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Abstract
The visual analysis of combustion processes is one of the challenges of modern flow visualization. In turbulent combustion
research, the behavior of the flame surface contains important information about the interactions between turbulence and
chemistry. The extraction and tracking of this surface is crucial for understanding combustion processes. This is impossible
to realize as a post-process because of the size of the involved datasets, which are too large to be stored on disk. We present
an on-the-fly method for tracking the flame surface directly during simulation and computing the local tangential surface
deformation for arbitrary time intervals. In a massively parallel simulation, the data is distributed over many processes and only
a single time step is in memory at any time. To satisfy the demands on parallelism and accuracy posed by this situation, we track
the surface with independent micro-patches and adapt their distribution as needed to maintain numerical stability. With our
method, we enable combustion researchers to observe the detailed movement and deformation of the flame surface over extended
periods of time and thus gain novel insights into the mechanisms of turbulence-chemistry interactions. We validate our method
on analytic ground truth data and show its applicability on two real-world simulation.

CCS Concepts
•Human-centered computing → Scientific visualization; •Computing methodologies → Massively parallel algorithms;

1. Introduction

A central topic of today’s combustion research are the interactions
between turbulent flow and chemical reactions in flames. In this con-
text, the flame surface, i.e., the thin region where reaction happens,
is of central importance. Temperature, concentrations of chemical
species and other variables on the flame surface show the state of the
reaction. The transport and deformation of the flame surface over
time show the joint influence of chemistry and turbulence on the
combustion process.

To study the detailed mechanisms of turbulent combustion, direct
numerical simulations (DNS) are used. These simulations directly
compute the fundamental physical and chemical equations on a high-
resolution grid without any high-level modeling assumptions. As a
consequence, all physical and chemical quantities can be analyzed in
detail. However, the computational costs are very high and the data
sets produced can easily reach into the tera- or petabyte range. This
makes them practically impossible to store completely or transfer
over a network connection. For this reason, only single snapshots
of the simulation are commonly stored on disk and analyzed in
post-processing. This approach only allows investigating the state
of the flame surface at single points in time. The temporal distance
between subsequent snapshots is generally too large to interpolate
between them in any meaningful way or make any statement about
the correspondence of surface points.

In this work, we introduce an algorithm for tracking the flame
surface on-the-fly during the simulation, while the necessary data
is still in memory. Our goal is to capture the shape of the surface,
the history of individual surface points, and the local tangential de-
formation of the surface over extended periods of time. This allows
us to expand studies of the history of single points on the surface
over extended time periods, such as described by Sripakagorn et al.
[SMKP04], to the complete flame surface. Additionally, we extend
the notion of instantaneous surface stretch (such as described by
Poinsot and Veynante in [PV12]) to the tangential deformation of
the surface over arbitrary time intervals.

Our algorithm must overcome the following challenges:

1. The massively parallel simulation, distributes its domain across a
large number of processes. The surface tracking must be similarly
parallelizeable.

2. Performing analysis on-the-fly during a simulation means that at
any point in time, only data for the current time step is available
in memory and there is no way of going back in time to retrieve
previous information.

3. The surface is expected to undergo significant deformation over
time, making an adaptive refinement and coarsening necessary.

4. The tangential deformation must be reconstructed for areas of the
surface that have been refined and/or coarsened multiple times
over an arbitrary time interval.
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Point 1. precludes the use of a mesh or space partition data structure
with neighborhood information, as the global nature of operations
in such a structure is not well suited for a massively parallel algo-
rithm. Instead, we represent the surface as a number of independent
micro-patches consisting of a central point and four ghost parti-
cles measuring the local surface deformation. This is described
in Section 4.1. Points 2. and 3. mean that we need to refine the
micro-patches adaptively before they are significantly distorted. We
therefore introduce a way of monitoring the distortion of a patch and
split it before the distortion becomes too large in Section 4.2. This
method of tracking and refining a surface without explicit neighbor
information is a major contribution of this work. Based on the be-
havior of the micro-patches over time, we introduce the computation
of the tangential deformation gradient (point 4.) for arbitrary time
intervals in Section 4.3.

2. Background and Related Work

The flame surface is the location of a flame where chemical reactions
take place. In premixed flames, where fuel and oxidizer are mixed
before ignition, it is the interface between burnt and unburnt gases.
In non-premixed combustion, it is the burning part of the interface
between fuel and oxidizer. The flame surface is defined as an iso-
surface of a scalar variable such as the temperature or the mixture
fraction of fuel and oxidizer. Over the course of the simulation, the
flame surface is influenced by multiple factors. Chemical reactions
move the interface between gases by transforming them, turbulent
flow transports the gases, moving and deforming the flame surface,
and molecular and thermal diffusion have a smoothing effect on
the surface shape. An example of the effects of tangential stretch-
ing on the burning behavior of the flame is given by Renard et al.
in [RRTC99]. For a more detailed introduction to turbulent com-
bustion, see “Theoretical and Numerical Combustion” by Poinsot
and Veynante [PV12]. A modern direct numerical simulation code
is presented by Abdelsamie et al. in [AFO∗16].

The evolution of simulation variables on the path of single points
on the flame surface has been used in multiple works in combustion
literature [SMKP04, SDGH17]. In these works only a small number
of points on the surface are tracked and they do not consider the
relative tangential movement of points. Our approach allows these
kinds of studies on a much larger scale, providing data for the whole
surface, which enables statistical evaluation and visual analysis.
Stretching of a flow restricted to a surface has been investigated
similarly to our approach by Garth et al. [GWT∗08].

