
than the previous SQUARE CYLINDER flow, and therefore serves as
more turbulent test case. The blocky grid artifacts were already present
in the velocity data and stem from the adaptive simulation grid.

5.1.5 Helicopter in Forward Flight
The stirring of sand during helicopter takeoff and landing is under
frequent investigation in the CFD community [37, 61, 67]. We use a
validated airflow simulation [38] of a helicopter in slow forward flight
close to the ground, which is courtesy of the aerodynamics group at
Stuttgart University. This 3D data set was previously used in [23] in
the context of inertial integral geometry. In Fig. 9, we examine a 2D
slice of the domain in front of the helicopter. Of main interest is the
vortex on the ground that is pushed forward by the helicopter, as it
stirs up sand particles that enter the rotor disk, are convected with high
speeds downward, and dislodge further sand particles when they hit
the sediment bed. This chain reaction is called brown-out and leads
to dangerous view limitations for the pilot. Inertial FTLE and particle
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0 0.8
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0 0.8

FTLE

Fig. 7: Inertial backward FTLE (left, our method) and the preferential particle settling (center) reveal identical ridge structures. Backward FTLE
on tracer particles (right) on the other hand, mistakenly indicates a presence of fine ridges inside the vortices. Here, shown in the SQUARE
CYLINDER flow, using Eq. (1) for dp = 500 µm, start time t0 = 100 and integration duration τ = 5.

0 2.5

IFTLE

0 2.34×108

Settling (2.7×108 part.)

0 3

FTLE

Fig. 8: Inertial backward FTLE (left, our method) and the preferential
particle settling (center) not only correlate, but contain far less ridge
structures than backward FTLE on tracer particles (right). Here, shown
in the BOUSSINESQ flow, using Eq. (1) for dp = 200 µm, start time
t0 = 5 and integration duration τ = 0.7.

0 10

IFTLE

4.2×108 1.7×109

Settling (1.2×108 part.)

0 30

FTLE

Fig. 9: Heavy particles in the HELICOPTER flow. A vortex forms at
the tip of the rotor blade (black), trapping particles. Below is the main
vortex. Here, using Eq. (1) for dp = 500 µm, duration τ = 0.15.

settling show the uplift path and a potential particle trapping at the tip
vortex at the blade. The dynamics of massless particles differ strongly.

5.1.6 Arnold-Beltrami-Childress Flow
Our approach naturally extends to the 3D case. In the next experiment,
we used the following parameterization of the 3D unsteady Arnold-
Beltrami-Childress (ABC) flow:

u(x, y, z, t) =

a(t) sin(z)+ c cos(y)
b sin(x)+a(t) cos(z)

c sin(y)+b cos(x)

 (15)

with a(t) =
√

3+(1− e−0.1t)sin(2πt), b =
√

2 and c = 1. The flow is
defined in the domain D×T = [0, 2π]3× [0, 2]. In this flow, inertial
particles cluster very quickly onto thin structures, thus we compare our

inertial backward FTLE with the preferential particle settling after inte-
gration duration τ = 1.5 in Fig. 10. Backward FTLE on tracer particles,
however, does not contain such thin structures, and the individual struc-
tures are not as connected as in the preferential particle settling. The
parts of the structures that are visible, however, are close to the correct
location. We used the visualization software Amira [64] to prepare the
volume renderings. The employed resolution under-sampled the ridges,
causing aliasing and stair case artifacts in Figs. 10 (a) and (b). A higher
resolution would help, but would also increase the computation time.

5.2 Experiments in Other Phase Spaces
The generalization of the influence curve concept in Eq. (10) allows to
compute influence curves in arbitrary spatio-velocity phase spaces. In
the following, we use as phase space the equation of motion in Eq. (3).
Afterwards, we apply the spatio-velocity phase space of a massless
tracer particle, demonstrating the relation to massless flows.

