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Abstract
The parallel vectors operator is a prominent tool in visualization that has been used for line feature extraction in a variety of
applications such as ridge and valley lines, separation and attachment lines, and vortex core lines. It yields all points in a 3D
domain where two vector fields are parallel. We extend this concept to the space of tensor fields, by introducing the parallel
eigenvectors (PEV) operator. It yields all points in 3D space where two tensor fields have real parallel eigenvectors. Similar to
the parallel vectors operator, these points form structurally stable line structures. We present an algorithm for extracting these
lines from piecewise linear tensor fields by finding and connecting all intersections with the cell faces of a data set. The core of
the approach is a simultaneous recursive search both in space and on all possible eigenvector directions. We demonstrate the
PEV operator on different analytic tensor fields and apply it to several data sets from structural mechanics simulations.

CCS Concepts
• Human-centered computing → Scientific visualization;

1. Introduction

The parallel vectors (PV) operator [PR99] is a generic and widely
spread concept in visualization. Given two 3D vector fields v1,v2,
the PV operator delivers all points in the 3D domain where v1 and
v2 are linearly dependent. It is known that the PV operator delivers
structurally stable lines which we call PV lines. Applying it to dif-
ferent concrete vector fields, the PV operator has been proven to be
a generic tool to extract vortex core lines or bifurcation lines. Sev-
eral numerical methods to extract PV lines have been developed.

Recently, Oster et al. [ORT18] introduced the concept of ten-
sor core lines, which represent cores of swirling hyperstreamlines
in tensor fields. These lines are defined as the locations where a
(real) eigenvector of the tensor field is parallel to a (real) eigenvec-
tor of the tensor field’s directional derivative in the direction of this
eigenvector. In this paper we extend this concept to a more generic
formulation: the parallel eigenvectors (PEV) operator of two (not
necessarily symmetric) 3D second order tensor fields. Let S(x) and
T(x) be two such tensor fields. Then the PEV operator collects all
points where S and T have parallel real eigenvectors. This can be
concisely expressed as

PEV(S,T) = {x | ∃ e,e ‖ S(x)e ‖ T(x)e}.

In this work, we establish this operator by...

• ... studying its properties. In particular, we show that the PEV
operator produces structurally stable line structures.
• ... presenting a numerical algorithm to extract PEV lines in piece-

wise linear tensor fields. The main idea is to do a recursive search

not only in 3D space but simultaneously in 3D space and the
space of all possible eigenvectors.

• ... applying it to compare pairs of stress tensor fields defined on
the same domain.

Relation to the PV operator

At first glance, the PEV operator seems to be a straightforward ex-
tension of the classical PV operator: given two tensor fields S,T,
consider the eigenvector fields as vector fields and apply the PV
operator to them. However, as Oster et al. [ORT18] pointed out,
using such a naive approach would suffer from several problems:

• Interpreting the eigenvectors of a tensor field as a vector field
would require a heuristic choice of the orientation and magni-
tude of the vectors. This choice can not generally be made in a
globally consistent manner.

• In regions with three real eigenvectors, it is not clear which one
to choose for a representative vector field.

• Small changes in a tensor may result in a dramatic change in
eigenvector direction, or even the sudden appearance or disap-
pearance of real eigenvectors.

All of these problems show that eigenvector fields are fundamen-
tally different from vector fields, for which the PV operator is de-
signed. Extracting PEV lines requires new algorithms that are ex-
plicitly designed for tensor fields.

There are a number of approaches in vortex extraction where a
vector field v is compared to the eigenvectors of a tensor field S.
This “mixed case” (eigenvector parallel to a vector) can be easily
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Figure 1: PEV lines in pairs of random linear tensor fields. Top:
General tensors. Bottom: Symmetric tensors. Symmetric tensors
generally produce more lines, as they always have three real eigen-
vectors. General tensor PEV lines generally do not intersect, while
it is common for symmetric tensor PEV lines to do so. If they do,
three PEV lines always intersect at once, as their eigenvectors are
orthogonal.

reduced to the classical PV operator by comparing v and Sv. The
challenging case considered in this paper is the comparison of the
eigenvectors of two tensor fields.

