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Fig. 1: FTLE for the DOUBLE GYRE for integration time τ = 30. A high number of clearly distinct ridges is visible in the overview
(left). The resolution of the underlying sampling grid is dense at positions where ridges are located (detail). The adaptive refinement
is steered by information from the whole interval of integration times, to track the development of sharp ridges.

Abstract—We present an approach to the extraction of FTLE ridges for 2D unsteady vector fields under long integration times. This is
a hard problem because such FTLE ridges tend to be sharp and close to each other. The main feature of our approach is that it does
not only use an FTLE sampling at the desired final integration time but incorporates samples from prior integration times as well. With
this additional information, the new method produces more and finer ridge lines than previous approaches. Based on this output, we
can consider FTLE ridge statistics. We test the approach on synthetic benchmarks and real-world data sets.

Index Terms—FTLE, Unsteady Vector Field.

1 INTRODUCTION

Lagrangian Coherent Structures (LCS) are prominent and promising
approaches for extracting and visualizing the global behavior of time-
dependent flow fields. LCS are commonly considered as extremal
structures – ridges – of the derivatives of the flow map. Among the
various alternatives that have been proposed in recent years, ridges in
Finite-Time Lyapunov Exponents (FTLE) are one of the most common
representatives of LCS. Such ridges in FTLE fields are structures that
separate regions with different flow behavior. In this paper, we present
an approach to extracting ridge lines of 2D FTLE fields with a focus
on long integration times. At first glance, this seems to be a standard
problem: The FTLE field for the desired integration time is a scalar
field for which a suitable adaptive sampling has to be computed, and
then standard numerical ridge extraction could be applied. It turns out,
however, that the problem is much harder for the following reasons:
Firstly, FTLE computation is expensive since every sample of the FTLE
field requires numerical integration. Secondly, FTLE ridges tend to
be thin and sharp for long integration times. Thirdly, adjacent ridges
tend to be close to each other for long integration times. In fact, we
will argue that a sufficient adaptive sampling of the FTLE field for a
fixed, long integration time cannot be computed with reasonable effort.
This is the reason why existing approaches either restrict themselves
to considering only the FTLE field – without any extraction of the
ridge geometry – or to extracting only simple non-sharp ridges for
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short integration times. The main idea to solve the sampling problem is
based on the insight that an adaptive sampling of the FTLE field should
not only incorporate samples at the desired integration time but also at
intermediate times. This is because sharp FTLE ridges – that are hard
to extract – have been non-sharp – that are easier to extract – at shorter
integration times. Based on this key insight, we construct an algorithm
for adaptive FTLE sampling and FTLE ridge extraction. The algorithm
is based on a quadtree subdivision of the domain where the subdivision
criterion evaluates FTLE in the whole range of integration times from
zero to the desired time.

2 RELATED WORK

This section gives a brief overview of previous work on ridges in general
and in the field of flow visualization as well as FTLE and ridges in
FTLE.

Ridge Concepts: There are a variety of different ridge definitions
along with numerical extraction techniques in Scientific Visualization.
In particular, ridges serve as a standard extractor for edges in images.
We refer to the discussion presented by Eberly et al. [2] for an overview
on the most common ridge definitions such as height ridges [15], curva-
ture ridges [22], watershed ridges [8], or medial axes [24]. A discussion
about the quality of different ridge extractors is given in [1] and [17].
In Visualization, ridges are known to show relevant structures in many
applications and a number of ridge extraction algorithms have been
proposed, e.g. for vortex core lines [21, 23, 30], characterstic lines in
symmetric second-order tensor fields [35], watershed ridges [31] or
ridge surfaces in DT-MRI data [16].

FTLE and FTLE ridges: One of the most prominent approaches
to find LCS is the computation of ridge structures in scalar (FTLE)
fields, was introduced by Haller [10, 14], see also [12] for an intro-
duction to LCS, their meaning for describing flow dynamics and their
extraction via FTLE. FTLE ridges have been used for a variety of
applications [11, 19, 34, 36]. Shadden et al. [33] have shown that



ridges of FTLE are approximate material structures, i.e., they converge
to material structures for increasing integration times. This fact was
used in [29] to extract topology-like structures. [20] and [32] introduce
methods for tracking FTLE ridges by locally sampling the FTLE field
and estimating the ridge direction and location. Due to the discrete
sampling used, the accuracy is limited, especially for very sharp ridges.
In [3] the minor eigenvector of the Cauchy-Green tensor is integrated
to track ridge structures. This approach is, however, prone to accumu-
lating integration errors. Also in the visualization community, different
approaches have been proposed to increase performance, accuracy and
usefulness of FTLE as a visualization tool [6, 7, 9, 25–28]. Haller and
Sapsis [13] additionally explore the smallest FTLE values.

