
Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

An Approximate Parallel Vectors Operator for Multiple Vector
Fields

Tim Gerrits, Christian Rössl, and Holger Theisel

University of Magdeburg, Visual Computing Group, Germany

Abstract
The Parallel Vectors (PV) Operator extracts the locations of points where two vector fields are parallel. In general, these features
are line structures. The PV operator has been used successfully for a variety of problems, which include finding vortex-core lines
or extremum lines. We present a new generic feature extraction method for multiple 3D vector fields: The Approximate Parallel
Vectors (APV) Operator extracts lines where all fields are approximately parallel. The definition of the APV operator is based
on the application of PV for two vector fields that are derived from the given set of fields. The APV operator enables the direct
visualization of features of vector field ensembles without processing fields individually and without causing visual clutter. We
give a theoretical analysis of the APV operator and demonstrate its utility for a number of ensemble data.

CCS Concepts
•Human-centered computing → Scientific visualization;

1. Introduction

The parallel vectors (PV) operator [PR99] is a concept that enjoys a
high popularity in visualization and other communities because it is
conceptually simple, generic, fast and easily computable, and appli-
cable to a variety of problems. It has been used for the extraction of
vortex core lines, for finding ridge structures, or finding bifurcation
lines in flow fields. The PV operator yields all locations where two
vector fields are parallel. These are structurally stable line structures.
Different types of input vector fields open a variety of applications
for the PV operator.

The application background of our approach are ensemble flow
data sets, i.e., a number of vector fields in a common spatial domain,
all describing the same flow phenomenon with slightly varying
parameters. For this scenario, we search locations of vortex core
lines that simultaneously describe the vortical behavior of all fields
best.

This problem can be solved using one of two general strategies:
either extract vortex core lines for each of the velocity fields along
with a visual representation of the resulting multiple line sets – in-
cluding line bundling, line clustering, or finding best representatives
–, or directly extract line structures that represent the vortices of all
fields best in an approximate sense.

In this paper, we present the – to the best of our knowledge – first
approach using the second strategy. We introduce a new generic
concept called the Approximate Parallel Vectors (APV) Operator
that is applied to an arbitrary number of vector fields. Given n
3D vector fields v1, ...,vn, it is generally not useful to search for

locations where all vectors are parallel. For n > 2, such structures –
if there exist any at all – are structurally unstable: adding noise to the
fields will destroy line structures with all parallel vectors. Instead,
the new operator gives stable line structures at locations where all n
fields are maximally – but generally not perfectly – parallel.

The APV operator is extremely simple in terms of computation:
from the given v1, ...,vn we compute two derived fields a,b and
apply the PV operator to these. Despite its computational simplicity,
the APV operator requires a rigorous mathematical analysis of its
properties to make it applicable.

The paper proceeds as follows: Section 2 summarizes related
work and reviews the PV operator. Section 3 introduces the new
APV operator, Section 4 summarizes its properties. Section 5 ex-
plains the discretization and visualization, and in Section 6, we
demonstrate the application of the APV operator on some test data
sets and show results. Section 7 provides a discussion and compares
to alternative approaches. Section 8 gives limitations and concludes
the paper.

2. Background and Related Work

When working with vector fields, the visualization of extracted
features enables the analysis and deeper understanding of such
fields. Feature extraction has therefore grown to become a major
field of research in scientific visualization. An in-depth discussion
is beyond the scope of this work. We refer to Post et al. [PVH∗03]
for an extended overview. Features can be extracted directly from

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



T. Gerrits, C. Rössl, and H. Theisel / An Approximate Parallel Vectors Operator for Multiple Vector Fields

Figure 1: Left: Eight different members of an ensemble dataset that represents different outcomes of CFD simulations of blood flow though an
aneurysm with varying pressure parameters. Each member is visualized with several streamlines seeded at the flow inlet as well as parallel
vector feature lines calculated from the derived acceleration field. Right: A spaghetti plot visualization of all parallel vectors lines is only of
limited use for insight in the ensemble data.

the given field itself, or they take into account additional derived
information like the acceleration field.

The well-known parallel vectors operator was introduced by
Peikert and Roth [PR99] and is used to find line-type features in
a pair of vector or scalar fields. Features are characterized as loca-
tions where both fields are parallel, i.e., v1 ‖ v2. This concept has
been applied to a wide variety of problems. Roth and Peikert list
several problems, including finding ridge and valley lines [Har83]
or separation lines [Ken98]. A lot of effort has been put into finding
the centers of vortices, or vortex-core lines. Whereas many methods
differ in the extraction of solution points and their connection, most
of them can be reformulated to be the result of the parallel vectors
operator applied to the velocity field and a second, derived field.
Sujudi and Haimes [SH95] look for structures where the velocity
vector is parallel to the acceleration vector v ‖ ∇v v and the Jaco-
bian ∇v has complex eigenvectors. Roth and Peikert [RP98] use
higher-order derivatives to improve results and to find locations
where velocity vectors are parallel to the second order derivatives of
particles v ‖ (∇c)v where c = ∇v v.