In the following, we first give an overview of related work and in-
troduce the notation used throughout the paper. We then give some
theoretical properties of the PEV operator in section 3, before de-
tailing our algorithm for finding PEV lines in piecewise linear ten-
sor fields in section 4. In section 5, we present our results for me-
chanical stress tensor data. We close with a discussion and future
work in section 6 and section 7.

2. Related Work

The PEV operator is a generalization of tensor core lines. It is re-
lated to the PV operator, by which it was motivated, as well as
tensor field visualization in general. In this section, we give a more
detailed explanation of tensor core lines, as well as an overview of
relevant previous work.

Tensor Core Lines

Tensor core lines were introduced by Oster et al. [ORT18] as an
equivalent to vortex core lines for tensor fields. Similar to the Su-
judi/Haimes criterion for vortex core lines [SH95], they define ten-
sor core lines as the locations where eigenvector trajectories have
locally vanishing curvature. For a tensor field T and a vector r, a
tensor core line passes through location x if

r ‖ T(x)r ‖ ∇rT(x)r .

To understand this criterion, it is important to note that r ‖ Tr im-
plies that r is an eigenvector of T. This is equivalent to the more
commonly used formulation Tr = λr. The tensor core line criterion
consequentially states that r is an eigenvector of T(x), and that r is

also an eigenvector of∇rT(x), the directional derivative of T along
r. In other words, T(x) and ∇rT(x) have a parallel eigenvector r.
In this work, we relax this criterion and find locations where any
two tensor fields have parallel eigenvectors.

Parallel Vectors

The parallel vectors operator was introduced by Peikert and Roth
in 1999 [PR99] as a generalization of a concept that had been used
with slight variations in a lot of different contexts. Among these
are ridge detection in scalar fields [Har83], extraction of attach-
ment/separation lines in flows [KHL99], and the identification of
vortex core lines [SH95, BS95].

In his PhD thesis, Martin Roth [Rot00] gives an overview of sev-
eral numerical algorithms for the parallel vectors operator. Most of
them are based on first finding intersections of PV lines with the
cell faces of a dataset. The resulting intersection points are then
connected to lines using different kinds of heuristics.

An alternative approach is to trace parallel vector lines start-
ing from a seed point. Algorithms using this general approach
have been proposed by Banks and Singer [BS95], Miura and
Kida [MK97], Sukharev et al. [SZP06] and Theisel et al. [TS03].
Methods for avoiding the accumulation of errors when tracing PV
lines were introduced by van Gelder and Pang [vGP09], as well as
Weinkauf et al. [WTvGP10].

While most PV algorithms operate on piecewise linear data
that is not time-dependent, there are some publications that deal
with higher-order data or use higher-order methods. This includes
approaches for finding curved vortex core lines [RP98], scale-
space techniques [BP02], and computing the PV operator on
time-dependent [TSW∗05, FPH∗07] or piecewise analytic vector
fields [POS∗11].

Tensor Field Visualization

Tensor fields are generally visualized by Glyph-based, Integration-
based or Topology-based methods.

Tensor glyphs show the properties of a single tensor as a geomet-
ric object. These glyphs vary in complexity depending on the prop-
erties of the tensor that is visualized. Glyphs have been designed for
symmetric positive definite tensors [Kin04], indefinite symmetric
tensors [SK10], and general tensors in 2D and 3D [GRT17]. Spe-
cialized glyphs for structural mechanics applications [HYW∗03]
as well as comparative visualization of medical diffusion tensor
fields [ZSL∗16] have also been proposed. To visualize a tensor
field using glyphs, they are usually placed on the grid nodes of the
dataset or on a regular grid superimposed on the data. Kindlmann
and Westin [KW06] proposed a more sophisticated glyph place-
ment strategy that avoids occlusion.