Tracking different kinds of features has been the subject of nu-
merous works in the field of flow visualization. A lot of research
deals with tracking volumetric features over time [SX97, SYM14,
CMN13,MGYC09,DHS∗12,MM09], while some methods focus on
point- [GTS04,TS03] or line-type features [BWP∗10]. Most of these
methods are designed for datasets that fit into the main memory of a
consumer-grade computer, although some are explicitly designed to
work in distributed-memory settings [WYM13].

Surface extraction and tracking is another large field of research.
In the context of this work, particle-based isosurface extraction
methods, like the one proposed by Crossno et al. [CA97], as well as
methods for tracking evolving surfaces over time [KGJ09,BFTW09,

BOJH15] are relevant. Of particular interest in the context of this
work is the work by Camp et al. [CCG∗12], wich deals with stream
surface integration in a distributed-memory environment.

Visualization methods designed for an on-the-fly setting in large
scale parallel simulations include the rendering of volume, surface
and point data [AMCH07, YWG∗10]. These provide an overview
of the state of a simulation while it is running and allow a visual
analysis of the data for all time steps without saving them to disk.
Agranovsky et al. [ACG∗14] proposed storing flow fields computed
during a simulation as a collection of path lines. This Lagrangian
form allows a compressed storage of the flow without relying on
snapshots with large temporal gaps.

To the best of our knowledge, there is no existing approach that
solves the problem of tracking a time surface in a large distributed-
memory simulation while maintaining temporal correspondence
between surface points.

3. Mathematical Basis

In the following two sections, we give a brief introduction into the
mathematical basis of the problems we want to solve. First, we
derive the equation for the movement of the flame surface over
time. Then, we introduce the tangential deformation gradient, which
describes the distortion an infinitesimally small section of the surface
experiences in a certain time interval.

3.1. Tracking the Flame Surface

We view the flame surface as an implicit surface s(x, t) = Γ. This
scalar function is transported by the fluid velocity v(x, t) and influ-
enced by diffusion and chemical reaction processes. A point x with
velocity u tracking the surface has a zero Lagrangian derivative, i.e.,
the value of s at the point does not change over time. Therefore

Ds
Dt

=
∂ s
∂ t

+∇s ·u = 0.

This constrains the component of u that is normal to the surface. In
tangential direction, we want u to adhere to the fluid velocity, i.e.,

‖u−v‖2→min.

Combining both constraints using Lagrange multipliers, the solution
for the velocity of a point on the implicit surface is given by

u = v−
∂ s
∂ t +∇s ·v
‖∇s‖2 ∇s .

This equation is expressed as u = v+ sdn in combustion literature
[PV12]. Here, sd is the speed of flame propagation normal to the
surface and relative to the fluid velocity and n =−∇s/‖∇s‖ is the
unit surface normal.

3.2. Tangential Deformation of an Implicit Surface in a Flow

In the previous section, we showed how a point on the surface moves
over time. We now derive the tangential deformation gradient, which
encodes the relative movement of surface points in an infinitesimal
neighborhood.

We consider the starting position of a point on the surface at
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Figure 1: Extracting the tangential component of the deformation
gradient. A local neighborhood is transformed by the deformation
gradient F. In the process, the local coordinate system is rotated by
U, which must be reverted before isolating the tangential component
of F by multiplying with the tangential basis B from both sides.

some time t0. W.l.o.g. we assume that this point is at the origin
0. Let χ(x, t) be the mapping function that maps a point x to its
position at time t > t0 after moving with the surface. W.l.o.g. we
assume that χ(0, t) = 0. The spatial deformation gradient F = ∇χ ,
which encodes the behavior of a point x in an infinitesimally small
neighborhood around 0, can then be expressed as

F ·x = χ(x, t) for x→ 0 .

We are only interested in the tangential part of this deformation, i.e.,
the behavior in a tangential coordinate system that moves and rotates
with the surface. In order to isolate the tangential component, we first
need to eliminate this rotation. A (right) polar decomposition F =
UP separates the rotational part U from the rest of the deformation.
The tangential component is now obtained by projecting P = UT F
into the local tangent space at time t0. Let B be a matrix with
orthonormal basis vectors of this tangent space as its columns. Then
the tangential deformation gradient F̂ is

F̂ = BT UT FB . (1)

Note that B∈R3×2; and thus F̂∈R2×2. See Figure 1 for an intuitive
interpretation of this transformation. Thus, F̂ encodes the behavior
of a point x̂ in an infinitesimally small neighborhood around 0̂ in
tangent space:

F̂ · x̂ = BT
χ(Bx̂, t) for x→ 0 .

4. Discretization

Our objective is an algorithm for tracking the flame surface on-
the-fly during a simulation run. It must produce the paths of single
points on the surface over time, as well as the tangential deformation
of the surface for arbitrary time intervals. Additionally, the algo-
rithm needs to be highly parallelizeable in order to work well in the
environment of a massively parallel simulation. A naive approach
might be performing an isosurface extraction in each time step of
the simulation. However, subsequent isosurfaces do not contain in-
formation about surface point correspondence between time steps.
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Figure 2: Ghost particles ( ) are initialized in an orthogonal con-
figuration around the central point ( ) in the tangent plane. While
integrating the points over time, they deviate from a planar, linear
behavior. The difference between the real positions and the nearest
linear configuration ( ) in the tangent plane is measured by the
normal error e⊥ ( ) and the tangential error eq ( ).

This correspondence is necessary if we want to provide point paths
and compute the surface deformation. Alternatively, one could ad-
vect the vertices of an explicit surface mesh, adaptively remeshing
it as the surface deforms over time. Due to the global nature of
such remeshing operations, this is infeasible in a massively parallel
environment, where irregular communication between neighboring
processors is known to be a major source of bottlenecks.

