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The LloydRelaxer
An Approach to Minimize Scaling Effects for

Multivariate Projections
Dirk J. Lehmann and Holger Theisel

Abstract—Star Coordinates are a popular projection technique in order to analyze and to disclose characteristic patterns of
multidimensional data. Unfortunately, the shape, appearance, and distribution of such patterns are strongly affected by the given
scaling of the data and can mislead the projection-based data analysis. In an extreme case, patterns might be more related to the
choice of scaling than to the data themselves. Thus, we present the LloydRelaxer : a tool to minimize scaling-based effects in Star
Coordinates. Our algorithm enforces a scaling configuration for which the data explains the observed patterns better than any scaling
of them could do. It does so by an iterative minimizing and optimization process based on Voronoi diagrams and on the Lloyd relaxation
within the projection space. We evaluate and test our approach by real benchmark multidimensional data of the UCI data repository.

Index Terms—Information Visualization, Multidimensional Data, Scaling, Star Coordinates, Projections
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1 INTRODUCTION

Finding good projections of high-dimensional data sets is one
of the standard problems in Information Visualization. In many
applications, the input data can be interpreted as points in a
high-dimensional data space; its visualization requires a suitable
projection onto the 2D screen space. To find good projections,
a variety of automatic, interactive, and hybrid techniques have
been proposed in the literature. Especially the concept of Star
Coordinates [21], [22], [24] became increasingly popular. Star
Coordinates define an affine projection from the nD data space
onto a 2D projection space. They visualize the dataset completely
with respect to its n dimensions and m data records. Nevertheless,
the analysis of multidimensional data still remains a challenging
task, denoted by the term curse of dimensionality. This means that
the analysts have to consider a set of effects and aspects, such as
over-plotting [31], scalability [23], [26], distortions [24], relevance
[1], [4], loss of visual contrast [29], [38] and so forth, in advance of
or during a successful analysis process. These issues have already
been addressed in many contexts within our community. Even
though they are far from completely being solved, they are well
considered and a lot of research goes in this direction. On the other
side, one additional important aspect that strongly influences the
analysis has not been taken notice of: the choice of scaling.

To illustrate the problem addressed in this paper, let us
consider a thought experiment: imagine a (toy) climate data
set consisting of m measurements of temperature, air pressure,
rainfall, and humidity. This means that every measurement can
be considered as a point in a 4D data space. All four dimensions
are physically unrelated in the sense that they are measured in
different (and unrelated) physical units. This means that the ratio
of the values in different dimensions is arbitrary and has no
meaning. Changing the ratio by scaling one dimension generally
changes the result of the projection, raising the following question:
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if a projection shows an interesting structure, is it really a property
of the data or is it the result of an unfavorable scaling of one or
more dimensions? We search for projections that are independent
of the scaling of one dimension. For our example, it should
not make a difference if, e.g., the temperature is measured in
Celsius, Fahrenheit, or Kelvin. The simplest solution for this is
normalization: every dimension is normalized independently such
that the data values are in the range of [0,1] or [−1,1], or they are
translated and scaled such that the standard deviation is 1 around
the mean/median of each dimension (=whitening). While these
approaches are common, they may falsify the results.

How can we find such patterns that minimize scaling effects?
Our idea is to look for a scaling that maximizes the expressiveness
of global patterns, i.e., structures that represent the complete
dataset. Thus, a global pattern could only be seen and explained
by an interplay between all (or most of) dimensions of the nD
data. Since a badly chosen scaling might cause that local patterns
are more weighted and thus more prominent in the multivariate
projection – which might mislead the user’s data interpretation
process – we are interested in finding the scaling configuration
which stresses the global patterns best. Thus, we propose an
approach based on computational geometry: For an arbitrary Star
Coordinate projection, we are looking for a scaling k of all
coordinate axes such that the Voronoi diagram of the projected
points becomes most regular and close to its centroidal Voronoi
diagram. For this, each projected point needs to be shifted to its
centroid position of its related Voronoi cell. This gives an iterative
process – based on Fortune’s algorithm [14] – which converges to
the centroidal Voronoi diagram, known as Lloyd relaxation [30].

In order to get the properties of the data involved, we adopt
this Lloyd relaxation in a way that in each iteration our approach
is looking for a scaling k, which minimizes the difference between
the regular Lloyd relaxing step and the projected point set, denoted
as LloydRelaxer of the data. The final pattern of the projection can
be explained best by the data instead of the choice of scaling. Thus,
our LloydRelaxer minimizes scaling effects for Star Coordinate
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projections. Please note that our approach focuses on finding a
good scaling but not on finding a good axis orientation. The axis
orientation is user input here. Finding a good axis orientation is or-
thogonal to the issues addressed in this work and already discussed
in a set of works, such as [16], [24], [25], [26], [28]. Moreover, to
the best of our knowledge, we present the first approach addressing
the scaling issue for projections, and consequently, there are no
trivial solutions we could compare our approach with. In fact,
there are no feasible alternatives. Furthermore, there is no ground
truth available we can compare our approach with. This applies
due to the fact that an appropriate scaling is not measurable for
the time being. Thus, we consider the scaling issue from a heuristic
point of view in order to tackle it (cf. Sec. 6). Having this in mind,
Figure 1 (right) shows the resulting projections and related final
Voronoi diagram configurations that minimize the scaling effects
for the dataset 1 and 2.

To summarize, in this paper we focus on linear projections
that can be represented as Star Coordinates. We search for pro-
jections that are independent of the scaling of each dimension.
Our approach is that for a given data set and a given linear
projection we explore the space of all scalings of all dimensions
to find optimal scalings such that the projections show the most
informative results. For this, we will first show that scaling the
dimensions in data space is equivalent to scaling the coordinate
axes in Star Coordinates. Second, we define what an informative
projection is. For this, we follow [13], who solved the problem for
the special case of 2D data, i.e., scatterplots: We prefer projections
with an as-regular-as-possible point layout to make sure that the
shown structures are inherent to the data and not to the scaling
of one dimension. Third, we describe a numerical optimization
to find the best scaling of each dimension as an iterative process.
We analyze the algorithm and apply it to several test data sets. In
conclusion, the contributions of this paper are:

• we explain and discuss the scaling issue in visualization,
• we introduce an iterative approach called LloydRelaxer

which minimizes scaling artefacts for affine and global
multivariate projections, i.e., Star Coordinates, w.r.t. an
initial linear/affine scaling in the data,

• we introduce an implementation scheme for an interactive
LloydRelaxer-based descaling tool, and

• we present empirical experiments with the LloydRelaxer
based on synthetica and real nD datasets.

Subsequently, we discuss work that is related to ours.

2 RELATED WORK
Since we combine and extend a set of techniques, our related work
comes from both the field of projection techniques and the field of
computational geometry.
Projection Techniques: The affine multivariate projection tech-
nique named Star Coordinates was established in 2000 by Kan-
dogan [21], [22], extended by Lehmann and Theisel in 2013 to
an orthographic preserving version [24], and in 2016 generalized
[25] to a universal projection concept that unifies projective, affine,
and orthographic projections from an nD data space onto a 2D
projection space. Star Coordinates became very popular in recent
years for analyzing multidimensional data, and their properties are
well investigated both in a technical sense [36] as well as regarding
their perception properties [12]. Thus, for our scaling-minimizing
concept we rely on them, too.