5.2.1 Usage in More General Equations of Motion
The phase space in Eq. (3), as for instance used by Haller and Sap-
sis [31], describes inertial particle motion and thereby allows to specify
a density ratio R between the particles and the surrounding medium,
which enables buoyancy effects. In Fig. 11, we computed inertial back-
ward FTLE based on influence curves defined over this phase space,
i.e., Eq. (12), for aerosols with a small Stokes number. It can be seen
that inertial backward FTLE and the preferential particle concentration
correlate, whereas backward FTLE on tracer particles yields different
structures. Evidently, FTLE on the influence curve field is the quantity
that characterizes the asymptotic inertial particle behavior better. Upon
experimenting with this particle model, however, we noticed numerical
difficulties when increasing either the Stokes number or the density
ratio. The computation of influence curves is integration-based and
therefore subject to accumulating numerical errors. Numerical accuracy
is an important topic for this work to which we devote Section 5.4.

5.2.2 Streakline Vector Field
Günther and Theisel gave the analogy that influence curves relate in the
massless case to backward-integrated streaklines [28]. Thus, setting as
phase space the tangent space of tracer particles (in the spatio-velocity
domain) directly yields streaklines as tangent curves. Since influence
curves evolve backward in time, we reverse the flow at time t0 as
ũ(x, t) =−u(x, t0− (t− t0)) to eventually compute massless forward-
integrated streaklines as influence curves in the phase space:

p̂ =
d
dt

x
v
t

=

ũ(x, t)
ã(x, t)

1

 (16)

with ã(x, t) = ∇ũ · ũ+ ũt being the acceleration in the reversed flow.
Inserting the tracer phase space in Eq. (16) into the influence curve

vector field in Eq. (10) yields

h(x, t) =− φx
−1
[

φv ã(x, t0)+φt

]
− ũ(x, t0) . (17)
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Fig. 10: A 3D example in the ABC flow. The ridges of inertial backward FTLE (left, our method) and the preferential particle settling (center)
correlate, whereas backward FTLE on tracer particles (right) has less sharp structures that remain partially unconnected. Here, using Eq. (1) for
dp = 250 µm, start time t0 = 0 and integration duration τ = 1.5.

0 1.3

IFTLE
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FTLE

Fig. 11: Inertial backward FTLE (left, our method) and the preferential particle settling (center) are in agreement, whereas backward FTLE on
tracer particles (right) differs visibly. Here, shown in the FORCED-DAMPED DUFFING, using Eq. (3) for density ratio R = 0.1 (aerosol), Stokes
number St = 0.01, start time t0 = 0 and integration duration τ = 5.

Since the tracer phase space in Eq. (16) is independent of the current
velocity state v, the flow map derivative with respect to the velocity
state is φv = 0n×n. Hence, Eq. (17) simplifies to

h(x, t) =− φx
−1

φt − ũ(x, t0) . (18)

That is, the acceleration ã(x, t) must not be evaluated as it vanishes.
Fig. 12 gives an example of streaklines obtained with Eq. (18). Here,

streaklines were released in the SQUARE CYLINDER flow. The top
halve of the image shows streaklines computed as tangent curves of the
influence curve vector field h(x, t) in Eq. (18), based on the tracer phase
space in Eq. (16). The bottom halve shows ground truth streaklines
computed from a fine temporally-resolved release of tracer particles
from the seed points.

A few years ago, Weinkauf and Theisel [72] have shown that streak-
lines can be computed as tangent curves of a derived vector field w. In-
stead of defining a negated vector field ũ they used backward-integrated
flow maps in u, which we denote as φ̃ :

w = φ̃
−1
x · φ̃t +u(x, t0) . (19)

Note that backward integration (rather than reversing the flow) flips
the sign of the temporal derivative of the flow map φ̃t = −φt and
that u(x, t0) = −ũ(x, t0). Hence, Eq. (18) can be directly turned into
Eq. (19). In retrospect, the fact that streakline vector fields [72] and

ground truth

influence curves

Fig. 12: Streaklines as tangent curves of the influence curve vector field,
defined on a tracer phase space (top), and as a ground truth computed
by traditional particle advection (bottom), with t0 = 75 and τ = 40.

influence curve vector fields [28] turn out to relate to each other is not
surprising, since their respective construction followed a similar path.