Integration-based methods create geometric structures by fol-
lowing the field of eigenvector directions starting from a seed
structure. The simplest example of this class is the hyperstream-
line [DH93]. It is commonly implemented as a tube following an
eigenvector corresponding to some ordered eigenvalue. The cross-
section of the tube is scaled and rotated according to the other
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eigenvalues. Weinstein et al. [WKL99] introduced a similar con-
cept that is more stable in the vicinity of isotropic points. An exten-
sion of hyperstreamlines are hyperstreamsurfaces [JSF∗02], which
use a line instead of a point as the seed structure.

Topology-based methods focus on extracting a topological skele-
ton capturing critical structures in tensor fields. Degenerate struc-
tures where two or more eigenvectors are equal, were first de-
scribed for symmetric tensor fields by Delmarcelle [DH94] and
Hesselink [HLL97]. Zheng and Pang [ZP04,ZPP05] introduced nu-
merical algorithms for extracting such structures. A more stable ap-
proach for noisy data was proposed by Tricoche et al. [TKW08]
The topology of asymmetric tensor fields has also been stud-
ied [ZP05, ZYLL09]. Recently, surfaces of neutral and traceless
tensors were added to the topological features of symmetric ten-
sor fields [PYW∗16].

3. Theoretical Considerations

In this section we study which structurally stable structures the
PEV operator yields. Structurally stable here means stable in the
presence of noise. From the knowledge of the PV operator for vec-
tor fields, one would expect curves as PEV solutions. The case,
however, is slightly more complicated because eigenvectors can
transition from real to imaginary, and they are not uniquely defined
in isotropic regions. Even under consideration of these cases, we
can formulate the main theorem

Theorem 1 The PEV operator delivers structurally stable curves
that are either closed or end at the boundaries of the domain.

We provide the proof for this theorem in the additional material
accompanying this paper.

Bifurcation points We define bifurcation points as locations
where two or more PEV lines intersect, i.e., locations with more
than one pair of parallel eigenvectors. If S,T are general second
order tensors, bifurcation points are structurally unstable, i.e., they
disappear under small perturbations of S,T. To show this, we con-
sider a PEV line l and observe the other eigenvectors (the ones that
do not define l) along its path. Since they are not constrained by
each other, more than one condition must be fulfilled along l for
the other eigenvectors to become parallel. This can be interpreted
as having at least two independent scalar values that must vanish at
the same point along l. If this happens, adding noise will split up
the points on l of common zero crossings.

This situation is different if S,T are symmetric. In this case, there
are structurally stable bifurcations points where all three PEV lines
intersect, i.e., where S,T have three pairs of parallel eigenvectors.
This can be shown as follows: If S,T have two pairs of parallel
eigenvectors, the third pair must be parallel as well, due to the or-
thogonality of the eigenvectors. Further, we consider again a PEV
line l that is defined by the vector e along l that is eigenvector of
both S and T. Then every other eigenvector of S and T is perpendic-
ular to e and can therefore be expressed by one number: the rotation
angle around e. This way, the conditions of further pairs of common
eigenvectors can be described as the roots of one scalar function.
This is structurally stable: adding noise will slightly change the lo-
cation of l and slightly change the location of zero crossings on l,

but does not make them disappear. Some PEV lines with bifurca-
tion points can be seen in Figure 1.

4. Extracting PEV Lines from Piecewise Linear Data

We will now detail our algorithm for finding PEV lines in piecewise
linear tensor fields. We assume that both tensor fields are defined
on the vertices of the same tetrahedral mesh. The general approach
is to first find all intersections of PEV lines with the faces of the
mesh, and then to connect those points to lines.

We showed that PEV structures are lines in the structurally stable
case. It follows that their intersections with the triangular faces of
a tetrahedral mesh are isolated points. Finding an analytic solution
to the parallel eigenvector problem is impossible, as it involves the
intersection of cubic polynomials. Instead, we opt for a numerical
approach that is based on recursive subdivision both on the triangle
and in the space of possible eigenvector directions.