We therefore choose to represent the surface as a cloud of micro-
patches consisting of a central point and four ghost particles (see
Figure 2, left). The ghost particles sample the shape and deformation
of the micro-patch in the local neighborhood around the central
point. Each group of points is tracked completely independently. We
monitor the deviation of the ghost particles from the tangent plane at
the central point and the deviation of their relative movement from
linear behavior. Once this deviation exceeds a user-defined threshold,
we split the patch into three independent new patches to ensure
sufficient sampling. To avoid oversampling, we merge patches when
they become too small, e.g., because the surface flattens over time
or tangential movement bunches up many patches in a small area.
The tangential surface deformation is then reconstructed from the
relative behavior of the points in a group between split/merge events.

4.1. Micro-Patches for Surface Tracking

A micro-patch is represented by a group of five points: A center
and four ghost particles. On initialization, the points are arranged
in an orthogonal cross shape in the tangent plane defined by the
surface normal n at the central point x (see Figure 2). In this way,
they sample the shape and deformation in all directions as they
follow the surface over time. We describe the configuration (e.g.,
the state excluding the absolute position) of a micro-patch at time t
as a matrix C(t) ∈R3×5 consisting of the surface normal n(t) at the
central point as well as the relative positions of the ghost particles
xi(t), i ∈ {1, ...,4}.

C(t) =
(
n(t) x1(t)−x(t) · · · x4(t)−x(t)

)
.

In the following, we omit the dependence of C, n, and xi on the time
t and we assume that x = 0 wherever the meaning is clear from con-
text. For the initial configuration at some time t0, C can be exactly
represented by a unit base configuration C0 being transformed by a
linear transformation T, i.e.,

C(t0) = TC0, with C0 =
(
e3 e1 −e1 e2 −e2

)
,
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where ei are the unit vectors in the i-th coordinate direction. As the
points track the surface over time, their relative position will change.
Their relation to C0 might no longer be linear. Now, T is the linear
transformation that best approximates the mapping between C0 and
C, i.e., the solution to the least squares problem

e2 =
∥∥∥CT

0 TT−CT
∥∥∥2

F
→min.

Here, ‖·‖F denotes the Frobenius norm. The residual error e mea-
sures the deviation of the real mapping between C0 and C from
linear behavior. However, its scale is dependent on the size of the
micro-patch, i.e., the magnitude of the last four columns of C, and
it weights those columns differently from the normal in the first col-
umn. To get a more meaningful error, we normalize these columns
by their average magnitude and obtain a modified transformation
Tn and error en by

e2
n =

∥∥∥CT
0 TT

n −CT
n

∥∥∥2

F
→min, (2)

with Cn =
(
n x1/c · · · x4/c

)
and c =

1
4

4

∑
i
‖xi‖.

We separate this error into normal and tangential components

e⊥ =
∥∥∥nnT(Tn C0−Cn)

∥∥∥
F

eq =
∥∥∥(I−nnT)(Tn C0−Cn)

∥∥∥
F

.

e⊥ is a measure for the deviation of the ghost particles xi from
the tangent plane. As such, it measures the local surface curvature
in relation to the patch size. eq measures how much the tangential
deformation of the ghost particles deviates from linear behavior. As
the micro-patch changes over time, we use these errors to decide
when to split or merge patches to ensure sufficient sampling of the
surface geometry and tangential deformation.

4.2. Splitting and Merging Surface Patches

We split a micro-patch into three new patches when one of the
following occurs:

• The error e⊥ exceeds a threshold r⊥
• The error eq exceeds a threshold rq
• The major axis exceeds a threshold rsize

The first two are to ensure a sufficient sampling, the third is to ensure
a maximum patch size even on flat parts of the surface. In a parallel
distributed simulation, the size of a patch is limited by the size of
the block of the simulation domain it is contained in.

When splitting a micro-patch, we need to decide the positions of
the points forming the new patches. In this context, it helps to think
of the micro-patch as an ellipse being defined by the positions of the
ghost particles around the central point. On initialization, the ghost
particles are always placed along the principal axes of the ellipse.
When the patch is transformed over time, the principal axes will
generally not stay aligned with the ghost particles. The major and
minor axes of the current configuration can be reconstructed from
the tangential component T̂ of T, which is obtained similar to (1):

T̂ = (e1 e2)
T UT T (e1 e2) ,

split merge

Figure 3: Splitting and merging micro-patches. Left: An old micro-
patch ( ) is split up along its major axis ( ) into three new
identical patches ( ). Right: An old micro-patch ( ) is ex-
tended to three times its size along its minor axis ( ). Neighboring
patches ( ) that were split off from the central one at some earlier
time are deleted instead.

where UT is the rotation obtained from the polar decomposition
T = UP. The directions and extents of the principal axes of the
micro-patch are encoded in the singular value decomposition

T̂ = V̂ Σ̂ŴT .

The singular values σ1,2 on the diagonal of Σ̂ are the extents of the
ellipse, while the rows of V̂ are the directions of the major and minor
axis in tangent space. The directions in 3D space are the columns of
U(e1 e2) V̂T.

When splitting the micro-patch, we want the new patches to cover
the whole area captured by the old patch without overlapping, to
prevent over- or undersampling as patches are split multiple times.
We also want to leave the central point in place, so we can track
its path for as long as possible. Consequently, we split the patch
along its major axis into three identical new ones (see Figure 3). The
points of the new patches are again arranged in an orthogonal cross
shape with the axes parallel to the axes of the old patch. The length
of the new first axis is exactly 1/3 of the length of the old major axis.
The new second axis is as long as the old minor axis. The new points
are then projected onto the surface along the normal at the central
point. From this point on, they are treated idependently again.

The new central patch continues tracking the behavior of the
neighborhood around the same point as the old patch. We therefore
consider it to be the same entity, but with its ghost particles reset to a
more numerically stable configuration. In contrast, we consider the
new outer patches to be entirely new entities. Consequently, if we
say that a patch has been split or merged multiple times, we mean
that it has been the central patch in a number of these operations.