A number of works extend and improve the operator. In general,
these approaches can be divided into two stages: first, finding solu-
tion points on a grid, and second, tracing feature lines from these
locations. Banks and Singer [BS95] use a predictor-corrector scheme
that uses pressure information for line tracing, which was later com-
bined with the λ2 method [JH95] by Stegmaier [SRE05]. Theisel et
al. [TSW∗05] show that tracing solution lines from extracted points
or from seed points can be reformulated as a streamline integration
in the feature flow field [TS03, WTVP11]. This flow character-
izes the movement of critical points over time in time-dependent
vector fields. This is extended for higher-order data by Pagot et
al. [POS∗11]. Sukharev et al. [SZP06] define an analytical tangent
instead for tracing solution lines. A generalization of both of these
is used by PVSolve, introduced by Van Gelder and Pang [VP09].

When one is given ensemble data, e.g., as produced by different
Computational Fluid Dynamics (CFD) simulations, it is not only
interesting to get an understanding of each individual field but rather
to gain additional insight in similarities or dissimilarities of all en-
semble members [JDKW15, LGY15, LGY17]. Defining, extracting
and visualizing features of multifield data – either derived from one
field or independent fields – is a challenging task with a variety of
applications as presented by Verma and Pang [VP04]. Features can
either be extracted from each single field or from information given
by a combination of multiple or all fields as discussed by Obermaier
and Peikert [OP14].

Ensembles of curves, like pathlines, that are extracted from each
ensemble member can be collected and visualized collectively: this
is known as spaghetti plots, which typically result in visual clutter
and therefore pose an additional visualization challenge. Techniques
have been developed to cluster curves into similar groups or to
choose lines that are most representative for the whole ensemble.
For example, Guo et al. [GYHZ13] create a variation field that is
filtered for pathlines that best characterize the differences between
different fields. Lui et al. [LGZY16] create a similar variation field,
based on what they call the Longest Common Subsequences of
pathlines. When pathlines pass through a shared location, several
approaches make use of visualization techniques known from statis-
tics. Ferstl et al. [FBW16] cluster such pathlines in major trends and
provide a median as well as a region of confidence. Mirzargar et
al. [MWK14] further summarize trends by introducing curve box-
plots, additionally showing outliers and selected pathline members.
An alternative approach is using features of a single field, which
are then modulated by the additional data, as seen in modulated
streamlines or streamtubes [USM96].

In this paper we focus on extracting one set of line-type features
that take into account the information not only given by all ensemble
members, but also possibly fields derived from each of these. Our
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approach uses the PV operator, and we dedicate the final part of this
section to a brief formal introduction.

The Parallel Vectors operator

Given two vector fields v1(x),v2(x) the parallel vectors opera-
tor [PR99] yields all locations where these fields are parallel, i.e.,

PV(v1,v2) = {x | v1(x) ‖ v2(x)} .

The set PV(v1,v2) generally represents line structures also called
parallel vectors lines.

For v1,v2 ∈ R3, PV can be implemented as finding the roots of
v1(x)× v2(x). For v1,v2 ∈ R2, the cross-product can be replaced
by the determinant of the matrix (v1 |v2).

There are different algorithmic approaches to numerical root find-
ing, the Newton-Raphson method is one of the most well-known.
Their success often depends on an initial guess and the behavior of
the function like multiplicity of roots or crossing zero versus touch-
ing without change of sign. Root finding is a non-trivial numerical
task in general, even if the vector fields are given as polynomials,
i.e., from interpolated data.

The setting is simpler for an appropriate discretization of the
domain: Peikert and Roth [PR99] give an analytic solution for piece-
wise linear vector fields. The domain is partitioned such that parallel
vector locations are searched on triangles. For instance, a bounded
domain Ω⊂R3 is partitioned into tetrahedral pieces, and the search
space is restricted to their triangular faces. Each triangle supports
a linear piece of the vector fields. The restriction to a locally 2-
dimensional search domain yields parallel vectors locations – if any
– as isolated points, which are connected to line features in a post-
process. Within each triangle ∆, solutions PV(v1(x),v2(x))|x∈∆ are
found by solving a (generalized) eigenvalue problem.

3. The Approximate Parallel Vectors operator

Given are n vector fields vi(x) with vi : R3→ R3 and i = 1, . . . ,n.
We assume simultaneous evaluation at the same location x and write
vi for short.

The parallel vectors operator is defined for n = 2: PV(v1,v2)
gives all locations where v1(x) and v2(x) are parallel. These are
typically line structures. For n> 2 distinct fields, e.g., multiple fields
of an ensemble, we would generally expect no such locations or just
isolated points if we require that vi ‖ v j for all i 6= j. The higher n
the “more restrictive” is this condition. Our goal is the construction
of a new operator that

• relaxes the condition and measures if n vector fields are approxi-
mately parallel, and

• does so in a parameter-free way by measuring if two derived fields
are parallel using the parallel vectors operator PV.

We stack all vectors vi as columns in the matrix V = (v1 | . . . |vn)
and compute the average

a =
1
n

n

∑
i=1

vi =
1
n

V1 ,

where 1 ∈ Rn is a column vector with all entries equal to 1. If we

subtract the mean vector field from all fields we obtain columns
vi−a in the matrix

D = V− (a | . . . |a) = V−a1T .

Then the symmetric operator

DDT =
n

∑
i=1

(vi−a)(vi−a)T ∈ R3×3

measures the covariance of the vector fields and thus how much
and in which directions the fields “spread away” from the average
field. The quadratic form DDT is positive definite if vi are linearly
independent. It’s spectral decomposition gives the directions of min-
imum and maximum variance as eigenvectors. This is also known
as the Principle Component Analysis (PCA).