Our algorithm can be summarized as follows: We first find a di-
rection r which becomes an eigenvector of both S and T at some
(possibly different) points inside the triangle. If such a direction
is found, we subdivide the triangle and check the parts for possi-
ble eigenvector directions again. We do this until we converge on a
single point where both S and T have parallel eigenvectors.

In order to find a valid direction r, we perform another recursive
search in the space of possible eigenvector directions. We represent
this space as some triangulation of a hemisphere centered at the
origin. For each triangle of directions, we have to decide whether it
contains a valid eigenvector direction, i.e., a direction that can be-
come an eigenvector of both S and T within the current sub-triangle
in space. If we are sure that there are no valid directions in the tri-
angle, we can discard it. If we are sure that all directions within a
triangle are valid directions, we can terminate the recursion. If we
can not be sure whether the triangle contains valid directions, we
subdivide it and check the parts again.

Our algorithm is similar to the one described by Oster et al.
[ORT18]. Both are numerical algorithms that find singularities of
polynomials of higher degree. However, the problem we solve in
this work is different, as it does not involve the derivatives of a
tensor field, leading to a different algorithm. In the following, we
describe the details of this algorithm.

4.1. Mathematical Basis

A linear tensor field on a triangle is completely defined by the ten-
sors at its three corners. We denote the set of corner points as x4 =
{x1,x2,x3}, and the set of corner tensors as S4 = {S1,S2,S3} and
T4 = {T1,T2,T3}. We express the tensor fields in barycentric co-
ordinates w = (w1,w2,w3)

T:

S(w) = ∑
i

wiSi , T(w) = ∑
i

wiTi , with ∑
i

wi = 1 .

The position (in barycentric coordinates) at which an arbitrary di-
rection r becomes an eigenvector in S is given by the solution to

S(w)r = ∑
i

wiSir = λr .
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We do not need the exact position, but rather we want to know if
the position is inside the triangle or not, i.e., if r is a valid eigen-
vector direction for S. In barycentric coordinates, a point is inside
the triangle if all wi > 0. Since the scaling factor λ is arbitrary, we
eliminate it:

∑
i

w̃iSir = A(r)w̃ = r ,

with A(r) =
(
S1r S2r S3r

)
, w̃ = w/λ ,

and only require that all w̃i have the same sign. Using Cramer’s
rule, we can give an analytic solution for the components of w̃:

w̃i =
detAi(r)
detA(r)

Here, Ai denotes the matrix A with its i-th column replaced by r.

Note that all w̃i are divided by the same factor detA(r). Since
this influences all signs of w̃i equally it can be ignored, leading to

ŵi(r) = detAi(r) . (1)

The equations for T are analogous. In the following, we show all
equations for S only. The equivalent equations for T can be ob-
tained trivially by substituting T for S. We denote the solutions for
S and T by ŵS and ŵT respectively, whenever it is necessary to
discriminate them.

4.2. Subdivision in Direction Space

The core of the algorithm is to find a direction r for which all com-
ponents of ŵS(r) have the same sign, and all components of ŵT (r)
also have the same (but possibly different) sign. This means that the
direction r becomes an eigenvector somewhere inside the triangle
for both S and T. Note that ŵi(r) is cubic in r. Finding an analytic
solution for r means analytically finding the intersections of the
roots of ŵi(r), which is impossible. Instead, we solve the problem
numerically by applying another recursive search in the space of all
possible eigenvector directions. The magnitude and orientation of r
is not significant. We can therefore represent this space by some tri-
angulation of a hemisphere centered at the origin (Figure 2, right).
We again express a direction in a triangle r4 = {r1,r2,r3} on this
hemisphere in barycentric coordinates u j of its corner vectors:

r(u) = ∑
j

u jr j .

Substituting this in (1), the barycentric coordinate functions now
become

ŵi(u) = det

(
∑

j
u jAi(r j)

)
.