Due to the fact that the space of projections contains an infinite
number of elements, a couple of techniques were described to
purposefully select interesting projections or at least to navigate

through this space in an effective way. An interpolation scheme
between a pre-selected relevant and initial set of projections
was introduced in [33], based on considering the projections as
corner points of a convex polygon and defining the interpolated
projections within by the use of mean value coordinates. How
such an initial set of relevant sets of projections might be found,
was presented in [26]. There, a small but complete set with n/2
projections results from the idea of avoiding projections which can
be mapped onto each other by the use of affine transformations.
In [39], an approach is introduced in order to interactively probe
projections aiming to support the understanding of certain dimen-
sion arrangements. Even though such approaches might help to
find multivariate projections that show interesting data patterns,
none of these have considered scaling effects of the data at all.
Thus, it remains unclear for the user whether the provided patterns
are caused by data or by the scaling. Consequently, we provide
projection-based techniques to justify whether these patterns are
caused by the data or by the scaling and we present interaction
schemes to navigate through the projection space while showing
only projections where scaling effects are minimized. We do so by
using schemes from computational geometry.
Computational Geometry: The two concepts of the Delaunay
triangulation and the Voronoi diagram are standard approaches
in the field of computational geometry. Both approaches give a
starting point for complex geometrical operations on 2D point sets
(cf. Figure 2 (top - left)), such as minimum spanning trees [35]
or Dijkstra’s shortest path [7] and many more. Considering a
2D point set, the Delaunay triangulation [6], [8], [17], [18] is a
regular triangulation where the circumcircles of any tessellation’s
triangle contain an empty point set (cf. Figure 2 (top - middle)).
The dual problem to this is the Voronoi diagram [3] of this 2D
point set (cf. Figure 2 (top - right)). The Voronoi diagram (VD)
equates to the segmentation of the point set into a set of adjacent
convex polygons, denoted as Voronoi cells, where each polygon
contains exactly one 2D point of this set and where each edge
(except borders) is equidistant w.r.t. a certain metric to their two
closest adjacent 2D points. Typically, the formally mentioned p2-
norm or Euclidean distance is used as metric for the purpose
of constructing a Voronoi diagram. We do so throughout this
work. Larger point densities are qualitatively expressed by more
but smaller Voronoi cells and vice versa. So the VD is directly
related to the distribution of the point set [11]. In 1987, Steven
Fortune [14], [15] presented a sweepline algorithm to calculate
the Voronoi diagram of a 2D point set with a number of m points
in O(m logm). Fortune’s algorithm is still the fastest for usual
point configurations. Hence, we also utilize it to generate Voronoi
diagrams for this work.

In addition, each Voronoi cell – and thus each 2D point –
can be assigned by a 2D centroid, being the center of gravity by
assuming a homogeneous mass distribution in that cell. If the 2D
point and its 2D centroid are equal for all those points of the set,
the Voronoi diagram is named centroidal Voronoi diagram (CVD)
[10], [20] (cf. Figure 2 (bottom - right)). This equates to a perfect
uniform distribution of the points in that set. In order to iteratively
transform an arbitrary VD into a CVD, Stuart Lloyd provided a
popular algorithm, known as the Lloyd Relaxation [9], [30], [37].
Briefly spoken, the 2D points are iteratively shifted to the positions
of their related 2D centroids until this process finally converges in
a CVD (cf. Figure 2 (middle up to bottom)). Our approach is based
on this Lloyd Relaxation. In the following, we review how such
scaling issues are currently handled.
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Fig. 1. LloydRelaxer in order to minimize scaling effects: (from left) The first two sub-figures per row show projections for different scaling
configurations of two different datasets (dataset 1 on top, dataset 2 on bottom) with m = 1000 data records and n = 3 dimensions each: The
scaling strongly influences which patterns result, even though they should be solely dependent on the data. Within the last two sub-figures per
row, our LloydRelaxer minimizes such scaling effects. This way, the most data-related patterns occur. In detail: (top) The scaling configuration 1
intends a (weak) multi-linear correlation between the three dimensions. On the contrary, the scaling configuration 2 intends two clusters. Which
observation can explain the data best? Our optimal scaling discloses that both observations are false and cannot be explained by the data. Instead,
the data might not contain a clear pattern at all. (bottom) The scaling configuration 1 of the data intends two clusters. In contrast, the different
scaling configuration 2 of the data suggests three clusters. Finally, our optimal scaling confirms the second observation that the data contains (at
least) three clusters, which explains the data best.

Voronoi DiagramDelaunay Triangulation
BorderVoronoi Cell

Centroid
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Iteration 1
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Iteration 2
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Fig. 2. Schemes for the Delaunay Triangulation, Voronoi Diagram, Lloyd
Relaxation, and Centroidal Voronoi Diagram for a 2D point set.

Scaling vs. Projections: The issue of finding an appropriate
scaling for the data for visualization purposes is currently reduced
to the issue of finding an appropriate aspect ratio for bivariate
scatterplots. Regarding this, Fink et al. [13] propose to select a
convenient aspect ratio for those plots, meaning to find a value s in
a way that the scaling of this plot with s for x- and (1/s) for the y-
coordinates reveals a good view to the user. They argue that a good
aspect ratio is given if the related Delaunay triangulation of the set
of 2D plot points has certain geometrical properties, such as, e.g., a
large minimal angle or a small total edge length. Hence, finding the
one degree of freedom s is given (and solved) as an optimization
issue over the mentioned triangulation. Talbot et al. [41] go in a
similar direction, but differ in their criteria to select the aspect
ratio, which is here considered best if the arc length for certain
representatives in the plot is minimized. There are many similar
approaches, please see further references in [13]. Both approaches
generate convincing bivariate scatterplots, i.e., plots which might
look comfortable to the user (and to us, too). Nevertheless, it

remains unclear if these bivariate plots show patterns of the data or
just scaling artifacts as described in Section 1. Furthermore, to the
best of our knowledge, there are currently no further techniques
available focusing on the optimal choice of scaling for bivariate or
multivariate projections.

3 WHAT IS AN INFORMATIVE SCALING?

The scaling issue occurs for almost every scaling, due to the fact
that a scaling of nD data is usually influenced by the culture
(kilometer or miles, degree Celsius or degree Fahrenheit, liters
or gallons etc.) or the community/job (milliliter or liter, mile or
lightyear, nanosecond or year). This is interesting, since it means
that our culture influences which structures appear in a dataset
(note that we are not talking about perception or cognition). Thus,
for the time being, there is no choice of scaling that is better
than another; no ordering relation over scalings is known, but we
know that scaling might negatively distort the structures. That is a
dilemma: each scaling might be equally good or poor with respect
to the underlying domain. Even though we would know that our
initial scaling misleads the “meaningful” structures, we cannot ask
for a better one until we can define what “better” means: how can
we find a quantitative data model in order to distinguish a “good”
scaling, which gives us an informative view into the domain, from
a “bad” view, which just reflects scaling artifacts? Without having
a scaling ground truth on which our models can be evaluated, it is
challenging to find such a model.

However, all this is interesting and opens a wide research area,
but it is far beyond the focus of our paper. Thus, in order to become
able to address the scaling issue and to overcome this dilemma at
all, we set ourselves to a heuristic point of view, meaning that we
define a hypothesis what a good model for scaling is, in order to
confirm this model later empirically (or even to falsify it).