We take the mean vector field a as a representative for the whole
ensemble {vi}. We define {vi} being approximately parallel if their
variance obtains a maximum in direction of the mean a. A necessary
condition is that a must be an eigenvector of DDT, i.e.,

DDTa = λa . (1)

A further condition requires that the corresponding eigenvalue is
maximal, i.e.,

λ = λmax(DDT) . (2)

Approximate Parallel Vectors. We define the Approximate Paral-
lel Vectors operator (APV) as follows: Let b = DDTa then

APV(v1, . . . ,vn) = PV(a,b) .

In this definition the necessary condition (1) is expressed by the
parallel vectors operator as PV(a,b)⇔ a ‖ b⇔ a = λb.

We reduced the definition of APV to the standard PV operator.
This reduces the problem of finding APV lines to the application of
PV and makes the implementation straightforward.

Filtered APV. The APV operator computes eigenvectors and uses
only the necessary condition (1). Among all APV lines, we are only
interested in those where the mean vector a is the major eigenvector
that corresponds to the largest eigenvalue. We implement the miss-
ing condition (2) as a “filter” and define the Filtered Approximate
Parallel Vectors operator (fAPV) as

fAPV(v1, . . . ,vn) ={x |DDTa = λmax(DDT)a}
={x ∈ PV(a,b) |b = λmaxa}
⊂ APV(v1, . . . ,vn) .

Figure 2 shows – from left to right – examples of a non-feature point
(no alignment), a point that is in fAPV and in APV (alignment with
the major eigenvector), and a point that is in APV but not in fAPV
(alignment with a minor eigenvector).

4. Properties of APV

In this section, we summarize a number of properties of the APV
operator. We provide all proofs in the Appendix. In the remainder of
this section, the matrix of stacked vector fields V, the mean vector
field a and the derived field b are defined as in Section 3.
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x /∈ APV
x /∈ fAPV

x ∈ APV
x ∈ fAPV

x ∈ APV
x /∈ fAPV

Figure 2: A location x is part of an APV line if the mean vector
a is an eigenvector of the covariance matrix DDT. The filtered
fAPV operator requires additionally that this is the eigenvector
corresponding to the largest eigenvalue.

Independence of order. For any permutation π of (1,2, . . . ,n):

APV(vπi , . . . ,vπn) = APV(vi, . . . ,vn) . (P1)

Relation to PV. For n = 2, fAPV and PV coincide:

fAPV(v1,v2) = PV(v1,v2) . (P2)

Dependence on scaling. The PV operator is invariant to scaling,
i.e., PV(v1,v2) = PV(s1v1,s2v2) for any nonzero scalars s1,s2. By
construction, the APV operator depends on the scaling of the vector
fields as different scales weight their contributions to the covariance
matrix DDT. We study APV(v1, . . . ,vn,svn+1) for the edge cases
s = 0 and s→ ∞:

APV(v1, . . . ,vn,0vn+1) = APV(v1, . . . ,vn) (P3)

lim
s→∞

APV(v1, . . . ,vn,svn+1) = PV(a,vn+1) (P4)

The second property (P4) is remarkable: If one single field is scaled
extremely such that it “dominates” all other fields, and both the
average a as well as b converge to vn+1, the APV operator gives a
well-defined line.

Adding new vector fields. The APV operator is invariant to adding
a scaled mean vector field or zero fields. For any scalar s:

APV(v1, . . . ,vn,s ∑
i

vi) = APV(v1, . . . ,vn) (P5)

APV(v1, . . . ,vn,0, . . . ,0) = APV(v1, . . . ,vn) (P6)

If we add the same field w extremely often, APV still yields a
well-defined result:

lim
k→∞

APV(v1, . . . ,vn,w, . . . ,w︸ ︷︷ ︸
k times

) = PV(VVTw−n ||w||2 a,w) .

(P7)

5. Discretization and Visualization

All datasets are given as sets of piecewise linear vector fields that
are defined w.r.t. a tetrahedral partition of the domain. We apply the
APV operator on all triangular faces of the tetrahedra. This way, we
find point locations on faces that are connected by line segments
within tetrahedra, which gives discrete APV lines. This is the same
modus operandi as for parallel vectors PV.

At each feature point location x we can quantify the “spread” of
vectors. For eigenvalues λ1 ≤ λ2 ≤ λ3 of DDT, we measure the ratio

ε =
λ3−λ2

λ1 +λ2 +λ3
·χ with χ =

{
+1 if x ∈ fAPV
−1 else

We use the additional sign χ to distinguish between locations that
are part of the filtered fAPV and locations the are non-filtered APV
features but not part of fAPV. For the latter the mean vector is
aligned to one of the minor eigenvectors corresponding to λ1 or λ2.
We color code ε (see Figure 6) and we place spheres in regions where
ε ≈ 0, i.e., λ3 ≈ λ2 and thus the major eigenvector is undefined. As
PV feature lines always form closed lines, so do APV lines. Figure 7
compares the different filtering options:

• Figure 7 (a) shows all closed feature lines without filtering.
• In Figure 7 (b), connected components are discarded if ε < 0 for

all locations, i.e., the remaining lines contain at least one fAPV
location (ε > 0). This is a non-local filter criterion on structures
that maintains closed lines.