5.3 Experiments with Other Lagrangian Measures
In the following, we demonstrate that influence curves are even more
versatile and can also be used to compute other inertial Lagrangian
measures in backward time. We will focus on the two Lagrangian
measures: finite-time mass separation (FTMS) [26] and accumulated
curvature. For both, we use influence curves in h(x, t) from Eq. (11).

5.3.1 Finite-Time Mass Separation
Finite-time mass separation is a scalar field that was proposed by
Günther and Theisel [26] in forward time. It is used to study the
separation of inertial particles that were released from the same location,
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Fig. 13: Other Lagrangian measures in backward time: finite-time mass
separation (FTMS) [26] (left) and accumulated curvature (right) in the
SQUARE CYLINDER flow with dp = 500 µm, t0 = 100 and τ = 5.

but with slightly different mass. The measure computes the response
time partial of the inertial flow map and normalizes it in the spirit of
FTLE (accounting for logarithmic growth and integration duration):

FTMS(x, v0, t, τ, r) =
1
|τ|

ln
∥∥∥∥dφ(x, v0, t, τ, r)

dr

∥∥∥∥ . (20)

While in the previous inertial flow map definition of Section 2.1.2, the
response time r was neglected for brevity, we explicitly write it here
as a parameter of the inertial flow map in order to formally define its
derivative. An example of the FTMS field is shown in Fig. 13 (left).
Forward FTMS calculates the rate at which differently-sized inertial
particles separate. Backward FTMS on the other hand characterizes
how fast differently-sized inertial particles are attracted toward the
same structure. This is interesting, since attractors of inertial particles
are usually dependent on the response time, yet we can see that in some
areas attractors correlate. We believe that studying the reasons for these
correlations could be an interesting topic for future work.

5.3.2 Accumulated Curvature of Influence Curves
In the following, we depict the accumulated curvature of the influence
curves c(x, t). We consider only the 2D case for which the signed
curvature of the influence curve is defined as

κ(x, t) =
det
[

h(c(x, t), t0 + t), dh(c(x, t), t0+t)
dt

]
‖h(c(x, t), t0 + t)‖3 . (21)

The numerator computes the determinant of a 2×2 matrix containing
in the columns the first and second order time partials of the curve,
i.e., the influence curve vector field h itself and its temporal derivative.
In 3D, curvature can be defined similarly, though without sign. The
accumulated curvature K(x, t) becomes:

K(x, t) =
∫ t

0
κ(x,s) ds (22)

Fig. 13 (right) gives an example. In the SQUARE CYLINDER flow,
streaklines work very well in the massless case to reveal the von Kármán
vortex street (see Fig. 12), as the curves themselves and their geometric
properties align with the vortex structures. In the inertial case, we
use the equivalent to streaklines, i.e., we visualize the accumulated
curvature of an influence curve at its seed point. The vortices are
revealed and the bending direction of the influence curves (left or right)
becomes apparent by the sign.

5.4 Implementation and Performance
For all measurements throughout the paper, we used an Intel Core
i7-2600K CPU with 3.4 GHz. Table 1 reports the computation time,
image resolutions and average residual errors for the data sets shown
throughout the paper. The FORCED-DAMPED DUFFING in Fig. 11 was
computed faster than in Fig. 4 due to shorter integration time τ .