For our scaling model, we follow and generalize [13]: Now, we
define a most informative view as this scaling K that regularizes
the Voronoi diagram of the projected points best. Here, the term
“regular” means to minimize the variance of the Voronoi cell sizes
under varying K.
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This minimization process involves (and thus interlocks) each
dimension equivalently. Thus, from a geometrical point of view,
we expect that the global patterns of the data unfold, appear,
and get visible (almost) independent of the initial data scaling.
In detail, structures that can be explained by the interplay between
a set of dimensions are preferred, while rather local structures
– e.g., structures that appear just by playing with the scaling of
a single dimension – are suppressed. This way, with our most
informative view we get the most global structure enhancing view.
Our empirical results confirm this assumption.

To prepare further discussion, we subsequently introduce the
used technical notations and the description of the scaling issue
from a technical perspective.

4 NOTATIONS AND BACKGROUND

In this work, we label mathematical objects as follows:
• a (real) scalar value is given by lower case letter s,
• a (real) column vector is given as bold lower case letter s,
• a real matrix is given as bold upper case letter S.

We avoid to mention the dimensionality of a vector or matrix if it
is clear from the context. In addition, we label the unit matrix as
I, the one vector as 1, and the zero vector as 0.

We define the Hadamard product for two n× m matrices as
element-wise multiplication

C = A◦B ↔ ci, j = ai, j·bi, j. (1)

For one n×m matrix and one n×1 vector, the Hadamard product
is given by

C = A◦b ↔ ci, j = ai, j·bi. (2)
We define n as the dimensionality of the data space, and m as the
number of data points. Then, the j-th point in the data space can
be written as d j = (d1, j, ...,dn, j)

T , and the matrix of all data points
is the n×m matrix

D = (d1, ...,dm). (3)

Star Coordinates are defined by setting a 2D coordinate axis ai =
(xi yi)

T for every dimension. Such coordinate axes ai are usually
denoted as anchor points of the Star Coordinate projection. The
projection is then defined by the 2×n projection matrix

A = (a1, ...,an). (4)

An alternative representation of matrix A is in polar form
A = A◦k, (5)

being a partition into the normalized matrix A and its scaling k,
A = (a1, ...,an), (6)

k = (k1, ...,kn)
T (7)

and
ki = ||ai|| , ai = ai/ki. (8)

The direction points ai encode the direction in unit length (by
reflecting the angle of the direction) and the scalars ki encode
the scaling of the projection in Euclidean length w.r.t. anchor
points ai = ai·ki. This gives an intuitive approach to visualize
the projection matrix A: considering the 2D origin o in image
space, the direction points are visualized as box on a unit circle
at (ai− o), the anchor points as (tiny) circles given at (ai− o),
and the scaling ki equates to the length of the line (ai− o). The
visualization scheme is illustrated in Figure 3.
This way, the 2D projection p j of the data point d j is p j = A ·d j,
and the matrix P of all projected data points is the 2×m matrix

P = A ·D = (A◦k) ·D. (9)

Since this work is based on the observation that the properties of
the data d j are influenced by scaling operations, we subsequently
give a detailed introduction to this scaling issue.

1

unit circle

anchor point

direction point

scaling

Fig. 3. Visualization scheme for a projection matrix A for case n = 5.

5 THE SCALING ISSUE

The scaling issue describes that the scaling, i.e., a linear transfor-
mation of the data, strongly influences the geometrical properties
of the data. Thus, the results of a data analysis are influenced by
the scaling and might reflect the underlying scaling much better
than the underlying data, which is illustrated in the following.

5.1 Theory of Scaling

Giving an nD data record d = (d1, ...,dn)
T to standard basis I as

d = d·I. (10)
The scaling k = (k1, ...,kn)

T for the data record d is then given by

d′ = d◦k = d·(I◦k), (11)

which equates to a basis transformation of the data record d from
the standard basis I to d′ in the basis I◦k. Note that the scaling k
also characterizes the resulting basis. The inverse scaling is

d = d′·(I◦k)−1. (12)

Another scaling kb gives the data record d′′ analog as
d′′ = d◦kb = d·(I◦kb) (13)

in the basis I◦kb. By putting (12) in (13) follows the definition of
a scaling between any basis k to any basis kb with

d′′ = d′(I◦k)−1(I◦kb). (14)

We apply rules for algebra, which gives for (14)

d′′ = d′·(I◦k′), with (15)

k′ = (kb
1/k1, ...,kb

n/kn)
T . (16)

This gives an interpretation of a scaling operation as follows: Each
scaling is based on a related basis and equates to a transformation
into another. In this work, we consider the standard basis I as
related basis, i.e., ki = 1 applies in (16), which simplifies (14) to
(11) and thus gives the definition of a scaling operation by (11) and
the definition of a scaling by k = (k1, ...,kn). The scaling k affects
a shift of d to the novel position d′ to the basis I ◦ k. Figure 4
provides an illustration for the effect of shifting data points d by a
scaling (k1,k2,k3) of the standard basis (1,1,1) for two different
scaling operations with (0.5,1,1) and (2,1,1) for the case n = 3.

=1=1

=1 =1 =1

=0.5=1 =2=1

Fig. 4. The Scaling Issue: pairwise distances dp,i change with scaling.
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5.2 How the Scaling Influences the Data Properties
Why is the choice of scaling important? Let us recap that the main
goal of the (visual) data analysis is to reveal characteristic patterns
of the data. Unfortunately, both the shape and occurrence of these
patterns strongly depend on the choice of scaling. To explain why
the scaling influences the structure of patterns, let us take a look
at the general scaling-related Minkowski distance dp between two
data records di and d j, given by:

dp(di,d j,k) = p

√
n

∑
d=1
|di,d ·ki−d j,d ·k j|p (17)

where k = 1 and p = 1 gives the well-known p1-norm aka Man-
hattan distance, p = 2 gives the p2-norm aka Euclidean distance
and so on. It can be seen that these distance measures depend on
the level of scaling k = (k1, . . . ,kn). Figure 4 illustrates this effect:
dp,1 = dp,1(d1,d3,k) is the distance between the records d1 and
d3, while dp,2 = dp,2(d1,d2,k) gives the distance between d1 and
d2. For the standard basis applies dp,1 = dp,2. After scaling with
k1 = 0.5 and k1 = 2 the distance relations completely change to
dp,1 > dp,2 and dp,1 < dp,2, respectively. Thus, all characteristics
of the data that are related to distances are scaling-dependent, such
as the structure of the patterns, the clustering, the distribution and
density estimation of the data: All these characteristics change
if the scaling does. A well-known example for this effect is the
change of the analysis results of the popular principal component
analysis (PCA) [44] or of the multidimensional scaling (MDS)
[42] under a varying scaling of the data. Thus, considering the
scaling of data is mandatory for a successful data analysis.

Finally, we give a practical qualitative example for the scaling
issue: Figure 1 illustrates how different scalings influence the
data patterns for two synthetic datasets with n = 3 dimensions
and m = 1000 data records, generated by [2] (the data can be
found in the additional material). At the top, Star Coordinate
projections for the dataset 1 are given: On the left, a projection is
given for the dimension-wise choice of scaling k≈ (0.45,2.3,1.0).
The data pattern shows a (weak) multi-linear correlation. For the
next projection the choice of scaling of the data has changed to
k ≈ (1.7,1.0,0.7) and we can see that the structure of patterns
changed dramatically. Now, the data contains two clusters while
the correlation seems to have vanished, showing that the influence
of scaling might dominate the behavior of the data completely. On
the bottom, dataset 2 is discussed. The Star Coordinate projection
on the left shows the data for a scaling with k≈ (0.43,1.58,1.0).
The data contains two clear clusters. Changing the scaling to
k ≈ (1.45,0.71,1.0) leads to three clusters in the data. It also
illustrates how the change of scaling strongly influences the
pattern configuration.