We can now express ŵi in Bernstein-Bézier basis:

ŵi(u) = ∑
j,k, l>0 ,
j+k+l=3

3!
j!k! l!

u j
1 uk

2 ul
3 ·α jkl .

Here, α jkl are the 10 coefficients needed to express a trivariate
polynomial of degree 3. We use the property that a polynomial in
Bernstein-Bézier form is bounded in its domain by the convex hull
of its coefficients [Far97]. This means that ŵi is positive over the
whole triangle if all α jkl > 0, and negative over the whole triangle

x4
r4

Figure 2: Two-level recursion scheme for finding intersections of
PEV lines with the faces of piecewise linear tensor fields. For
each sub-triangle x4, a recursive search in the space of possible
eigenvector directions is performed to find a direction r that be-
comes an eigenvector of both S and T within x4. (Image similar
to [ORT18].)

if all α jkl < 0. If the α jkl have different signs, ŵi might become 0
somewhere inside the triangle.

We use this when recursively subdividing the triangle r4. If any
ŵi might have roots within the triangle according to the Bernstein-
Bézier coefficients, then we can not make a decision. We need to
subdivide the triangle and check the different parts again. If no ŵi
can have roots within the triangle as indicated by the coefficients,
then there are two possibilities:

1. All ŵi have the same sign everywhere on the triangle
2. The ŵi have different signs everywhere on the triangle

In case 1., all directions within the triangle become eigenvector di-
rections somewhere in x4 for both S and T. If this happens, we
can accept any direction within the current triangle as a possible
solution. In case 2., no direction within the triangle can become
an eigenvector of both S and T, and the triangle can be discarded.
When the triangle becomes smaller than some subdivision thresh-
old εr, and we still can not say for sure that there are no possible
eigenvector directions inside, we accept the central direction as a
candidate.

4.3. Final Numerical Algorithm

The complete algorithm for finding intersections of PEV lines with
a triangle of the dataset now works as follows: Start with the com-
plete triangle as x4. Then, search for a direction that becomes an
eigenvector of both S and T somewhere inside the triangle by us-
ing the algorithm described in subsection 4.2. If such a direction is
found, subdivide the triangle and process the parts recursively. If no
direction is found, discard the triangle. When a spatial sub-triangle
becomes smaller than a subdivision threshold εs, we accept the cen-
ter of the triangle as a solution candidate.

The result of the algorithm is a list of points on x4 with corre-
sponding eigenvector directions. This list of points has to be post-
processed for two reasons:

1. For each intersection of the PEV line with the triangle, multiple
adjacent candidate points may be found. This happens if eigen-
vectors of S and T are closer than εr in a region larger than εs,
e.g., because the gradient of the tensor fields is very small, or
because the PEV line intersects the face at a very steep angle.
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Choosing εr very small helps with this, but it can not be avoided
in the presence of limited numerical precision on a computer.

2. A candidate point might not be a PEV point at all. These false
positives occur if there are directions r that become eigenvectors
of one of the tensor fields inside x4, while A(r) has rank 1 for
the other tensor field. For this case, ŵ = 0, which means that a
consistent sign of all components can never be determined, and
subdivision can not be terminated early, even if the tensor field
does not have any valid eigenvector directions inside x4.

We deal with item 1. by clustering candidate points that are closer
than a certain distance threshold εc. We employ a simple single-
linkage hierachical clustering algorithm [ELLS11]. Each candidate
point starts as a separate cluster. Clusters are merged if the smallest
distance between them is smaller than εc. This is repeated until the
number of clusters converges. The clustering algorithm is the same
as the one used by Oster et al. [ORT18] for a similar purpose.
We then select the point in each cluster where the corresponding
eigenvectors are most parallel as the representative and discard the
others. Since we already have eigenvector directions for each point,
we do not need to explicitly compute them again. Instead, we use
the parallelity error

ep =

∥∥∥∥ S(w)r
‖S(w)r‖ ×

r
‖r‖

∥∥∥∥+∥∥∥∥ T(w)r
‖T(w)r‖ ×

r
‖r‖

∥∥∥∥ ,

which measures the deviation of r from the true eigenvectors of
both S(w) and T(w).