Günther and Theisel [28] have shown that the influence curve vector
field might exhibit strong variations in its magnitude and that thus an
adaptive numerical integration is mandatory. Similar to them, we used
the Runge-Kutta-Fehlberg (RK45) method. Since inertial particles that
were released from an influence curve should reach the observation

Data set Figure Resolution Time Residual
DOUBLE GYRE Fig. 1 800×400 5.3 2.1 ×10−7

FORCED DUFFING Fig. 4 250×250 4.2 5.0 ×10−8

SQUARE CYLINDER Fig. 7 300×200 1.4 1.7 ×10−7

BOUSSINESQ Fig. 8 300×900 1.2 2.0 ×10−10

HELICOPTER Fig. 9 150×180 0.2 1.0 ×10−10

ABC Fig. 10 200×200×200 7.8 3.0 ×10−10

FORCED DUFFING Fig. 11 250×250 1.2 1.5 ×10−8

Table 1: Total extraction time (in hours) of influence curves in the
shown figures, the used grid resolutions and the average residual error.

Residual (/w Newton)

0 10−5

Residual (/wo Newton)

Fig. 14: Error plots for the influence curve computation with and with-
out subsequent Newton iterations for refinement in the DOUBLE GYRE
with dp = 200 µm, t0 = 0 and τ = 9. Visually, both corresponding
IFTLE visualizations look similar to Fig. 1.

exactly, Newton iterations can be applied to further minimize the devia-
tion [28]. Adaptive integrators require a user-specified error tolerance
to be set, which guides the adjustment of the step size. Thereby, a
trade-off is made between accuracy and speed.

Since integration in h(x, t) becomes numerically more difficult with
increasing integration duration τ [28], the setting of the error tolerance
is dependent on τ . To determine the error tolerance automatically,
we use an iterative adjustment. We start with a high error tolerance,
meaning that the adaptive RK45 integrator does not decrease step
sizes too strongly. If the total accumulated error cannot be removed
by subsequent Newton iterations, we restart the experiment with a
lower error tolerance (reduced by factor 1/10), until the residual error
is sufficiently small (< 10−7) or a maximum number of attempts is
reached. Table 2 lists performance statistics of this procedure in the
DOUBLE GYRE for varying τ . In particular, we list the average time
an influence curve integration takes dependent on the required number
of adjustment iterations (attempts). Further, we list the percentage of
influence curves that were computed with the respective number of
adjustment iterations. It can be seen that the computation time grows
quickly with increasing τ . More importantly, for higher τ the number of
adjustment iterations increases. Evidently, the numerical computation
becomes more involved. In fact, the residual error cannot be reduced
below the threshold for all influence curves when using only 4 attempts,
which can be seen by the increasing number of curves reaching the
last attempt, and by the growing average residual, which exceeds the
desired threshold of 10−7. Nevertheless, in this experiment, the residual
errors stayed for all integration durations below 10−5.

The adaptive adjustment of the error tolerance generates an overhead.
If the optimal error tolerance is known a-priori and used instead, the
computation time in the DOUBLE GYRE can be reduced to about 76%.
In the other data sets, the overhead was much smaller, since the majority
of the curves could be computed in earlier attempts.

Fig. 14 depicts the impact of the subsequent Newton iterations. Not
only does the refinement reduce the residual error, it also accelerates
the computation since early attempts with a too coarse error tolerance
might be correctable, hence avoiding a restart of the influence curve
integration with a lower error tolerance. In the DOUBLE GYRE example
with a resolution of 200× 100, the computation time is reduced by
Newton iterations from 83min to 34min.

5.5 Limitations
Influence curves are described as tangent curves, and thus they are
subject to accumulating numerical errors. We approached this prob-
lem with an adaptive integrator and an iterative reduction of its error
tolerance. Decreasing the error tolerance and step sizes increases the
computation time significantly and thus becomes quickly infeasible for
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duration 1 iteration 2 iterations 3 iterations 4 iterations total residual
τ avg. time done (%) avg. time done (%) avg. time done (%) avg. time done (%) time avg. error
1 3.46 88.8 9.01 9.2 15.38 1.3 25.12 0.7 3.2 sec 0.94×10−7