5.3 Scaling: The Common Practice
Even though the scaling issue might be known, scaling operations
are nonetheless often applied in practice, mostly without reflecting
the negative effects of it. The most common reasons are

• (i) to convert data units,
• (ii) to convert the granularity of data units, or
• (iii) to normalize the data.

For instance for (i) a data dimension d with the unit degree
Fahrenheit is converted into the degree Celsius equating to the
scaling operation

d′ = (d−32)·0.55.

An example for (ii) is to convert the unit kilogram into gram by

d′ = d·1000.

Or finally (iii), the data is normalized to the 0−1 interval by

d′ = (d−dmin)· 1
(dmax−dmin)

,

which is automatically done in a number of systems when the data
is loaded. In doing so, the data analysis might reflect the scaling
more than the data properties. Thus, we subsequently discuss how
an informative scaling might be found.

6 THEORY OF THE LloydRelaxer
In this section, we present both the theory on how scaling ef-
fects (=scaling issue) can be automatically minimized within a
geometrical approach and aspects being relevant for the numerical
handling and implementation of our concept. We start with the
presentation of the underlying theory.

6.1 Formal Problem Setting

We now assume an affine transformation of the i-th dimension
in the data space, which is defined by a scaling factor ki and
translation ei, such that for every data point d j the i-th dimension
di, j is transformed to

d′i, j = ki ·di, j + ei for j = 1, ...,m. (18)

Since every dimension should be scaled and translated indepen-
dently, we define all scalings and translations by the n-D vectors

k = (k1, ...,kn)
T , e = (e1, ...,en)

T . (19)

Then, we can write the scaled and translated data matrix

D′ = (d′i, j) = D◦ (k ·1m
T )+ e ·1m

T . (20)

The problem to be solved in this paper can now be stated as
follows: given D and A, find the optimal k and e such that Star
Coordinates of the data set D′ give the most informative projection.

Let P′ be the matrix of all projected data points D′. This gives

P′ = A ·D′ = A′ ·D+E′ (21)

with
A′ = A ·K , E′ = A · e ·1m

T (22)

where K = diag(k), i.e., K is the diagonal matrix containing
the values of k. (21), (22) is obtained from (20) by applying
elementary rules for matrix multiplication. It reveals the fol-
lowing properties: Firstly, applying a translation in one or more
dimensions in the data space results only in a translation in the
projection, i.e., it does not change the positions of the projected
points relative to each other. Because of this, we do not consider
translations of the dimensions, i.e, we assume e = 0n. Secondly,
the matrix A′ has an interpretation in Star Coordinates: if A is
considered as the set of all coordinate axes in 2D, then A′ is
obtained by scaling the i-th coordinate axis by ki for i = 1, ...,n.
In other words: scaling the dimensions in data space is equivalent
to scaling the coordinate axes in Star Coordinates. Consequently,
the scaling parameters k in (9), (11), and (17) are all the same
parameter, meaning that the scaling in the projection, data, and
their influence to pairwise distances are directly interlocked and
related to each other.

This allows us to formulate our problem as follows: given
the data D and a normalized projection matrix A (cf. (5)), find
an optimal scaling k of the n coordinate axes such that Star
Coordinates give the most informative projection.
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6.2 Informative Projections
Informally spoken, an informative projection is a projection show-
ing structures that are inherent properties of the high-dimensional
data and not due to an arbitrary data scaling. We follow [13]
and prefer projections with point layouts that are as regular as
possible. In fact, [13] considers the Delaunay triangulation of the
projected points and proposes several measures of their regularity.
Unfortunately, they cannot be directly used for our problem: Since
changing the scaling of the coordinate axes may lead to flips
in the Delaunay triangulation, the measures are discontinuous
under scaling the coordinate axes. While finding the minimum
in the case of scatterplots (having only one degree of freedom)
is possible (see [13]), it cannot be conveyed to the case of Star
Coordinates with n− 1 degrees of freedom. Because of this, we
consider the dual structure that shows continuous changes under
axes scaling: the Voronoi diagram. In fact, we search for a scaling
of the coordinate axes such that the Voronoi diagram is as regular
as possible.

Initial
Radial Layout

LloydRelaxer
Vectors for
first iteration

Lloyd Vectors
for first iteration

LloydRelaxer Vectors (blue) and Lloyd Vectors (red) as arrow plot
for the first iteration

Final Lloyd Relaxation

Final Result of
our LloydRelaxer

Vary k1 Vary k2 Vary k3

(b)(a)

(c) (e)(d)

Fig. 5. Scheme of the theory for our LloydRelaxer : (top) Shift vectors
for different scaling operations, (a) Result of a Lloyd Relaxation, (b)
Shift vectors for the first step of a Lloyd Relaxation, (c) Result of our
LloydRelaxer, (d) Shift vectors for the first change of scaling by dk of our
LloydRelaxer, (e) Overlay view for (b) and (d).

Let L be the Lloyd matrix of P (cf. Fig. 6(b)). In general, a
step of the Lloyd relaxation changes the locations of the points in
a way that cannot be achieved by changing the scaling k of the
coordinate axes only (cf. Fig. 6 (top)). Instead, we search for a
scaling such that the change of the location of the projected points
comes as close as possible to the change under one step of the
Lloyd relaxation (cf. Fig. 6 (d-e)). Let dk = (dk1, ...,dkn)

T be the
nD vector of the desired changes of scaling k, i.e., the scaling of
the coordinate axes changes from k to k+ t·dk for a small step
size t. This induces a change of the location of projected points
from

P = A ·K ·D (23)

to
Pdk = A ·diag(k+ t·dk) ·D. (24)

Then, we search for the unknown dk such that Pdk−P
t comes as

close as possible to L, i.e., we solve∥∥∥∥ (Pdk−P)
t

−L
∥∥∥∥2

F
→ min . (25)

Since
(Pdk−P)

t
= A ·diag(dk) ·D, (26)

with (23) and (24), the system (25) is a quadratic function in dk.
Its solution is a linear system in dk that can be written as

S ·dk = w (27)

and thus
dk = S−1·w (28)

with

S = (D ·DT )◦ (AT ·A) , (29)

W = AT ·L ·DT , (30)

w = diagv(W) , (31)

where diagv denotes the vector of the elements on the main
diagonal of a quadratic matrix. The proof that (27)–(31) is the
solution of (25) is provided in an accompanying Maple sheet.
Then, one iteration step towards a most regular scaling is given
with

A = A◦ (k+ t·dk) (32)

parametrized by the step size t. Following this iteration until A
converges gives the final most regular and informative projection
(cf. Fig. 6 (c)), i.e., our LloydRelaxer result. This projection is as
simmilar as the data allows under scaling w.r.t. the plain result of
the Lloyd Relaxation (cf. Fig. 6(a)).

The construction of L from P = A·D is an elementary step
to calculate dk. This and further aspects regarding the numerical
handling and implementation will be subsequently discussed.