In order to address item 2., we discard all candidate points for
which ep is greater than some parallelity threshold εp. This thresh-
old can be chosen quite coarse (e.g. 0.01), as ep is typically quite
large for false positive candidate points.

In certain cases, the PEV line might not intersect the triangle at a
single point. This happens in the structurally unstable cases where
eigenvectors are parallel on a structure with a dimension larger than
1, or where the PEV line is completely in the plane of the triangle.
In these cases, a recursive subdivision will not converge on isolated
points and slow down the algorithm considerably. To mitigate this,
we terminate the recursion if the number of triangle subdivision
operations exceeds a reasonable threshold.

Once we have clustered the candidate solutions and removed
false positives, we have a number of final PEV points for each face
of the mesh. These PEV points are now connected to lines on a
cell-by-cell basis. This problem is also faced when computing the
PV operator, where it has been solved in a variety of ways using
different heuristics, which can be employed here as well. In our
implementation, we simply connect two points if they are the only
two intersections of a PEV line with a grid cell. In case of more
than one intersection, we greedily connect pairs of points that have
the most similar parallel eigenvector directions, assuming that PEV
lines are generally smooth relative to the grid resolution.

5. Results

We applied our method to different stress tensor fields from struc-
tural mechanics simulations. Stress tensors are symmetric tensors
that describe the local stress at a point in a material under acting
force. Its eigenvectors are real and orthogonal and are aligned with

the principal stress directions acting on the point. When comparing
two different stress tensor fields, PEV lines occur where two prin-
cipal stress directions align. We show PEV lines for three different
stress tensor datasets: Two different point loads applied to a uni-
form material, two different traction forces applied to the end of a
clamped beam, and two different load scenarios applied to a flange.

We used the same parameters for all datasets: εs = 1.0×10−3,
εc = 5× εs, εd = 1.0×10−9, εp = 1.0×10−3. Our results were
computed on a consumer PC with a 4-core Intel Core i7 CPU at
3.4 GHz.

Point Loads

In this example, we compare two different point loads applied to a
uniform material with infinite extent. The first load (red arrow in
Figure 3) is a compressive force, the second load (blue arrow) is
a tensile force of equal magnitude. We compute the PEV operator
for the two resulting stress tensor fields. The Point Load case has
a closed analytic solution [Saa13], which we sampled on a regular
grid with 100× 50× 50 points using the vtkPointLoad source
from the Visualization Toolkit [SML06]. We then tetrahedralized
the data, resulting in 1.1 million cells and 4.8 million faces. The
computing time for this dataset was 4.2 h, which means that PEV
intersections on each face were found in 3.2 ms on average.

Since the point loads were applied in the same plane, this syn-
thetic dataset shows the rare case where eigenvectors are parallel
on a plane instead of a line. This degenerate case also accounts
for the long computing time, as for each face intersected by the
PEV plane, the recursive subdivision can not be terminated early.
Even though this structurally unstable case produces visual arti-
facts when using our method, interesting PEV line structures are
still visible. There is a bifurcation point exactly at both load points,
extending into a curved ring slightly below the surface. At the sec-
ond intersection of this ring with the central plane, another closed
PEV structure embedded into the plane becomes visible. Within a
PEV plane, structures where all three eigenvectors are parallel be-
come lines, instead of points. A similar structure can be observed
starting at the load points and leading outwards. In the center of
the dataset, there is another PEV line, orthogonal to the plane and
slightly curved downwards, separating the two load points. For this
dataset, we colored the PEV lines by the absolute eigenvalue ra-
tio of the parallel eigenvectors. Since both tensor fields result from
forces of equal magnitude, this ratio makes visible the directions in
which forces propagate outwards from the load points.