We consider a micro-patch for merging when

• both errors e⊥ and eq decrease below lower thresholds l⊥ and lq,
respectively,

• or the minor axis decreases below a threshold lsize

Because the micro-patches are completely independent, we cannot
explicitly merge multiple patches. We therefore give every patch a
counter, which is set to 0 when it is first initialized and incremented
each time it is split. When the conditions for a merge are met, the
behavior of a patch depends on its counter. If the counter is 0, the
patch is simply deleted. Otherwise, the counter is decremented and
the patch is extended by a factor of 3 along its minor axis. Assuming
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the behavior of neighboring patches is similar, this effectively means
that the new extended patch now covers the area of the neighboring
patches, which were deleted. This assumption does not generally
hold for all parts of the surface. We therefore typically choose l⊥, lq,
and lsize to be very small. In this case, points will only be deleted
in areas of extreme tangential compression, where removing very
small patches will only result in small errors, and in areas of very
simple deformation, where the assumption is unlikely to be violated.

The central point of the extended patch stays in place, while
the ghost particles are again placed along the principal axes of
the old patch, but with the minor axis extended. In this way, we
ensure that the surface is not over-sampled where it is not necessary
and that no infeasibly small patches are tracked, e.g., in areas of
attracting tangential behavior. Patches that were originally initialized
at the start of the simulation are never deleted, in order to prevent
holes from forming. Since the surface at the start of a simulation is
generally very simple and can be represented by a relatively small
number of patches, this is not an issue in practice.

4.3. Reconstructing Tangential Surface Deformation

Let F̂ te
ts be the tangential deformation gradient for a time interval

[ts, te] at the central point x(te). To reconstruct it we need the cor-
responding deformation gradient F te

ts , which describes the relative
change in position of points in a small neighborhood between times
ts and te. The behavior of the ghost particles of a micro-patch over
time contains exactly this information. However, because all ghost
particles are located on the surface, they do not contain information
about the behavior of F in normal direction. Fortunately, we only
need the change in orientation of the surface normal to reconstruct
F̂, as any other information is discarded when projecting into the
tangent plane. It is therefore sufficient to determine a proxy trans-
formation E te

ts , which maps the micro-patch configuration C(ts) to
C(te), and reconstruct F̂ via

F̂ te
ts = BT UT E te

ts B ,

with B the basis vectors of the tangent plane at ts and U the rotation
matrix from the polar decomposition of E.

Let us first assume the micro-patch was not split or merged in the
time interval, i.e., its ghost particles were not reset. Because the real
mapping between C(ts) and C(te) will generally not be linear, E te

ts is
the solution to a least squares problem very similar to (2). To make
the solution independent of the scale of the micro-patch, we scale
the last four columns of both C(ts) and C(te) by the average norm
of these columns in C(te). The system for reconstructing E te

ts is then∥∥∥CT
n (ts)E te

ts
T−CT

n (te)
∥∥∥2

F
→min, (3)

with Cn(ts) and Cn(te) being the configurations with their last
columns scaled.

If the ghost particles were reset one or more times during the time
interval, E te

ts is the concatenation of multiple transformations:

E te
ts = E te

tn ·E
tn
tn−1
· · · · ·E t2

t1 ·E
t1
ts ,

where ti are the discrete times between ts and te when the ghost
particles were reset in the course of a split or merge operation.

E t1
ts E te

tn

E te
ts = E te

tn · · · · ·E
t1
ts

Figure 4: Reconstructing the deformation for an arbitrary time in-
terval by concatenating the deformations between split and merge
events of the patch.

Each sub-interval transformation is reconstructed from the new
configuration of the micro-patch just after a split/merge and the old
configuration just before the next one (see Figure 4).

If we want to compute the tangential deformation a micro-patch
at time te has experienced since the start time ts, it is possible that
this patch has not existed for the complete time interval, i.e., it
was created at some time tk > ts during a split operation. In this
case, we estimate the transformation between ts and tk from its
parent patch by weighting the contributions of each ghost particle
differently depending on their distance from the center of the new
patch. The details of this algorithm are presented in Appendix A.
With this, we can reconstruct the tangential deformation gradient of
any micro-patch for an arbitrary time interval.

4.4. Initialization

At the start of the simulation, the initial surface has to be seeded
with patches. Most simulations start with a very simple surface, such
as a plane or sphere, for which this operation is trivial. If the starting
surface is more complex, any existing isosurface meshing algorithm
that produces near-equilateral triangles can be used, with patches
initialized to cover the area of the 1-ring of each vertex. When
initializing the micro-patches, care has to be taken not to leave any
holes, which might grow larger over time if the surface expands. We
ensure this by overlapping the initial patches, which will increase
the number of necessary patches by a constant factor, but is easy to
implement. More elaborate approaches which avoid covering the
surface with more than one layer of patches are conceivable.

5. Implementation

Our algorithm is implemented as an extension to the DINO direct
numerical simulation code [AFO∗16]. The simulation domain is
a rectangular box which is distributed to multiple processors by
a block decomposition along two of its three axes. This unusual
decomposition is required because of the pressure solver, which
operates in Fourier space and needs the complete domain in memory
in one dimension. The communication between the processors uses
MPI [MPI15].

Each tracked points gets a unique ID at its creation. In each
process, all points located in its domain block, as well as all points
in a halo region around the block are kept in memory. This halo
region is large enough to contain all ghost particles of any patch
whose central point is inside the processor’s block.
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After each simulation step, the fluid velocity v and derivatives of
the scalar variable s defining the flame surface are interpolated from
the simulation grid at all surface points to compute their velocity
u. Because each simulation block only holds data for the grid cells
inside its boundaries, the values for the points in the halo region have
to be obtained by communicating with all neighbor processes. The
points are then advanced by one simulation time step. For additional
stability, we then perform a few steps of a Newton scheme to move
them back onto the isosurface we are tracking. As the surface points
move during the simulation, they will often migrate across processor
boundaries. This is automatically handled by our implementation as
part of the information exchange with neighboring processors when
updating the points in the halo region.