2 10.26 80.6 20.99 12.9 49.1 2.6 105.99 3.9 10.8 sec 0.95×10−7

4 33.41 68.8 119.98 16.2 189.81 5.6 289.09 9.4 50.8 sec 1.08×10−7

6 81.04 59.4 184.36 21.9 366.53 9.2 737.28 9.5 2.00 min 1.06×10−7

8 185.79 59.2 372.85 15.5 632.25 8.5 1,164.96 16.8 4.36 min 1.33×10−7

10 304.03 46.1 575.35 24.9 1,079.38 11.1 2,016.48 17.9 7.96 min 1.32×10−7

12 411.38 36.5 1,111.53 24.1 1,960.18 11.1 5,812.99 28.3 24.07 min 2.41×10−7

Table 2: Timings of the numerical influence curve integration for varying durations τ in the DOUBLE GYRE at 100×50 pixels with dp = 200 µm
and t0 = 0. Our method iteratively decreases the error tolerance until a solution with sufficiently small error is found. Here, the average influence
curve computation time (in msec) is listed for the respective number of iterations they required, along with the number of influence curves in each
category (in %). The last two columns list the total time required to compute an influence curve for every pixel as well as average residual errors.

0.0 0.45

IFTLE

0 10−3

Residual Error

Fig. 15: For τ = 14 with insufficiently small step size, the residual error
of the influence curves is quite high. For several pixels the residual
cannot be removed with subsequent Newton iterations, thus the IFTLE
image contains visible artifacts. Here, with dp = 200 µm and t0 = 0.

higher integration durations τ . Due to numerical limits, it might not
even be possible to reduce the residual error below a desired threshold
for high τ , which is a general limitation of influence curves. Hence, we
focused on moderate integration durations. Increasing integration dura-
tions further, or experimenting in Eq. 12 with higher density ratios R or
Stokes numbers St led to numerical issues that could not be eliminated
in feasible computation time. Fig. 15 demonstrates a failure case.

Further, influence curve integration stops at domain boundaries,
even though curves might reenter the domain. We inherit this limitation
from [28], who suggested a search for reentry points for future work.

Due to numerical errors, the extracted influence curves might jitter.
The variation is in the order of the residual, which we set by default to
10−7. Only in Fig. 13, the residual was set to 10−5 to trade quality for
shorter computation time, though this results in visible noise artifacts.
The theoretically more elegant solution is to recompute with higher
accuracy, though a practical (and most likely faster) solution might be
to remove these artifacts in a post-process, e.g., by enforcing spatial
smoothness on the recovered sources. We would like to investigate
such post-processing in the future.

6 CONCLUSION

In this paper, we generalized the influence curve concept of [28] to
general equations of motion in the spatio-velocity-time domain. Based
on this, we computed the sources of dispersed pollutants that were
advected by the models described in Crowe et al. [17] and Haller and
Sapsis [31]. We applied the concept to extend the recent work of
Sudharsan et al. [66], who studied the relation between preferential
particle settling of inertial particles and backward FTLE on tracer
particles. We have demonstrated that the usage of the (generalized)
influence curve concept to compute inertial backward FTLE (IFTLE)
is in better agreement with preferential particle settling. Further, we
have shown that an influence curve vector field based on a tracer phase
space emits streaklines as tangent curves, which connects to the work
of Weinkauf and Theisel [72]. Our results have revealed that inertial
backward FTLE is the right measure, but that influence curves tend to
numerical difficulties when integrating far backward in time.

In the future, we would like to investigate how this could be stabi-
lized and whether other constructions are possible. In this work, we
have shown the potential of influence curves, including applications to
other Lagrangian measures, such as FTMS and accumulated curvature.
We would like to apply the idea to other backward integration related
approaches that have previously been unavailable for inertial particles.
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and J. Fröhlich, editors, Direct and Large-Eddy Simulation VIII, volume 15
of ERCOFTAC Series, pages 189–194. Springer Netherlands, 2011.
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