Clamped Beam

Next, we extracted PEV lines for a beam that is fixed on one side.
We applied two different traction forces on the free end of the beam,
whose directions are shown in Figure 4. The Clamped Beam dataset
consists of 150k cells and 600k faces. The computing time was
26 min, which means 2.6 ms per face on average.

There are two regions of particular interest in the Clamped
Beam. The first is near the middle of the beam, where a curved
structure has high eigenvalues in both tensor fields (visible in red
and blue in Figure 4). This is where the beam experiences a lot of
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stress, and therefore the tensor fields have a high magnitude. The
second is near the fixed end. Here, the stress is high particularly for
the more diagonal force indicated by the red arrow in Figure 4. We
find a high number of bifurcation points in this region. Addition-
ally, near the middle of the beam all three eigenvector directions
are parallel along a line structure near the center with considerable
length. This area seems to be the most similar between the two sce-
narios in terms of stress directions.

Flange

Our final stress tensor dataset is a flange geometry from an Open-
Foam [Ope] tutorial. We subjected the flange to two different loads,
applied on the back wall and the outlet tube (see red and blue ar-
rows in Figure 5). The original mesh uses polygonal cells, which
is why we resampled the data, resulting in 1.2 million cells and 5
million faces. The computing time was 36 min, i.e., 0.5 ms per face.

The dataset exhibits a lot of PEV lines, which can be seen in Fig-
ure 5 on the left. Most of the PEV lines correspond to eigenvectors
with small eigenvalues in both tensor fields. We therefore filtered
out all PEV lines where both eigenvalues are very small in the cen-
ter and right images in Figure 5. Especially prominent are two bi-
furcation points with high eigenvalues between the two outer screw
holes and the central tube. There are also PEV lines leading out-
wards both above and below the screw holes. In general, the most
similar directions of significant stress are near the screw holes and
in the area where the large outlet tube meets the central block.

6. Discussion

The PEV operator was introduced as a generic operator, its inter-
pretation is dependent on the application scenario.

For stress tensors in mechanical engineering, the PEV operator
gives insight into the alignment of the tensors under different acting
forces. Areas with PEV lines can be wanted or unwanted. In areas
with present PEV lines, the stress tensor is similarly oriented for
different external forces. This could be used e.g., for deciding the
placement of structural reinforcements or to guide the selection of
materials. In regions without PEV lines, there is no stress in a pre-
ferred direction when applying different outer forces and material
with a more isotropic behavior could be used.

Besides this particular interpretation, there are general interpre-
tations that are common to all applications of the PEV operator.
The PEV operator is agnostic to isotropic scaling of the tensors. It
gives information about the orientation of the tensors only. In this
way, the PEV operator can be seen as an addition to many standard
measures for comparing tensors like norm, trace, or eigenvalues.

The presented algorithm for piecewise linear tensor fields does
not use any derivatives of the data. It depends on a number of
thresholds to guide subdivision levels and filtering. The spatial sub-
division threshold εd influences the accuracy of the resulting PEV
lines. A small threshold means more subdivisions and is one of the
main factors influencing performance. Since subdivision converges
to single points, the computing time increases logarithmically when
decreasing εd .

The directional subdivision threshold εr guides the accuracy of

the obtained eigenvector direction. Typically, the smaller the cur-
rent spatial triangle x4 becomes, the smaller the region of valid
eigenvector directions. For increasing subdivision level in space,
the valid eigenvector directions will converge on a point. This
means that for small εd , the recursion in the space of directions
will generally proceed to the highest subdivision level. The influ-
ence of εr on computation time is about the same as for εd . How-
ever, an accurate determination of eigenvector direction is essential
to decrease the number of candidate PEV solutions that have to be
clustered. This means that εr should be chosen very small. We find
εr = 1×10−9 to be a choice that provides consistently good results.