Since our algorithm is running in lockstep with the simulation,
only data for the current time step is available in memory at any time
and the time step is controlled by the simulation. This means that
without generating additional memory overhead, only first order
schemes can be used to integrate the surface velocity u. In our
implementation, we therefore use an Euler scheme to advance the
positions of the points between simulation steps. The simulation
time step in DNS is generally dominated by the chemistry time
scale, which is much smaller than the fluid velocity time scale.
Since the surface velocity typically follows the fluid velocity closely,
and an Euler scheme is adequate to track the flame surface almost
everywhere, as points move only a fraction of the size of a grid cell
in each time step. Exceptions to this rule only occur at very sharp
creases in the surface, which can occur when two parts of the surface
fold into each other, possibly leading to changes in topology. The
high surface velocities occuring here can lead to points migrating
far away from the surface in a single time step. Since the surface
at these locations is contracting rapidly anyway, we simply delete
any micro-patches that end up further away from the surface than
one half of their previous advection step, provided the distance is
at least 1/5 the size of a grid cell. In our tests, this strategy did not
impact the accuracy of the surface tracking in any significant way.

Depending on the values of the errors e⊥ and eq, the micro-
patches are now split or merged and any patches that partially
crossed a non-periodic outflow boundary of the simulation domain
are removed. At this point, control is given back to the simulation,
which performs the next iteration.

The deformation gradients can either be computed on-the-fly or
as a post-processing step. In the first case, the time intervals for the
deformation need to be specified before the simulation starts. Each
patch then remembers its configuration C at the time it was last reset
and the transformations E from the start of each time interval up
until this last reset time. In the second case, the point positions and
normals of all micro-patches are stored to disk for each time step.
The deformation gradients can then be reconstructed for arbitrary
time intervals, but at the cost of increased hard disk storage demand.

6. Results

We tested our algorithm on an analytic test function that is designed
to resemble the behavior of a vortex, and on two real-world simula-
tions. The simulations were carried out on Phase 1 of the SuperMUC
Petascale System of the Leibnitz Supercomputing Centre in Garch-
ing, Germany. Each node of the system has two 8-core Intel Xeon E5

processors with a clock frequency of 2.7 GHz and 32 GB of shared
memory. The nodes are connected via Infiniband FDR10.

In the following sections, we evaluate the accuracy of our method
on the analytic test function, and show our results for the two simu-
lation cases.

6.1. Analytical Test Function

To evaluate the accuracy of the tangential deformation gradient
obtained by our method, we designed an analytic test function. It
imitates the behavior of a vortex in the shear layer between two gas
streams. The test function s is defined as

s(x,y,z, t) =

zcosA− (x− 1
2 )sinA, for

√
(x− 1

2 )
2
+ z2 <

1
2

z, else
,

A(x,y,z, t) = 2πt sin
(

π

2

(
1+
√

4x2−4x+4z2 +1
))2

sin(πy)2 .

The isosurface s = 0 coincides with the xy plane at t = 0. As t
increases, the surface is curled up around the center at (x, y, z) =
(1/2, 1/2, 0). The underlying velocity field of a vortex can not be
easily expressed as an analytic function. We therefore assume a fluid
velocity of v = 0 for our tests.

We observe the function in the domain x ∈ [0, 1], y ∈ [0,1],
z ∈ [−1/2, 1/2], t ∈ [0, 2] resolved in a 72× 72× 72 regular grid
and a time step of ∆t = 5×10−3. This means that in the investi-
gated time span the vortex makes exactly two full turns, resolved in
4000 time steps. This closely resembles the lifetime of a vortex and
temporal resolution observed in a real simulation setting.

The velocity u of the surface s = 0 can be expressed as an analytic
function. This enables us to obtain highly accurate ground truth
data for the tangential deformation gradient F̂. The largest singular
value of F̂ signifies the largest stretching experienced by the local
neighborhood of a point on the surface, which we call the stretching
coefficient c with

c = σmax(F̂) =
√

λmax(F̂T F̂) .

This is similar to the measure used when computing the Finite-Time
Lyapunov Exponent (FTLE) for measuring separation in flow fields
[Hal02]. In all tests, we use a normal error threshold of r⊥ = 0.5,
which is rather coarse. By doing this, we limit its influence on the
accuracy of the results for the tangential deformation. We show the
distribution of differences to the ground truth solution for different
tangential error thresholds rq in Figure 6. For the sake of brevity, we
only show the results for the complete interval t = [0, 2], which will
naturally show the largest errors. As shown in Figures 5 and 6, the
accuracy of our method is strongly dependent on rq. For large values
of rq, the resulting deformation does not only contain unreasonably
large errors, but the surface also exhibits some holes. Splitting too
late means that there is potentially a lot of non-uniform stretching
across the patch that is not accounted for by the resulting child
patches. This shows that observing only the normal error e⊥ is not
sufficient to guarantee a good sampling of the surface, even if one
is not interested in an accurate result for the tangential deformation
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ground truth rq = 0.01
N = 143.5k

rq = 0.02
N = 58.1k
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Figure 5: The number of patches N and the stretch coefficient c of the tangential deformation gradient F̂2
0 for the analytic test function, using

r⊥ = 0.5 and varying values for rq. Each micro-patch is represented by an ellipse scaled and aligned according to its principal axes and
orthgonal to its surface normal.
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Figure 6: Box plot of error distributions for the analytical test func-
tion. We show the minimum, lower quartile, median, upper quartile
and maximum errors for different values of rq.

gradient. As the error threshold decreases, the holes close and the
stretching value approaches the ground truth solution. For the lowest
error threshold value rq = 0.01, the number of patches at the end is
still one order of magnitude smaller than the number of grid cells
the function is resolved in.