• In Figure 7 (c), all line segments which are spanned by a location
with ε < 0 are discarded. This is essentially the “pointwise” fAPV
filter, which generally yields a set of open feature lines.

6. Applications and Results

In the following, we demonstrate the approximate parallel vector
fields operator. We start with an analytic ensemble and then examine
three different ensemble datasets from numerical simulations. For
all shown applications, the data consists of a number of 3D velocity
fields v1, ...,vn. We use the APV operator to analyze them in two
ways:

• To analyze the alignment of the velocity fields, we compute
APV(v1, ...,vn). This gives corelines of best alignment of the
velocity fields. Along these lines the ensemble members have a
locally maximal parallelity to each other.

• To analyze the alignment of the vortex core lines of all fields,
we additionally consider the accelerations fields c1 = (∇vi) vi
of all ensemble members. Instead of computing the vortex core
lines vi ‖ ci of each ensemble member, our approach gives the
best approximated vortex core lines of all fields by considering
APV(v1, ...,vn,c1, ...,cn).

The acceleration fields are estimated on the same tetrahedral par-
tition as the velocity fields and represented as linear pieces in the
tetrahedral cells.

6.1. Linear Vector Field Ensemble

A family of linear vector fields is given by

v(x,y,z) =

 0 a 0
−a 0 0
0 0 b

x+ x0
y+ y0
z+ z0

 .

We created an ensemble of 250 velocity fields with randomly chosen
parameters a,b,x0,y0,z0 ∈ [−1,1]. Then each member describes a
rotational flow around a vertical core line with random location,
rotational speed and direction. Figure 3 displays some streamlines.
For each member and its acceleration, their PV lines are vertical
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Figure 3: Streamlines and corresponding PV lines for three different
members of an ensemble of random linear flows rotating around a
vertical axis with varying locations, rotational direction and speed.

Figure 4: Several PV feature lines of the ensemble are shown in
different shades of green. The blue PV line of the mean velocity
and its acceleration appears at a significant offset, while the red
APV line is centered within the members’ PV lines and runs closely
through the origin. The close-ups right display velocity and acceler-
ation vectors of all members displayed at three distinct points on a
member, on PV and on APV The alignment of vectors seems best
for the APV sample.

lines that intersect the x-y-plane around the origin. Figure 4 shows
seven of these PV lines, colored in different shades of green.

A naïve approach to finding feature lines of the ensemble, consists
in applying the standard PV operator to the mean vector field and its
acceleration field. In the example, this gives the blue line in Figure 4,
which appears at a significant offset from the individual members’
PV lines. In contrast, the APV line – displayed in red – intersects
the x-y-plane as expected close to the origin, i.e., which is obviously
the better representative or “mean feature line”. The reason for
the misalignment of the blue line lies in the fact that averaging the
ensemble members results in a field with an ill-conditioned Jacobian,
i.e., the matrix’ determinant is close to zero. Finding extremal lines
in linear vector fields with such Jacobians gives unstable results.

In order to compare and demonstrate alignment, we display
glyphs for velocity and acceleration vectors of all members sampled
at three different locations: on a PV solution line of a single member,
on the PV line of the mean velocity field, and on the APV line. The
APV solution indeed shows the smaller spread and hence the better
alignment of vectors. This is indicator for the plausibility of our
approach.

Figure 5 shows two scalar fields that are derived from the velocity

(a) (b)(b)
min

max

s

Figure 5: Scalar fields s that measure local alignment of ensemble
members. (a) Accumulated norm of the cross product of all vectors
at a given location (see (4)). (b) Accumulated angle of all vectors at
a given location (see (3)). Both fields indicate that locations of high
alignment of all vectors lie vertically in the center of the domain.

ensemble: the accumulated angles (3) and the accumulated norm
of the cross products (4) and provide an alternative measure for
“how parallel” vectors are at a domain point. The lowest values in
both fields are found in the center of the domain around a vertical
line which coincides with the location of the APV feature line. This
fact again indicates plausibility of APV features. We will discuss in
Section 7.2, why we prefer the definition of APV over alternative
concepts of approximately parallel line features.

6.2. Aneurysm Ensemble

The Computational Fluid Dynamics Rapture Challenge 2013
[BRB∗15,JBS∗15] presented a velocity field ensemble data that was
created by different hemodynamics simulations inside an aneurysm
geometry. Eight different blood flow fields were simulated by vary-
ing the outlet boundary conditions. This included a zero-pressure
condition for both outlets as well as seven simulations, where the
pressure was split between the outlets and changed in steps of 10%
from 80% to 20% and vice versa. Figure 1 shows streamlines of
blood flow of each of the eight members of the ensemble as well
as the feature lines extracted with the standard PVoperator. Each
member has a specific color assigned ranging from green to yellow
so the corresponding feature line can be located in the combined
spaghetti plot visualization on the right.

Figure 6 (a) shows APV feature lines derived from eight ensemble
members. Near the inlet (top) there is no significant difference
between members, and therefore many insignificant features are
found. As the flow progresses, the members start to divert. The
closeups (b)-(d) show single point locations x of different regions
with vectors at x drawn as arrows: (b) x ∈ fAPV, (c) x /∈ APV, and
(d) x ∈ APV but x /∈ fAPV. The latter is a mean vector aligned
with a minor eigenvector and would be removed by filtering. The
resulting feature lines are shown in Figure 6 (e).