7 IMPLEMENTATION

In this section, we discuss aspects of the implementation and we
describe the final Algorithm 1 of our LloydRelaxer in detail.
7.1 Constructing Voronoi Centroids and Lloyd Matrix
We define the related centroids and Lloyd vectors (cf. 6 (a) right)
of the Voronoi diagram (cf. 6 (a) left). For each Voronoi cell v(p)
to each projected point p the 2D centroid c(p) (cf. 6 (b1−3)) is

c(p) =
∫

v
p· p(p) dp,

with p(p) equating to the density. Here, the density being p(p) =
const. Given a triangulation of the convex polygon (being the
Voronoi cell) between point p and the Voronoi cell’s corner
points pi (cf. 6 (c1−3)), this equation to calculate the centroid
c(p) simplifies to:

c(p) = ∑
w
i=1 pi · Ai

∑
w
i=1 Ai

, with (33)

pi =
1
3
· (p+pi +pi+1),

p = ||pi+1−pi||, pi = ||pi−p||, pi+1 = ||pi+1−p||

s =
1
2
· (p+ pi + pi+1),

Ai =
√

s·(s− p)·(s− pi)·(s− pi+1).

The 2×m Lloyd matrix L contains the difference vectors between
the projected points pi ∈ P and the Voronoi centroids ci ∈ C,

L = C(P)−P. (34)

7.2 Handling Doublings in the Point Set
The calculation of the Lloyd vectors L is a crucial step and thus
requires to minimize all sources of errors. Regarding this, the
underlying Voronoi diagrams can be generated for distinct point
sets only, i.e., for point sets that do not contain a copied 2D
position: pi 6= p j, i 6= j. If there are at least two points sharing
the same position (doubling) pi = p j, two distinct Voronoi cells
cannot be found for them in order to spatially separate these
points. In our approach, there are two situations where such
doublings might occur.
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1.) First, double data values di = d j ∈ D must produce a doubling
pi = p j ∈ P in the projection, since it applies:

(di = d j)→ ([pi = A·di]∧ [p j = A·(d j = di)])→ (pi = p j).

To handle this first case, we remove all double data values in the
data matrix D before the LloydRelaxer is applied. This is justified
by the fact that the general geometric properties of the related 2D
point set appear similar – with or without these double values –
and independent of the projection matrix A.

2.) The second case happens if a projection A projects different
data points di 6= d j onto the same projected points pi = p j:

[(pi = p j)|(pi = A·di)∧ (p j = A·d j)]→ (di 6= d j).

This case cannot be trivially handled and is a singularity configu-
ration. Deleting the data di or d j is not an option, since the related
doubling pi =p j depends on and is caused by the projection matrix
A, and is not structurally stable, i.e., it would disappear by slightly
changing A. In addition, deleting di or d j is also not an option,
since this would change the semantic information of the data and
thus the data itself. For this case, our approach has to preserve
the data di and d j to maintain the ability to build up a Voronoi
diagram, which means that our approach has to recover pi 6= p j:
For this, the projection matrix A could be slightly varied. However,
this is not a good idea, since it would be a global operation
changing the positions of all points, which might cause even more
second cases in the projected point set. Thus, it is advisable to
reposition solely one of the two points to the position p′i by adding
some noise: p′i = pi +n and n = t1·(cos(t2) sin(t2))T , with
t1 ∈ (0,0.01] and t2 ∈ [0,2·π] being random numbers, where t1
controls the distance of the shift and t2 controls the direction
for this repositioning. Thus, the handling of this second case
introduces a small error related to the intensity of the added noise
n in order to resolve this singularity. However, this second case
has never been observed within our tests with real data (but in our
synthetic data which we designed to reveal this effect). This is
plausible, because it is numerically unlikely to accidentally meet
a projection A that projects arbitrary data to the same points.

Beyond these two cases for a doubling, due to numerical reasons,
a quasi doubling might occur. A quasi doubling means that
the distance (e.g., Euclidean or Manhattan) between pairwise
projected points pi and p j is so small that further mathematical
operations for the remaining LloydRelaxer process become nu-
merically unstable and fail, i.e.,

||pi−p j||< τ.

The lower numerical boundary of τ is 10−38 for float and 10−308

for double value computation operations. Practically and from
experience τ should be chosen τ ≈ 0.001. To resolve such quasi
doublings in the projected data P, the distances between pi and p j
can be increased to be larger than τ by applying a uniform multi-
plication kn to the projected points P. From experience, kn = 100
yields convincing results. The Lloyd vectors L suppressing quasi
doublings can then be computed by exchanging (34) with:

L = (C(P·kn)−P·kn)/kn. (35)

7.3 Handling of Border Voronoi Cells
In practice, the Voronoi diagram has to be bordered by a rectangle
with the diagonal bmin = (bxmin bymin) and bmax = (bxmax bymax),
giving four border edges. We define a border Voronoi cell as a
Voronoi cell that touches the boundary, i.e., that shares at least
one edge with the border of the Voronoi diagram. The remaining
Voronoi cells are denoted as inner Voronoi cells. The Lloyd vectors
being related to border Voronoi cells do not reflect the data but the
choice of borders. Thus, depending on the chosen boundary, these
Lloyd vectors might have an arbitrary Euclidean length, which is
unrelated to the data.

Figure 7 (top) illustrates a typical scenario for the evolution of
a Voronoi cell while the projection matrix A is being changed
smoothly: Here, 12 samples of the time series are presented.
During the evolution, the marked Voronoi cell starts as an inner
Voronoi cell (red) and later becomes a border Voronoi cell (green)
and vice versa. The profile of this Voronoi cell for the length of
the related Lloyd vectors for this time series in Figure 7 (top)
illustrates that the Lloyd vector becomes twice as long as usual
during the border Voronoi phase of this cell. Please note that,
depending on the choice of the border, they could be even longer.
Figure 7 (bottom) illustrates this effect for a Voronoi diagram of
a typical point set configuration. The Lloyd vectors of the border
cells are a couple of times longer than usual, which is stressed
in the illustration for the distribution of the length of the Lloyd
vectors. Fortunately, the number of border Voronoi cells is usually
small. Here, it is 13 out of 147 cells, which equates to a low rate
of 8%. This is a usual relation. In addition, the number of inner
Voronoi cells grows much faster with growing number m of points
than the number of border Voronoi cells does. In total, a small
relation/number of border Voronoi cells remains, which might
have long and data-unrelated Lloyd vectors, strongly influencing
the calculation for the LloydRelaxer. In order to handle this, the
Lloyd vectors li ∈L of the border Voronoi cells are not considered
within the Lloyd matrix L, i.e, they are set to 0 in L.

7.4 Limiting the Lloyd-based Expansion
The Lloyd relaxation only converges if a certain limit in space is
considered, such as a boundary box. Thus, we limit the maximum
length of an anchor point ai = (xi yi)

T to one ||ai||= 1 by defining
an additional uniform scaling k: (k+t·dk)·k w.r.t. (32). From this,
k directly follows as:

k =
√

1/(x2
i + y2

i ), where i relates to max(
√

x2
i + y2

i ). (36)
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Figure 8 shows how such an axis point configuration is limited by
a uniform multiplication with k. Note that the pairwise aspect ratio
ki/k j is untouched by applying k, i.e., ki/k j = (k·ki)/(k·k j).
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Fig. 8. Restrict an anchor point configuration into the unit circle for n = 5:
(left) arbitrary configuration, (right) restricted configuration to unit circle
by applying a multiplication with k to the anchor points.