6.2. Premixed Flame in a Box

We applied our algorithm to the combustion of a premixed hydrogen-
air mixture in a periodic box resolved in a 512×512×512 regular
grid. A high-temperature hot spot is placed in the middle of the
domain, which is initialized with a flow field exhibiting isotropic
turbulence. After the gas mixture is ignited, a flame front travels
through the domain, consuming the fresh gas mixture and leaving
burned products behind. As the flame expands, it is deformed by
the turbulent flow, which is in turn influenced by the temperature
and pressure changes induced by the chemical reaction. The flame
surface of a premixed flame is often defined as an isosurface of
the temperature between the unburnt and burnt gases, which is
what we track here. Simulations of this type are relevant in safety
research, where the influence of the turbulence intensity on the
ignition probability of the flame is studied.

The simulation ran for about 90 h using 1024 parallel proces-
sors and performing about 21000 iterations. We chose r⊥ = 0.1
and rq = 0.02 as well as l⊥ = lq = 1×10−4. The thresholds rsize

and tsize were chosen such that a surface patch is always smaller
than the smallest extent of a block of the simulation domain, and
larger than 1/16 of the size of a grid cell. Figure 7 (top) shows the
results of our algorithm for four snapshots of the simulation. The
simulation starts with a spherical configuration represented by about
9000 micro-patches. In the first shown time step, the surface has
started to expand and wrinkle from its initial configuration. At this
point, the surface is represented by about 50000 micro-patches. Up
until the last time step at t = 3.0×10−4 s, the number of patches
increases to about 870000. Despite the change in surface area and
complexity, we are able to accurately track the surface without any
neighbor information between micro-patches. We obtain smooth
results that show which regions of the surface have expanded or
contracted significantly. Figure 7 shows the change in number of
patches per surface area compared to the initial seeding density.
A high concentration of patches occurs in areas with high surface
curvature, as well as in areas where the surface deformation has a
large nonlinear component.

The ratio of the total surface area of all micro-patches to the true
area of the flame surface remains stably around 3.3 for the whole
simulation. This shows that our strategy for splitting and merging
micro-patches is successful in maintaining a consistent and stable
coverage of the surface. The number of splits performed per iteration
fluctuates around 0.015 % of the total number of micro-patches at
all times. The number of merge events per iteration is almost zero
up until the time between the second and third snapshot shown in
Figure 7, at iteration 15000, where it starts to increase, stabilizing
at around half the number of splits.

6.3. Temporal Diffusion Jet Flame

The second simulation is a temporal diffusion syngas jet flame
resolved in a 1024×1025×512 regular grid. In a diffusion flame,
the fuel and oxidizer are not premixed before ignition, such that
combustion only takes place where the two gases mix. The domain
is initialized with a turbulent fuel layer in the center, surrounded by
a quiescent air co-flow. The fuel layer and co-flow move in opposite
directions, resulting in strong shear forces that form vortices where
the two gases meet. The flame surface we track here is the isosurface
of the stoichiometric mixture fraction, which is the ratio between
fuel and oxidizer that theoretically results in perfect consumption of
the fuel with no excess of the oxidizer.
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Figure 7: Results of our algorithm for the real-world simulation cases. We show the stretch coefficient c on a logarithmic scale. For the
premixed flame case (top), c was computed for an interval of ∆t = 1.7×10−4 s and εq = 0.02. For the temporal diffusion jet case (bottom), we
show the stretch coefficient since the start of the simulation, computed with εq = 0.04. We also show the number of micro-patches per surface
area as a factor of the initial density at the start of the simulation. This density factor d is also shown on a logarithmic scale.

The simulation ran for about 23 h using 4096 parallel processors.
In this time, the simulation performed about 3600 iterations. For this
case, we chose r⊥ = 0.2 and rq = 0.04 as well as l⊥ = lq = 1×10−4.
The thresholds are chosen higher than in the premixed case, because
here, we are interested in the deformation of the surface over a
smaller time interval of 4×10−5 s. The thresholds rsize and tsize
were chosen with the same method employed for the premixed
case. We show our results for three different snapshots in Figure 7
(bottom). The case starts with a planar surface on both sides of the
fuel jet, which is moving from left to right in the images. It is initially
seeded with about 150000 micro-patches. This number stays almost
constant for the first 2000 iterations, as the surface wrinkles only a
very small amount. After this, the surface starts deforming rapidly.
As a result, the number of micro-patches increases rapidly up to
about 3 million at the end of the simulation. The surface deformation
is characterized by lots of small fuel pockets intruding into the
opposing air flow. These pockets are round and smooth towards the
outside, while they form a lot of sharp angles towards the inside.
Both the significant expansion of surface area at the tip of these
pockets as well as the sharp angles towards the fuel side are handled
well by our algorithm. The ratio of the total area of all micro-patches

to the true surface area remains constant here as well, but on a
slightly lower level of 3.15. The number of splits is almost zero
until the surface starts to deform significantly around iteration 2000.
At this point, it starts to increase from 0.002 % to about 0.003 % of
the total number of micro-patches until the end of the simulation.
This number is much smaller than for the premixed case, because
here, the surface area does not change so dramatically over time.
The number of merges is initially much smaller than the number of
splits, but increases steadily throughout the simulation until it is at
about 75 % towards the end. This is due to the contracting behavior
near the sharp angles in between fuel pockets, which causes lots of
small patches to accumulate in a small area.