The resulting APV lines give the locations, where all PV lines
of the ensemble are best aligned. This behavior can be observed
in Figure 8: We observe high ε near the locations where all PV
lines are close to each other. However, in regions where the PV
lines start to diverge from each other, ε decreases and eventually
turns negative. In these locations, the mean vector is aligned with
a minor eigenvector as seen in Figure 6 (d). Finally, we remark
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(a)

(b)

(c)

(d) (e)
−1

0

1
ε

Figure 6: APV lines for aneurysm ensemble: (a) using all eight velocity fields. (e) using all eight velocity fields and their acceleration fields.
The closeups give examples for the color coding (right): (b) Locations with input vectors aligned closely with the major eigenvector are
depicted in red color. (c) Is an example of a non-feature location. (d) Blue lines refer to locations with vectors aligned closely to one of the
minor eigenvalues. They would be removed in filtered fAPV in Figure 7.

(a) (b) (c)

Figure 7: The APV operator finds structures of closed lines, which
can be filtered: (a) APV lines w/o filtering. (b) Only lines with at
least one fAPV segment. (c) Structures of fAPV line segments may
be non-closed.

that computing PV lines for each ensemble member and its derived
acceleration field consumes significantly more time than one single
application of the APV operator for the same data. To reduce visual
clutter, we apply filtering as seen in Figure 7.

6.3. Helicopter in Ground Proximity

This dataset by Kutz et al. [KKKK12] simulates wind flow near a
helicopter that is hovering over ground. Figure 9 shows streamlines
for a single time step. We sampled the flow field uniformly in time
such that the rotor revolution increases by 10° for each time step

(a) (b) (c)

Figure 8: (a) Spaghetti plot of all PV feature lines. (b) The APV
operator finds locations where the PV feature lines are close to each
other. (c) APV lines of all velocity and acceleration fields.

and collect six time steps in total in an ensemble. The difference
between the ensemble members is relatively small. This can be
seen by computing PV features for each member and its derived
acceleration field as depicted in Figure 11 (a). Figure 10 (a) shows
all PV feature lines in a combined visualization. We compute APV
features on all velocity fields of the ensemble. This is shown in
Figures 10 (b) and (c). Figures (d) and (f) include in addition the
derived acceleration fields.

Note that this dataset is special, due to the lack of variance be-
tween PV features. In this case the APV features resemble the
“mean locations” of PV features (although it is unclear how to av-
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Figure 9: Streamlines of the wind flow around a hovering helicopter
for a fixed time step. Swirling behavior can be seen behind the
helicopter.

erage core lines). Indeed, the comparison of PV and APV features
in Figure 11 suggests that the latter express the essence of the “en-
semble” of PV core lines. The additional streamlines for one single
ensemble member in Figure 10 (d) suggests that APV lines can
yield locations similar to vortex core lines.

6.4. Rotating Mixer

The last ensemble was created by sampling a CFD simulation of
flow inside a container with a rotating mixer. Six time steps were
chosen such that the three blades inside the container rotate by
120° each time such that the blade geometry overlaps exactly for
each ensemble member. This is a turbulent flow and the members
vary greatly. The PV feature lines for one single member’s velocity
and acceleration shows already a complex behavior, which makes
it difficult to identify interesting structures. This is shown in Fig-
ure 13 (a). Figure 13 (b) shows PV feature lines for all members.
We compute APV features for velocity and acceleration fields. The
result is shown in Figure 13 (c). Filtering reduces the feature regions
significantly: 13 (c) shows fAPV features. The colors in (d) show
regions with low “spread” of ensemble members near the blades of
the mixer. Figures (e) and (f) show APV and fAPV features for only
the given velocity members without additional acceleration fields.

6.5. Performance

Table 1 summarizes the sizes of the ensemble data and timings for
feature extraction. All times were measured for an Intel Core i7-
6700K CPU at 4GHz with 32GB RAM available, this was always
enough memory to store the data. All algorithms were implemented
in C++. The time that is required for computing the derived fields a
and b = DDTa depends linearly of input fields. For a moderate num-
ber of ensemble members this cost is not significant compared to
the next step: The time for the subsequent computation of PV(a,b)
for all triangular faces is constant for the given tetrahedral partition.
Filtering (fAPV versus APV) and color coding require a spectral
decomposition of DDT at feature locations. The cost for their com-
putation is negligible as the number of feature locations is small
compared to the total number of triangular faces.

7. Discussion and Comparison

The APV operator computes core lines for ensembles of velocity
fields. In this section, we compare the new approach with other
algorithms for computing core lines for flow ensemble data.

7.1. Multiple line sets

We may treat each input field individually and compute core lines
by applying the standard PV operator. Then a number of visual
representations could be considered:

• One option is a simple spaghetti plot [CHL13]. Their limitations
are discussed in several recent publications [WMK13, MWK14,
FKRW16, FBW16].