7.5 The LloydRelaxer in a Nutshell
Here, we assemble the mentioned modules from Sec. 6.2 to 7.4 in
one scheme, which gives the Algorithm 1, i.e., the LloydRelaxer.

The input of the algorithm is a normalized projection matrix
A, an initial set of scaling factors k, and the data matrix D. A
defines the projection directions on the unit circle and it is the
only required input from the user. For the initial k, we use the unit
scaling k = 1T = (1, ...,1)T , since we are interested in finding the
aspect ratios ki/k j that minimize scaling effects, which does not
depend on the level of an initial uniform scaling. D is the data
where all double values are removed to handle the first case for
doubling as explained in Sec. 7.2.

The algorithm requires a set of further parameters: itmax, t,
ε , B, kn, τ . The maximum iteration number itmax guarantees
that the algorithm ends up in finite time. Step size t influ-
ences the speed of converging, while the threshold ε charac-
terizes what the best possible quality of converging could be,
i.e., ε = 0 is optimal. The border parameter B = (bmin, bmax)

Algorithm 1 The LloydRelaxer

0: procedure LLOYDRELAXER(A,k, D, itmax, t, ε , B, kn, τ)
1: S−1 = ( (D·DT )◦ (AT ·A) )−1, dk = ∞, it = 0, A = A◦k

2: //Minimize the scaling effects by iteratively optimizing k.

3: while ( (||dk||> ε)∧ (it ≤ itmax) ) do
4: P = A·D

5: //Handle doubling of the 2nd Case (cf. Sec. 7.2).

6: for all pi,p j ∈ P, i 6= j do
7: if ((pi−p j) == 0) then
8: t1 = random(0,0.01], t2 = random[0,2·π]
9: pi = pi + t1·(cos(t2) sin(t2))T

10: end if
11: end for

12: //Generate the Lloyd Matrix by (34-35) of Sec. 7.1-7.3.

13: if (min(pi−p j)< τ) then
14: L = (C(P·kn)−P·kn)/kn
15: else
16: L = (C(P)−P)
17: end if

18: //Build the new k to minimize scaling effects (cf. Sec 6.2).

19: w = diag(AT ·L·DT )
20: dk = S−1·w
21: k = k+ t·dk

22: //Limit the Lloyd expansion with k from (36) (cf. Sec. 7.4).

23: k = k·k

24: //Calculate one step towards the most informative view.

25: A = A◦k
26: it ++
27: end while
28: return A,k
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Fig. 9. Quantitative Evaluation: accuracy and performance behavior for
varying parameters of the LloydRelaxer ’s parameter space and different
benchmark data.

defines the size of the Voronoi diagram. It should be as large
as the border rectangle of the convex hull of the projected data
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points p = A·d. Because of (36), the largest component value
in A is 1, which gives the upper estimation of the borders by
p = 1·d = ∑

n
i di as bmin = (−max(∑n

i di),−max(∑n
i di))

T and
bmax = (max(∑n

i di),max(∑n
i di))

T . If the data is normalized,
i.e., di ≤ 1 the calculation of the upper estimation for the border
simplifies to bmin = (−n,−n)T and bmax = (n,n)T .

For handling quasi doublings, the parameters kn and τ are
required. From experience, kn = 1000 is convenient. Since a
uniform scaling does not affect the aspect ratios ki/k j, the lines
13 and 15 to 17 from Algorithm 1 could be ignored, meaning
that the τ-based test to find out whether the handling of pseudo
doubling is required will not be applied. Instead, the handling of
pseudo doublings would be applied blindly by default. Then, the
parameter τ is not required anymore.

Additionally, since it is numerically unlikely to get a doubling
– and even if, it would just negatively influence one or two frames
under an interaction with A – one could ignore the lines 5 to 11
from Algorithm 1 if one is willing to pay this price.

Let us take a look at the runtime of the algorithm. For this, we
only need to focus on the dominate parts: Line 4 costs O(n·m),
line 13 to 17 cost O(m· log·m) since they include Fortune’s
algorithm, line 19 is with O(n·m2) expensive, and from line 3
we know that the algorithm converges after a number of itmax
iterations, at least. This gives the runtime by

(O(n·m)+O(m· log·m)+O(n·m2))· itmax = O(n·m2· itmax).

We see that by using the complete m data records of D the
algorithm performs worse the more m grows. In a statistical sense,
the information of the data might also be contained and preserved
within a subset, if m is large. Thus, in order to reduce the number
m of used points, we apply a uniform data sampling Dγ analog to
[25] and based on [34], with γ ∈ [0, ...,1] equating to the amount
of used data, i.e., Dγ=1 = D, for our Algorithm 1. In [25] it is
proposed to generally use γ = 0.1, i.e., 10% of the data D, but
their application is different to ours. Here, from evaluation (cf.
Sec. 8.1), about γ = 0.2 gives good results and performs well. In
the next section, our approach will be evaluated.

8 RESULTS / EVALUATION
In this section, we provide a quantitative evaluation in order to
analyze the relation between our algorithm and its parameteri-
zation. In addition, we give a qualitative evaluation to illustrate
the abilities of minimizing scaling effects for the projection-based
visual data exploration. The evaluation was conducted on a 64 Bit
Dual Core Intel CPU 2,6 GHz mobile computer in single thread
mode with an NVIDIA GeForce GTX 950M and OS Win 8.1.
8.1 Quantitative Evaluation
We conducted a set of experiments based on the standard radial
layout of Star Coordinates for the projection matrix A in order
to measure the behavior of the parameters γ, t and itmax w.r.t.
the accuracy and performance of the LloydRelaxer. We do so by
varying a parameter of interest and holding the remaining param-
eters. For this, the accuracy ae of the parameter e ∈ {γ, t, itmax}
is the normalized Manhattan distance d1(k1,ke

r) (cf. (17)) be-
tween the initial scaling k1 = (1, ...,1)T and the resulting scal-
ing ke

r after running the LloydRelaxer by varying parameter e
as ae = |d1(k1,ke

r ,k1)|/n. Those values for parameter e which
produce the same ae values give the same accuracy behavior. In
contrast, the performance is measured with the run-time of the
algorithm in milliseconds. Figure 9 presents the behavior of the
parameters in e for 8 benchmark datasets, with n ∈ (5, ...,128)
and m ∈ (150, ...,1994). Please see UCI repository [27] or [25],