6.4. Performance

Figure 8 shows the performance over the course of the simulation,
as well as the number of micro-patches existing at each time step.
We conducted multiple experiments with different choices for the
subdivision treshold εq. For the sake of brevity, we only discuss
the results for the lowest choice of εq, which causes the highest
overhead in computing time and shows the most accurate results.
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Figure 8: Computing times per iteration for different subdivision
thresholds εq. We show the base computing time of the simulation
without surface tracking ( ) as well as the total times with our
method enabled ( ). The number N of micro-patches over time
is shown as context information ( ). The vertical lines mark the
snapshots shown in Figure 7.

At the start of the premixed flame case, our implementation causes
an overhead in computing time of about 300 ms per iteration, or
about 3 % of the base computing time. As the flame surface expands,
the overhead gradually increases, until it is at about 12.5 s or 130 %
at the end of the simulation. For the temporal diffusion jet, the
overhead starts out at about 1200 ms per iteration, or about 10 % of
the base computing time. It remains fairly constant for the first 1500
iterations, as the surface does not change much during that time. The
surface then starts to wrinkle significantly, resulting in a sharp rise
of computing time, reaching up to 42 s, or about 350 % of the base
time. The overhead in computing time is proportional to the number
of surface patches. This means that it is also strongly dependent
on the shape, area and deformation of the flame surface, which
will be different for each simulation case. For the premixed flame
case, our implementation generates an overhead of about 30 h or
50 % for the whole simulation. The memory consumption behaves
very similarly, as it is also directly dependent on the number of
micro-patches. At the start of the simulation, we consume about
90 GB of additional memory, which is an overhead of about 30 %
for this simulation case. This rises to about 400 GB at the end of the
simulation, which represents an overhead of about 130 %. The total
overhead in computing time caused by the temporal jet case is 8.4 h
or about 67 %. The additional memory consumption here reaches
from 800 GB to 1800 GB, or 44 % to 150 %.

If we were to implement our approach as a post-processing step,
we would need to store the raw simulation data to disk, possibly
transfer it over a network, and read it again for each time step. If
we only store the simulation variables that are directly needed for

tracking the flame surface (flow velocity and one scalar variable), we
would already need 100 TB of storage space for the whole premixed
flame case, and 60 TB for the temporal jet case. This is more than is
typically available for a user or project on a current high performance
computing cluster. Additionally, writing this data to disk for every
simulation time step alone would incur about 21 h of run time on
our computing cluster for the premixed case and about 13 h for the
temporal jet case. If we write all simulation variables, this increases
to 420 TB (90 h) and 320 TB (70 h), respectively. Considering that
this is just part of the overhead inherent to a post-processing ap-
proach makes it clear that an on-the-fly solution is the only way of
obtaining results with reasonable effort.

7. Discussion

Due to its nature as an algorithm designed for on-the-fly execution
in a highly parallel environment, our method has some inherent
limitations. We can not go back in time to refine micro-patches
before errors due to insufficient resolution occur. This means that
we have no way of correcting for the accumulation of errors in the
estimation of the tangential deformation that will inevitably occur,
except for splitting our micro-patches whenever the error becomes
too large. This leads to a large number of micro-patches over time,
which rises faster than the surface area of the flame itself. Therefore,
the error thresholds r⊥ and rq have to be carefully chosen, taking
into account the acceptable error for the maximum investigated time
interval, and the overhead in terms of memory consumption and
computing time added to the simulation. This is not a trivial task and
requires some experience of the user, and it is not clear how it could
be simplified. However, the tangential deformation will generally
be investigated in statistics with other simulated quantities, where
the error can be analyzed and taken into account. In future work,
we want to investigate a strategy for better controlling the number
of micro-patches over time. This could be handled by periodically
merging or redistributing patches on the surface. This is a global
process that requires a common parameterization of the surface for
micro-patches in a local neighborhood.

Because we track independent micro-patches, we do not produce
a closed, manifold mesh of the flame surface. This is due to our strict
parallelization requirements, which are not met by the global nature
of subdivision and join operations in meshes. Direct rendering of the
data produced by our method can be done via splatting of the micro-
patches. If a closed mesh surface is required, it can be reconstructed
using any available meshing algorithm for point clouds.

Because our algorithm only tracks micro-patches initialized on
the starting surface, it does not handle the case of new disconnected
surface parts appearing during the course of the simulation. This
can be easily addressed by periodically checking for new parts of
the surface that are not yet covered, and initializing new patches.
For new surface parts streaming in from a non-periodic boundary, a
more sophisticated approach might be necessary, which is a subject
for future work.

If we wanted to measure the tangential deformation of the sur-
face only at single points, we could simply compute the product
integral of the instantaneous Jacobian ∇u along the path of each
point. This would not require the tracking of ghost particles and
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would be cheaper in terms of communication and memory overhead.
However, our goal is to track the whole surface. By measuring de-
formation based on the relative movement of multiple points, we get
the average of a finite part of the surface. This introduces a filtering
effect and better represents the behavior of the surface as a whole.
More importantly though, we need the information gained from
tracking a group of points to compute the error measures eq and e⊥,
which are based on the deviation from linear behavior. Without this
information, which is not included in ∇u, we could only use more
inaccurate criteria for splitting and merging patches. This would
lead to larger errors in the measurement of deformation and larger
holes in the surface.