• Another option is clustering line features and selection of rep-
resentatives. There are different clustering methods. They all
require the notion of distance, and many different distance mea-
sures are available. The reasons why these approaches are not
applicable to our problem lies in the fact that the line features
that result from the ensemble members may differ significantly
in shape and topology: they may consist of several unconnected
parts (due to the filtering of the PV lines), or some of the ensem-
ble members may give no core lines at all. There is no straight-
forward answer to the question how to incorporate these cases
into a stable clustering algorithm. While clustering algorithms
have been successfully applied to sets of stream lines or path
lines [OLK∗14, OCJP16, RT12], we are not aware of existing
work of line clustering of vortex core lines in ensemble flows.
• A curve boxplot approach similar to [WMK13, MWK14] may

be applied to the set of core lines. These approaches rely either
on implicit curve representations [WMK13] or on a common
parametrization of the curves [MWK14]. Such parametrization
does not exist for PV lines as input curves. Moreover, due to
the unconnectedness and even non-existence of core lines in
individual fields, we are not aware of straightforward approaches
to construct a common parametrization. We conclude that also
curve boxplots are not directly applicable to our problem.

• Variability plots [FKRW16, FBW16] may be applied to the sets
of core lines. Similar to curve boxplots, variability plots either
require implicit curve representations [FKRW16] or common
parameterizations [FBW16]. And similarly, we are not aware of
straightforward extensions of variability plots to sets of core lines.

7.2. Lines on derived fields

As introduced in Section 6.1, in order to find core lines of multiple
fields, one may also consider extremal curves in a scalar field s
derived from v1, ...,vn such that summed angles or cross products
of each pair of vectors are considered as a measure of how “parallel”
the n fields are. The scalar field could be chosen as

s =
n

∑
i=1

n

∑
j=1
|∠(vi,v j)|, or (3)

s =
n

∑
i=1

n

∑
j=1
‖vi×v j‖. (4)

Ridge lines of s may also be interpreted as lines of “maximal paral-
lelity” of v1, ...,vn. However, we see the following potential prob-
lems with this approach:
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 10: Helicopter dataset. (a) All PV core lines from each ensemble member displayed in different shades of green. They lie very close to
each other. (b)-(c) APV features for all velocity fields and derived acceleration fields. (d)-(f): APV features for only the velocity members. (d)
Additionally shows streamlines for one of the members.

Dataset #Fields #Vertices #Vectors APV PV
Aneurysm Velocity 8 3, 501, 487 28, 011, 896 974ms 261, 571ms
Aneurysm Velocity + Acceleration 16 3, 501, 487 56, 023, 792 1, 538ms 261, 668ms
Helicopter Velocity 6 4, 810, 000 28, 860, 000 1, 231ms 310, 260ms
Helicopter Velocity + Acceleration 12 4, 810, 000 57, 720, 000 1, 884ms 288, 672ms
Mixer Velocity 6 1, 258, 759 7, 552, 554 312ms 99, 083ms
Mixer Velocity + Acceleration 12 1, 258, 759 15, 105, 108 465ms 97, 529ms

Table 1: Timings for the given ensemble data. The column APV refers to the computation of the derived fields, the mean a and b = DDTa. The
PV column refers to the extraction of PV(a,b).

• Scaling: (3) gives unstable results in areas of small vectors vi.
• Numerical Stability: The numerical ridge extraction requires the

gradient and Hessian of s, e.g., as input to the PV operator. The
use of, possibly estimated, first and second order derivatives
makes the feature extraction significantly more sensitive to noise
in the data. Note that alternative ridge extraction methods are,
although well-understood, generally less stable than applying
the PV operator, because ridge extraction is based on search-

ing for local extrema. In contrast, PV is based on searching for
zero crossings of functions. In regions of strongly varying fields,
zero crossing is less prone to missing results than searching for
extrema.

We are not aware of any existing approaches of this category that
find core lines of multiple velocity fields.
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(a) (b)

Figure 11: (a) A combined visualization of all core lines extracted
with the PV operator from each ensemble member and its derived
acceleration field. (b) Same with an additional overlay of APV
feature lines for the same input data.

Figure 12: Streamlines for one time step of rotating mixer dataset.

8. Limitations and Future Work

APV feature lines provide an intuitive interpretation for locations
where the mean vector is aligned with the major eigenvector. In
the visualization, this was shown in red (ε > 0, and ideally ε →
1). For locations where we observe the alignment with one of the
minor eigenvectors – these are missing in fAPV – there is no such
interpretation (shown in blue as ε < 0). This is the reason why we
offer a filter for them. It may be worthwhile to try to derive some
information that is meaningful and helps understanding the data also
from these locations.

In the future, the presented approach could be extended to an out-
of-core method for ensembles with very large numbers of members
such that members can be “streamed” into memory. This requires
only an “online” update of the mean a and the matrix DDT such
that only mean vectors and covariance matrices are held in main
memory. This type of update is certainly possible, however, the
straightforward formulas suffer significantly from numerical round-
off errors. An out-of-core method would require finding a balance
between numerical efficiency and sufficient accuracy.

Finally, the domain of applications can be extended by applying
APV to fields other than velocity and acceleration such as second
derivatives of particle trajectories, or pressure gradients.

Appendix

In the following, we give proofs for the properties (P1)-(P7) sum-
marized in Section 4.

Property (P1) holds by construction as neither the mean vector
a nor the symmetric operator DDT = ∑

n
i=1(vi− a)(vi−a)T (and

hence b) change on permutation of the columns vi of V.