[26] for more details about the datasets. In total, we ran 880
experiments which cover the 8 datasets, with a portion of 152
runs in order to investigate the influence of the data sampling rate
γ , 632 runs to choose an optimal maximum iteration number itmax,
and 192 runs to disclose the behavior regarding step size t.
Data Sampling γ: For parameter γ (Figure 9 (left)), we are
interested in finding a rate which gives accurate results and
performs well. The accuracy error stays within 10−3 if we chose
γ = 0.2, except for the data Iris and Sponge. But these datasets
have a low data record number m. Hence, we choose γ ≥ 0.2 if
m ≥ 150 and y ≥ 0.8 else. This way, we also get an acceptable
performance with one outlier: the Community dataset. Here, a
clustering would be a good possibility to improve the performance.
However, this is far beyond the scope of this paper. Thus, we leave
it to future work.
Step Size t: The performance exponentially grows with decreasing
step size t (Figure 9 (right)). If t ∈ (0.001, ...,0.1), then the accu-
racy behavior is quite similar (red circles), but the performance
gets exponentially worse if t < 0.1 (red arrows). Thus, t should be
chosen close to t = 0.1.
Maximum Iteration Number itmax: The iteration number is
well chosen if the converging behavior for the accuracy is good,
which is given by a small slope in Figure 9 (middle). For most
of the cases, an iteration number of 4000 gives an appropriate
convergence, and if not, the subsequent changes regarding the final
scaling results are negligible. So 4000 steps are convenient. In this
test, for reasons of error minimization we worked with a step size
of t = 0.001. Note that the LloydRelaxer is an iterative process,
i.e, if the step size is divided by f , the iteration number has to
be multiplied by f in order to reach the same solution quality.
This is a well-known relation between an iteration number and a
step size. We found out above that a step size of t = 0.1 leads to
good results. Thus, an iteration number of 40 ((4000·0.001)/0.1)
is appropriate. In total, based on these tests, we recommend to
choose γ = 0.2, itmax = 100, t = 0.05 to guarantee good results if
the LloydRelaxer should be used in an interactive mode. Other-
wise, the parameters can be chosen with a better resolution which
is subsequently presented for the qualitative evaluation.

8.2 Qualitative Evaluation of Synthetic 2D Data
In this section, we consider two-dimensional synthetic data [2]
in order to qualitatively evaluate comprehensive properties of our
approach and for reasons of completeness. For this, Figure 10
(top) shows a set of scatterplots of synthetic 2D datasets that
contain three compact clusters and m = 1000 data records each.
One cluster is shifted from the left to the right (green line) in order
to “simulate” different configurations. Note that Star Coordinates
and scatterplots are equivalent in the 2D case. Figure 10 (bottom)
shows a set of scatterplots of synthetic datasets that contain two
clusters this time. Again, one of these clusters is shifted from the
left to the right. Finally, Figure 10 (bottom-left) shows an example
for a complex pattern in the 2D dataspace (with m = 10000 data
records). Obviously, to automatically select the aspect ratio for 2D
data is the same as scaling one of the two available axes. So, the
degree of freedom is only one.

For each sample in this Figure 10, the original scatterplots
visualization (= label Original) and the resulting scatterplot, when
applying our LloydRelaxer, is given (= label LloydRelaxer). In ad-
dition, the figure shows two further variations of our LloydRelaxer:
first, without handling the border Voronoi cells (= without border
handling, cf. Section 7.3), and second, based on an alternative
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Fig. 10. Simple Qualitative Evaluation on synthetic data: The index of the data is color-coded. (Top-Box) A cluster in 2D data is moved along the
green path within a dataset containing three clusters. (Bottom-Box). The same application as seen in the Top-Box, but with two clusters instead of
three. Both boxes further illustrate the outcomes for the LloydRelaxer for these clustered data. (Bottom-Left) The outcome of our LloydRelaxer for
a complex pattern is shown.

boundary handling of the Voronoi cells, called automatic Voronoi
windowing (= automatic Voronoi windowing). Here, instead of
using a fixed size to define the bounding box of the Voronoi
diagram, given by the parameters bmin and bmax, we consider
the boundary border of the convex hull of the point set at each
iteration step. This has the effect that the size of the Voronoi
diagram constantly shrinks over the LloydRelaxer process.

Analysis: Figure 10 (top): It can be seen that the LloydRelaxer
preserves the clustering of the data the more the less linear
independent the structures are to each other; meaning, as long
as they cannot be mutually revealed from each other by just
playing around with the scaling of one dimension. Thus, Figure 10
(top-right) shows barely a linear structure, which fits the data
best, while Figure 10 (top-left) shows the three clusters clearly
separated from each other. The same applies to the example
in Figure 10 (bottom): the middle figure shows the separated
clusters, while the remaining examples rather stress the linearly

related nature of the data. In addition, it can be seen that the
border handling is important to the complete process. Without
it, the border Voronoi cells (which are not related to the data)
seem to dominate and thus to disturb the complete relaxing
process, i.e., the results are almost equivalent to the original
data. Lastly, the automatic Voronoi windowing illustrates that the
complete structure would collapse without having a reasonable
and constant choice of the size of the Voronoi diagram. But
there is one exception: the complex pattern. The complex pattern
(Figure 10 (bottom-right)) is linearly completely unrelated w.r.t.
its data records in a way that – informally speaking – even such a
collapsing behavior cannot make the pattern disappear. However, it
follows that the LloydRelaxer has nevertheless to be parametrized
w.r.t. the outcome of our quantitative evaluation.

Figure 11 shows a set of further experiments, with the above-
mentioned 2D complex pattern (left) and the two multivariate 3D
dimension reduction benchmark datasets Spiral [5] (middle) and
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Fig. 11. Complex Qualitative Evaluation on synthetic data: The index of the data is color-coded. The column labeled with scaled illustrates different
initial scalings for different benchmark data and the column labeled with LloydRelaxer illustrates the related outcome by our approach.

Swiss Roll [43] (right). For each case, arbitrary scaling config-
urations (= label Scaled) are used to initiate our LloydRelaxer.
Then, two properties of our LloydRelaxer can be observed: (i)
independent of the initial scaling, our LloydRelaxer produces the
same output in our experiments, solely dependent on the chosen
initial projection direction (i.e., the choice of A); (ii) global
structures – i.e., structures that are related to all dimensions of
the dataset (not only to a certain subspace) – are worked out and
preferred. For instance, the Swiss Roll contains a sort of spiral that
is swirling around a cylinder. A good projection should disclose
this relation independent of the chosen projection direction. While
the spiral structures just “live” in 2 of the 3 dimensions, the
cylinder structures “lives” in all 3, which a good descaling should
disclose and which our LloydRelaxer does for all cases (e.g,
see Figure 11 (red points)). From the qualitative experiments
with synthetic data, we can learn that global structures could be
revealed efficiently by our LloydRelaxer by choosing appropriate
aspect ratios automatically.

8.3 Qualitative Evaluation of Real nD Data
In this section, we conduct experiments with real data this time in
order to observe how the above mentioned properties of our Lloy-
dRelaxer affects real-life applications. In Figure 12, we present a
set of real data projection examples from the multi-dimensional
datasets Census [27], WDBC [40], Yeast [32], Sponge [27], and
the Abalone [45] in order to qualitatively evaluate and discuss
the LloydRelaxer. For each sample, a projection with a pattern
of interest can be seen (bottom-left). We utilized [26] to find such
an interesting projection by having the underlying data normalized
into the 0−1 interval. In the bottom-right, the resulting scaling and
projection can be seen for this pattern after our LloydRelaxer has
been applied, parameterized with t = 0.05, γ = 1, and itmax = 1000.

On the top, the evolution during the LloydRelaxer algorithm of the
scaling and projection matrix is visualized.

In the Census example, the complex original pattern (left)
vanishes and two clearly separate clusters appear after applying
our LloydRelaxer (right). It is also of interest that by far only
one dimension contributes most to this cluster structure, while the
remaining dimensions have much less (but not zero) influence on
it. Thus, a linear separation for the two groups could be done
easily, i.e., in this case a kind of visual classification or linear
discrimination process would be supported (in case of need).