Our algorithm is the first to provide a viable way of tracking the
whole flame surface on-the-fly over the complete simulation time.
This opens new pathways to the investigation of flame behavior. The
single snapshots that were routinely observed before did not show
detailed changes in surface shape over time, and the correspondence
between points on the surface in two different snapshots could not
be reconstructed. Because we explicitly track single points on the
surface over extended periods of time, the evolution of simulation
variables at the point positions over time also becomes easily ob-
servable. Obtaining this data for the complete flame surface enables
visual and statistical evaluation of direct numerical combustion sim-
ulations on a new scale. Our novel method of measuring tangential
deformation provides combustion researchers with a new quantity to
study the effects of flame-turbulence interactions. This integration-
based quantity is only made possible by the on-the-fly nature of the
algorithm. Accurate path line integration is simply not possible as a
post process, if the simulation data can only be stored to disk in a
massively reduced temporal or spatial resolution.

The overhead in memory and computing time caused by our
method is fairly large compared to existing on-the-fly visualization
approaches, which are generally designed to require only a small
fraction of the computing time of the simulation [Ma09]. In this
context, it is important to note that our approach is not meant to
be a visualization method only, and it is not meant to be a general-
purpose tool that is activated for every simulation. It is a specialized
analysis tool that can be used in situations where combustion re-
searchers are specifically interested in the detailed behavior of the
flame surface over long time periods. Such tools are necessary when
a detailed analysis of the low-level behavior of the flame is re-
quired. For example, Scholtissek et al. [SDGH17] report a four-fold
increase in computing time for their gradient trajectory tracking,
which enabled them to develop a more accurate flamelet model. In
this case, the analysis was employed in the context of a research
project that required accurate low-level information which can only
be achieved with high computational overhead. We expect our algo-
rithm to be used in a similar context. It is of particular interest for the
building of combustion models and the investigation of local flame
extinction and reignition mechanics. Existing combustion literature,
such as works by Sripakagorn et al. [SMKP04], observe the his-
tory of temperature and heat release at single points on the surface
that are tracked over time. By providing such histories for a great
number of points covering the whole flame surface, we enable a
statistical evaluation leading to new models for flame behavior. The
local tangential deformation of the flame surface over extended time
intervals has not been extensively studied in combustion literature.

x

x1

x2

x3

x4

b1

b2

ab

x′

x

x1

x2

x3

x4

b1

b2

a b x′

E

E′

Figure 9: Interpolating the transformation at an offset position x′.
The ghost particles in the direction of x′ have been stretched more
than their counterparts during the time interval. Therefore the inter-
polated E′ has a stronger stretching effect on the local neighborhood
of x′ ( ) than E stretches the local neighborhood of x ( ).

We believe it has a significant impact on flame behavior, as rapid
tangential stretching or compression of the gases in the combustion
zone will change the local conditions. With our algorithm, our col-
laboration partners will be able to test this hypothesis and gain a
deeper understanding of the effects of tangential deformation on
turbulent combustion than previously possible.
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Appendix A: Interpolating the Transformation for new Patches

If the deformation across the parent patch was completely uniform,
we could just pass this deformation on to the child patches after
a split. However, in general there will be slight differences in the
transformations each of the four ghost particles have experienced.
At the time of the split, we still have this information for the time
interval since the parent patch was last reset (or first created).

Let xi(tk−1) be the positions of the ghost particles (relative to the
central point) at the last reset of the parent patch, or at the start time
ts if the patch was not reset since that time. Let xi(tk) be the ghost
particle positions at the time of the split. Then Etk

tk−1
obtained via (3)

can be thought of as the solution of the systemb1(tk−1)
T

b2(tk−1)
T

n(tk−1)
T

(E tk
tk−1

)T
=

b1(tk)
T

b2(tk)
T

n(tk)T


b1(t) = (x1(t)−x2(t))/2

b2(t) = (x3(t)−x4(t))/2.

In other words, E tk
tk−1

is the average of the transformations that map
the corresponding ghost particles to each other exactly.

For the central point, it makes sense to weight those transforma-
tions equally, but if we want to initialize a new patch whose center is
slightly offset, we get a more accurate result if we adjust the weights
depending on where the new center is located. To this effect, we
parameterize the tangent space of the micro-patch by expressing it
as a linear combination of the two base vectors b1(t) and b2(t). We
can now express the location of the new center x′ in this new basis:

x′ = λ1b1(tk)+λ2b2(tk) .
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These coordinates correspond directly to the coordinates of
(E tk

tk−1
)−1x′ at time tk−1:

(E tk
tk−1

)−1 x′ = λ1b1(tk−1)+λ2b2(tk−1) .

If λ1 is positive, i.e., if x′ is located more towards x1(tk) than towards
x2(tk), we want x1(tk) to have a stronger influence on the result. The
same applies to the direction of b2. We therefore compute new
interpolated base vectors b′1,2(t) by weighting the ghost particle
positions with λ1 and λ2:

b′1(t) =(1+2λ1)x1(t)− (1−2λ1)x2(t)

b′2(t) =(1+2λ2)x3(t)− (1−2λ2)x4(t) .

The adjusted transformation E tk
tk−1

′ is then the solution to the systemb′1(tk−1)
T

b′2(tk−1)
T

n(tk−1)
T

(E tk
tk−1

′)T
=

b′1(tk)
T

b′2(tk)
T

n(tk)T

 .

The complete transformation of a micro-patch that has been split
off from a parent at some intermediate time tk is then obtained by

E te
ts = E te

tn ·E
tn
tn−1
· · · · ·E tk+1

tk ·E
tk
tk−1

′ ·E tk−1
ts .

Here, E tk−1
ts is the transformation of the parent patch from the start

of the interval up to the time when its ghost particles were last reset
before the split operation at tk. If ts > tk−1, it is omitted. Here, E tk−1

ts
is the transformation of the parent patch from the start of the interval
up to the time when its ghost particles were last reset before the
split operation at tk. E tk

tk−1

′ is the estimated transformation at a point
with a slight offset from the center of the parent patch in the interval
before the split. E tk

tk−1

′ is the estimated transformation at a point with
a slight offset from the center of the parent patch in the interval
before the split.
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