Property (P2). Assume the parallel vectors condition holds for v1
and v2, i.e., v1 = λv2. Then with V = (v1|λv1), a = 1+λ

2 v1 and

DDT = (1+λ
2)v1v1

T − 1
2 (1−λ )2v1v1

T =: λ̃v1v1
T .

This implies b = DDTa = 1+λ

2 λ̃a, or equally the APV condition.
The symmetric matrix DDT has rank 1 and one single nonzero
eigenvalue λ̃v1

Tv1 therefore also the filtered APV condition holds.
The reverse direction (fAPV⇒PV) is straightforward to show using
the same argument.

The proofs of the remaining, more general properties are slightly
more complex. The essential argument, however, is similar.

Let 1n ∈ Rn denote the constant vector with all entries equal to 1,
and let 11n = 1n1T

n ∈Rn×n denote the constant matrix with all entries
1. For the sake of a concise notation, we may omit the dimension n
whenever it is irrelevant or clear from the context.

Let V = (v1, . . . ,vn) with vi ∈ Rm. Then a = 1
n V1n the mean of

column vectors for a matrix V ∈ Rm×n, and 1
n V11n gives the matrix

(a, . . . ,a)∈Rm×n. So far we considered (w.l.o.g.) the 3D case m= 3.
The following arguments apply for any dimension m≥ 2.

The proposed algorithm requires the matrix D=V− 1
n V11n =VP

with P = I− 1
n 11n. (I is the identity.)

In a slightly more general setting, we first summarize properties
of symmetric matrices Pn(α) := I−α11n.

Lemma 1 (Spectral decomposition). For α > 0, matrices Pn(α)
have eigenvalues λi = 1−αµi for µi = 0, . . . ,0,n, and they share
eigenvectors up to order and orientation.

Proof. The following holds for eigenvalues λ and eigenvectors x.

(I−α11)x = λx ⇔ x−α11x = λx ⇔ α11x = (1−λ )x

11x = µx with eigenvalues µ = 1
α
(1−λ )

The matrix 11 = 11n has rank 1 and eigenvalue 0 with multiplicity
n−1, and the remaining eigenvalue must be equal to n. It is straight-
forward to confirm that the first n− 1 eigenvectors of 11n provide
an orthonormal basis of the kernel {x |11nx = 0}, and the remaining
last (unit length) eigenvector is the constant vector q := 1√

n 1n. The
eigenvalues are shifted for P(α), and the eigenvectors are the same
as for 11 up to order and orientation.

Note that the constant eigenvector q of P(α) appears for the
smallest eigenvalue due to the shift of eigenvalues. In the following,
we write the eigenvectors as columns of the orthogonal matrix Q =
(q|Q̂), where the columns of Q̂ span the kernel of 11 (or equally the
image of P(α)).

For the special case P = I− 1
n 11n, this gives eigenvalues λi =

0,1, . . . ,1. The symmetric matrix P has rank n−1 and is idempotent
(i.e., PP=P). It can be written in terms of its spectral decomposition
as P = Qdiag(0,1, . . . ,1)QT = Q̂Q̂T.

In the following, we consider the cases of n and n+ 1 vectors:
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 13: Flow inside a rotating mixer. Left: (a) PV core lines extracted from one member and the derived acceleration field. (b) Combined
visualization of all PV core lines extracted from each ensemble member and derived acceleration fields. Center: APV features for the same
data, unfiltered (c) and filtered (d). Right: APV features for velocity members only, unfiltered (e) and filtered (f).

Let V = (v1| . . . |vn) ∈ R3×n and V̄ = (v1| . . . |vn+1) ∈ R3×(n+1).
Likewise, we denote

na =V1n and b = DDTa = VPVTV11n, and

(n+1) ā =V̄1n+1 and b̄ = D̄D̄Tā = V̄P̄V̄TV̄11n+1 .

For the sake of a concise notation, the bar over a quantity denotes
dimension n+1, e.g., D̄ ∈ R3×(n+1) and P̄ ∈ R(n+1)×(n+1), and we
omit explicit subscripts.

We show how the parallel vectors condition ā = λ b̄ can be
expressed in terms of a and b using block decompositions of
V̄ = (V|vn+1) and

P̄ =

 P̂ − 1
n+1 1

− 1
n+1 1T n

n+1

 with P̂=Pn(
1

n+1 )= I− 1
n+1 11n .

Then

D̄D̄T = V̄P̄V̄T =
(

VP̂− 1
n+1 vn+11T n

n+1 vn+1− 1
n+1 V1

)
(V|vn+1)

T

= VP̂VT − 1
n+1 vn+11TVT + 1

n+1 (nvn+1 − V1)vT
n+1 . (5)

Using Lemma 1, we can express P̂ as a rank-1 update of P — the
zero eigenvalue becomes 1

n+1 — and obtain

P̂ = P+ 1
n+1 qqT = P+ 1

(n+1)n 11 .

We use (5) to show properties (P3), (P4) and (P5), and we use a
similar block decomposition to show (P7).

Property (P3). Let vn+1 = 0. Then (5) reduces to D̄D̄T = VP̂VT.
With (n+1) ā = na the parallel vectors condition b̄ = λ ā becomes

VP̂VTV1 =λV1 ⇔

V
(

P+ 1
(n+1)n 11

)
VTV1 =λV1 ⇔

VPVTV1 + 1
(n+1)n V11VTV1 =λV1 ⇔

b + 1
(n+1)n V11VTa =λa .