In the WDBC example, we see two global clusters in the
projected data at first (left), which turns into a multi-linear relation
(right) as most informative view. Here, medical doctors are usually
interested in seeing the two “global” clusters, which allow to
discriminate between malignant and benign breast cancer tumors.
Does our result mean that there is no such discriminator? No, it
does not. We also considered the ’ID’ variable here, which modi-
fies the global structure, in order to illustrate that our LloydRelaxer
really reveals the global pattern of the input data. Obviously, the
considered variables need to be chosen carefully by an analyst in
advance to avoid a further misleading source.

In the Yeast example, a collection of outliers is found (left),
which are even preserved under our LloydRelaxer. Here, the initial
scaling already shows an optimal global pattern. In the Sponge
example, two clusters and some outliers can be seen (left). Finally,
it turns out that four clusters – two larger clusters and two which
are rather small (right) – can be distinguished and seem to be the
better global pattern.

In the Abalone example, three clearly separated multivariate
linear structures occur (left) at first, but after relaxing the scales
these linear structures are not that well separated anymore. In fact,
only one linear structure seems to be reliably well separated (right,
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Fig. 12. Qualitative Evaluation on real data: The index of the data is color-coded. A projection of interest was selected for each data of a set of
multi-dimensional benchmark dataset. This gives an initial scaling configuration (left, red border). On the right (green border), the descaled version
of this projection after applying our LloydRelaxer is given. Structures that can be seen can be better explained by the data now, instead by scaling.
Further information are given by the initial and final Voronoi diagram and the evaluation of the visualized projection matrices during our approach.
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green arrow). However, both structures look quite similar, meaning
these global structures are a result of the data, and not accidentally
caused by scaling artefacts.

Our examples illustrate that the reliability w.r.t. patterns of the
data which are seen within a projection can be increased by using
our LloydRelaxer. Thus, to integrate the LloydRelaxer within a
visual exploration process enables to robustly find relevant data
patterns that are not only caused by scaling artefacts.

9 DISCUSSION AND CONCLUSION

There is an underrated aspect when analyzing data: scaling
artifacts. They disturb the visual analysis. Thus, we presented
the LloydRelaxer to address this scaling issue for multivariate
projection of nD data. We do so by defining a smooth transition
from the initial scaling to an as-regular-as-possible scaling via
concepts from computational geometry, such as Voronoi diagrams
and the Lloyd relaxation.
An Interactive Tool: We integrate our LloydRelaxer in an inter-
active tool, allowing a user-based visual exploration process. For
this, the user interactively adopts directions in the matrix A to get
the traditional projections. In order to get our optimized scaling,
our tool applies the Algorithm 1 on A continuously after each
interaction. To keep the process interactive, a data sampling is
used when required, as already discussed in Section 7.5.

{

Traditional Interaction

LloydRelaxer-based Interaction

Fig. 13. Traditional Interaction vs. LloydRelaxer -based Interaction

In Figure 13 a comparison w.r.t. the WDBC dataset between a
traditional interaction (top) and a LloydRelaxer-based interaction
(middle) is given. Even though the traditional approach indents
two clusters, the LloydRelaxer-based interaction shows that the
clusters cannot be clearly explained by the data. Figure 13
(bottom) shows a typical scaling profile k(x,y) resulting under
a LloydRelaxer-based interaction, i.e., if the angle α of an anchor
point a = (x y)T is changed (cf. examples in the additional video).
Star Coordinates vs. Radial Visualizations: In [25], a general
concept for orthographic, affine, and projective projection has been
introduced as (

p
1

)
=

(
A 0
c 1−∑

n
i=1

ci
n

)
·
(

d
1

)
(37)

where c = 0 gives affine Star Coordinates and c = 1 gives projec-
tive Radial Visualizations. By putting (23) into (37) follows
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(

1
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ci
n

)
·A·d =

(
1

cd+∑
n
i=1

ci
n

)
·A·K·d (38)

meaning that each general projection (e.g., Star Coordinates and
Radial Visualizations) comes with an inherent data scaling and
thus with the scaling issue as well.

Figure 14 shows that our LloydRelaxer can also be applied
to Radial Visualizations (and to the complete space of general
projections) as is, in order to get the most global structure-
enhancing scaling. However, since Radial Visualizations introduce
– besides the scaling issues – also non-linear distortions, we
focused on Star Coordinates to discuss our LloydRelaxer.

Scaled LloydRelaxer
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Swiss Roll n=3 m=1500

Fig. 14. LloydRelaxer : Comparison between Star Coordinates vs. Radial
Visualizations for the Swiss Roll dataset.

Noise vs. Signal vs. Scaling: A typical data model considers a
record as a weighted mixture of a signal and noise component,
and as seen in this draft it also shares a scaling property, i.e.,
informally: data = λ1·signal+λ2·noise+λ3·scaling. This is not a
complete data model, e.g., the components may be multiplicative
instead of additive, they may describe any distributions, may be
mutually interlocked, and even more components may be consid-
ered; but it is a good approximation for the discussion required at
this place. While in this work our LloydRelaxer is considered to
reduce the influence of the scaling component under projection,
the signal and noise components are untouched, meaning that
our concept does neither reduce or minimize any noise under
projection nor strengthen the signal component.
Choice of axis direction A: Working with projection directions
raises the question if it is possible to pick up a bad basis of
axis directions A. The LloydRelaxer works and can be used for
any axis configuration in A, except A = 0. If A = 0, there is
no term dk 6= 0 anymore (cf. Eq. (28)) and the algorithm fails.
This is plausible because even A would not encode any direction
information anymore on which a scaling could be applied. If just a
single column in A is 0, e.g., if the user collapses an anchor point
to 0, there is still a dk > 0 making the algorithm working as usual.
Solely the scaling of the axis which is reflected by this anchor
point is not adjusted anymore by the algorithm. In fact, this axis
is removed for the scaling analysis process when setting it to 0.
Limitations: First, our approach of the LloydRelaxer is solely
appropriate under the assumption of having a linear/affine scaling
within the data. Non-linear scaling operations (that on the other
side do not occur in the Star Coordinates projection process) were
not considered and left for future work. Second, our approach
is only appropriate for global projections, i.e., local projections,
such as LAMP [19] and similar, were not considered. Third,
the convergence of the underlying Lloyd relaxation [37] is only
guaranteed in low-dimensional spaces (1D or 2D). Thus, our
approach is designed for multi-dimensional projections in 2D and
it cannot be trivially adopted to the high-dimensional space.
Disadvantages: In addition, there are some shortcomings, e.g., the
approach is often only applicable in an interactive state if a data
sampling is used. Otherwise, it comes with a large computational
overhead. Theoretically, this must not lead to a loss of informa-
tion, but in practice it can nonetheless, i.e., it might influence the
outcome. We scheduled to spend more research effort on these
aspects in the future. Moreover, a set of convergence parameters
is required and has to be chosen carefully.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Benefits: Our empirical observations suggest that global patterns
are worked out well, only dependent on the chosen projection
direction in A. Thus, the main contribution of our work is to
introduce an iterative process in order to mutually interlock the
data dimensions to reduce artefacts of an initial (affine) scaling
targeting at enhancing the global data structures within the (linear
and global) multivariate projection space. This way, one class of
standard issues in projection-based data analysis processes can be
successfully addressed.
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