Because our algorithm can produce multiple candidate points for
an intersection of a PEV line with a tetrahedral face, we need to
cluster the results. Theoretically, all candidate points should be in
adjacent triangles, as (unoriented) eigenvector directions in linear
tensor fields do not oscillate on small scales. However, due to nu-
merical noise and rounding errors on a computer, some candidate
triangles might not be exactly adjacent to each other. To bridge this
gap, the clustering threshold εc defines the radius in which two can-
didate solutions are considered to belong to the same cluster. Be-
cause the numerical noise influencing the size of gaps between can-
didate solutions is random, we do not expect candidates to be more
than two or three lengths of εd from each other. We recommend to
set εc to some fixed multiple of εd . In our experiments, εc = 5εd
proved sufficient for all datasets.

The parallelity threshold εp is used to weed out false positive
candidates that are a byproduct of our algorithm. It must be cho-
sen carefully to separate false positive solutions from numerical
errors. Because of this threshold, the spatial subdivision threshold
εd can not be chosen arbitrarily large. The larger εd , the larger the
possible difference in eigenvector direction between the real PEV
point and the tensor at the center of the triangle, which is chosen
as a representative. In general, the choice of εp is dependent on εd .
More spatial subdivision levels enable a smaller choice of the par-
allelity threshold. In our experiments, a choice of εp = 1× 10−2

for εd = 1× 10−3, and εp = 1× 10−3 for εd = 1× 10−6 worked
very well.

7. Limitations and Future Research

Limitations can be discussed from two points of view: the operator
itself and the presented numerical extraction algorithm. A limita-
tion of the PEV operator is that it can only be applied to problems
where the norm of the tensors does not matter. This limits the ap-
plicability but on the other hand focuses on features of the tensor
fields that are less covered by other methods.

The presented extractor works for piecewise linear tensor fields
only. An extension to hexahedral grids as well as higher order in-
terpolations is subject of future research. The performance of the
algorithm can be improved by parallelization. In principle, the al-
gorithm is parallelizable (each cell can be treated independently).
However, even if this is carefully carried out, interactive frame
rates (for instance for comparing time-dependent tensor fields) are
hardly achievable because we still have to do a search in a 5D space.
Due to the possibility of many candidate solutions for each inter-
section of a PEV line with a face, we can not give an upper limit on
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Figure 3: PEV lines for the Point Load dataset. Lines are colored by absolute eigenvalue ratio. A compressive force (red arrow) is applied
to obtain one stress tensor field, while an equivalent tensile force (blue arrow) is applied for the second stress tensor. Due to the parallel
application of forces orthogonal to the surface, a plane of parallel eigenvectors forms between the load points.

Figure 4: PEV lines for the Clamped Beam dataset. Two different traction forces are applied to the free end of the beam (red and blue
arrows), while the other end is fixed on the wall. Lines are colored by the eigenvalue of the stress tensor corresponding to the red arrow (red
is positive, blue is negative). Interesting structures mentioned in the text are highlighted.

Figure 5: PEV lines for the Flange dataset. Two different load scenarios (indicated by blue and red arrows) are simulated. Lines are colored
by the eigenvalue corresponding to the red arrows. To avoid visual clutter, we filtered the lines in the middle and right image by eigenvalue,
removing lines where both eigenvalues are very small. Interesting structures mentioned in the text are highlighted.
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the error of the PEV line position. This might limit its applicability
in cases where a highly accurate PEV line is required.

We stated in Theorem 1 that PEV lines are generally closed.
However, the results obtained from our algorithm sometimes ex-
hibit gaps. Because the extractor is a numerical algorithm, and not
a combinatorial one, we will sometimes not find solutions on faces
where the presence of an intersection point is numerically unstable.
This happens for example if the PEV line is parallel and very close
to a face, or when the tensor field is almost zero.

In this paper, we only show examples of the PEV operator for
(symmetric) stress tensor fields. Further possible scenarios that are
left to future research are the comparative visualization of DT-MRI
data or a comparative visualization of Jacobian fields for flow visu-
alization, which are not necessarily symmetric.
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