Assume that b = µa holds. Then there exists an eigenvalue

λ = µ +
n

n+1
aTa

for which the above equation becomes true because

b+ 1
(n+1)n V11VTa =λa ⇔ µa+ 1

(n+1)n n2a(aTa) = λa .

It is straightforward to show the reverse by fixing λ rather than µ .

Property (P4). Assume b̄ = λ ā holds, i.e., an eigenvalue λ exists.
We consider the the left-hand-side of the equation b̄−λ ā = 0 and
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substitute vn+1 = sv. With V1 = na, this gives

b̄−λ ā = 1
n+1 D̄D̄T(na+ sv)−λ

1
n+1 (na+ sv)

= n
n+1 VP̂VTa− sn2

(n+1)2 vaTa− sn2

(n+1)2 avTa+ s2n2

(n+1)2 vvTa

+ s
n+1 VP̂VTv− s2n

(n+1)2 vaTv− s2n
(n+1)2 avTv+ s3n

(n+1)2 vvTv

−λ
n

n+1 a−λ
s

n+1 v .

We choose and substitute

λ = n
n+1 (s

2−2µs)vTv ,

factor powers of s and obtain

b̄−λ ā =s2
(
− n

(n+1)2 vTva− n2

(n+1)2 vTva+ n2

(n+1)2 aTvv− n
(n+1)2 aTvv

+ 2µn
(n+1)2 vTvv

)
+ O(s)

=s2 1
(1+n)2

(
(n2−n)aTvv− (n2 +n)vTva+2µnvTvv

)
+O(s) .

The computation of the above term is somewhat lengthy but ele-
mentary. We give a few remarks: First, the choice of eigenvector λ

requires a term that is linear in s. Second, s3 is the highest power
that appears in the the derivation. However, the cubic terms sum to
zero and disappear in the result. (This is independent of the particu-
lar choice of λ . There the additional linear term generates a term in
s2 that is required to ensure no solution is lost.)

We can now evaluate the limit lims→∞
1
s2 (b̄−λ ā) and obtain the

equation

(n2−n)aTvv− (n2 +n)vTva+2µnvTvv = 0 ,

which holds iff the parallel eigenvectors condition a = µv is satis-
fied.

Property (P5). Let vn+1 = s ∑
n
i=1 vi = sV1. Then

D̄D̄T = VP̂VT− s
n+1 V11VT + s2 n

n+1 V11VT− s
n+1 V11VT

= VP̂VT +
n2(s2 n−2s)

n+1
aaT

= VPVT + 1
(n+1)n V11VT +

n2(s2 n−2s)
n+1

aaT

= VPVT +
n(1− sn)2

n+1
aaT .

With

ā = 1
n+1 (na+ sV1) = 1

n+1 (na+ sna) = 1+s
n+1 a

we obtain

D̄D̄Tā = λ ā ⇔

VPVTa+
n(1− sn)2

n+1
a(aTa) = λa ,

which holds if b = µa. The argument is similar as for (P3) and uses
b = VPVTa = µa.

Property (P6) follows immediately from (P3) as

APV(v1, . . . ,vn,0, . . . ,0,0︸ ︷︷ ︸
k+1

) = APV(v1 . . . ,vn,0, . . . ,0︸ ︷︷ ︸
k

) = . . .

= APV(v1 . . . ,vn) .

Property (P7). Let W = w1k = (w, . . . ,w) ∈ Rm×k. We consider
V̄ = (V|W) ∈ Rm×(n+k). Similarly as before we define

P̄ =

(
Pn −α11n×k

−α11k×n Pk

)
∈ R(n+k)×(n+k)

where α = 1
k+n and Pn = Pn(α) and Pk = Pk(α). Then

D̄D̄T =V̄P̄V̄T = VPnVT−αW11k×nVT−αV11n×kWT +WPkWT

=VPVT +α k nA ∈ Rm×m

with A = aaT−awT−waT +wwT and P = Pn(
1
n ). To confirm this

equivalence we study each term of the quadratic form:

From Pn = P+ k
k+n qqT = P+ k

n(k+n)11 (rank update) we obtain

VPnVT =VPVT +
k

n(k+n)
V11VT = VPVT +

k n
k+n

aaT

=VPVT +αk naaT .

We have

−αW11VT =−α kw1T
n VT =−α kw(V1n)

T =−α k nwaT

and −αV11WT =−α k nawT.

And finally, WPkWT =w1TPk1w= k n
k+n wwT =α k nwwT using

1TPk1 = (1−α k)k = α k n.

With the mean ā = α(na + kw) we write the condition

D̄D̄T ā = λ ā ⇔ (VPVT + α k nA)a = λ a ,

which gives

n
k+n

VPVTa+
k

k+n
VPVTw

+
k n2

(k+n)2 Aa+
k2 n

(k+n)2 Aw− λ n
k+n

a− λ k
k+n

w = 0.

In the limit k→ ∞ this reduces to the condition

VPVTw + n
(

aaT−awT−waT +wwT
)

w − λw = 0 ,

and with VPVT = DDT = VVT − naaT we obtain

VVTw + n
(

wwT−awT−waT
)

w − λw = 0 ⇔

VVTw −n ||w||2 a = µw for µ = λ + n(wTa−||w||2) ,

which is the postulated parallel vectors condition.
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