3 BACKGROUND AND NOTATION

The following notation is used throughout the paper. Given is a con-
tinuous unsteady vector field v(x, t). Its flow map φ(x, t,τ) maps a
particle seeded at (x, t) to its destination after a path line integration of
v over a time interval [t, t + τ]. We assume τ > 0. We write the flow
map equivalently as φτ = φτ (x) = φ(x, t,τ) whenever position x and/or
starting time t are clear from the context, and we do this similarly
for other functions of the flow map. The (spatial) flow map gradient
∇φ(x, t,τ) = d

dx φ(x, t,τ) encodes the separation of particles seeded
near (x, t). Then with ∇ = ∇φ(x, t,τ), ∆ = ∆(x, t,τ) = (∇T∇)(x, t,τ)
denotes the (right) Cauchy-Green tensor of the flow map. As ∆ is
symmetric and positive definite, its eigenvalues λi > 0 are real, and the
associated eigenvectors are orthogonal. Then the FTLE field is defined
as

FTLE(x, t,τ) = 1
|τ| ln

√
λmax(∆) ,

where λmax denotes the maximal eigenvalue of ∆. The standard ap-
proach to the numerical evaluation of FTLE(x, t,τ) uses a discrete ap-
proximation of the flow map gradient ∇φ(x, t,τ) from finite differences
of φ . When using central differences, this requires four evaluations
of the flow map, i.e., four times a numerical integration of v. Any
discrete difference scheme requires size parameter h, which here de-
notes the spatial distance of two initial points before advection on the
flow. For ridge extraction, in particular, smaller h – or observing a
smaller region that is advected – will decrease the “probability” that
a ridge is passing this region and is detected due to a high separation
and a local maximum of FTLE. In order to find ridges, FTLE has to
be evaluated. Throughout the paper we use the term sampling for any
set of FTLE samples that supports the extraction of ridges. Samples
are parametrized by (x, t,τ) without assumption of a particular distri-
bution (e.g., a uniform grid). Based on the above considerations, we
can formulate the problem as follows: Given a fixed starting time t and
a fixed, positive – long – integration time τe, find a sampling of a scalar
field FTLE(x, t,τe) that is sufficient for extracting all ridges within a
maximum resolution that is prescribed by numerical methods. We call
this the sufficient sampling problem.

4 PROBLEM ANALYSIS

The solution of the sufficient sampling problem is the main challenge in
FTLE ridge extraction. Given a desired final integration time τe and a
fixed starting time t, a sampling of FTLE(x, t,τe) in the spatial domain
is searched, which sufficiently supports the extraction of all ridges. We
analyze this problem in the following.

Why is it important to extract FTLE ridges at all? Explicit ridge
geometry gives more information than the scalar FTLE field alone. The
relation between an FTLE field and its ridges is similar as between a
scalar field and, e.g., isosurface geometry. In particular, the extraction
of FTLE ridge geometry allows considering ridge statistics.

Why is it important to separate two FTLE ridges that are close to
each other? Adjacent FTLE ridges generally correspond to separating
events that occur at different integration times. Imagine a group of
spatially close particles traveling with the flow. If after a certain time
a separation takes place, the particles divide into two subgroups each
showing different further flow behavior. After an even longer integra-
tion time, each subgroup could be separated again into new subgroups.

(a)

(b) τ = 5 (c) τ = 7

(d) τ = 9 (e) τ = 10

Fig. 2: (a) Spatially close FTLE ridges emerge from separation at
different integration times. (b)–(e) Time series of emerging ridges.

This results in spatially close FTLE ridges around the initial locations
of the particles. Figure 2(a) gives an illustration.

Why are ridge statistics of interest? FTLE is usually applied to non-
turbulent flows. The transition to turbulent flows makes ridges behave
“wild”, i.e., they become sharp and dense. For these kind of flows, the
effect of a single ridge could be hard to interpret. Instead, insights
can be gained from statements on the set of all ridges. Therefore we
introduce ridge statistics.
Properties of FTLE ridges and sampling density: For linearly in-
creasing the maximal integration time τe ridges in FTLE fields tend to
show the following two properties:

• Property 1 (P1): The sharpness of an FTLE ridge increases at
an exponential rate.

• Property 2 (P2): The distance to the (spatial) next ridge de-
creases at an exponential rate.

Both properties were observed and stated similarly by Kuhn et al. [18].
Figure 2(b)–(e) illustrate this behavior by example. Shown is a part
of the well-known DOUBLE GYRE data set. The strong center ridge
appears “early” after few discrete time steps. Shortly after, two smaller
ridges to the left and right emerge. With increasing τ they move
towards the center ridge. Finding a sufficient sampling for a fixed τe is
a challenging task. Ridges in the FTLE field can only be mapped, if
the sampling is dense enough to capture them, otherwise they could
be missed completely. Due to P1 for a large τe an extremely dense
regular sampling would be necessary to capture a sharp ridge. Because
of the high computation cost this is not preferable. A possible solution
could be to start with a coarse sampling and adaptively refine it by the
following local criteria:

(a) Subdivide a region because a ridge is expected to pass through it.

(b) Stop further subdivision of a region containing a ridge because it
is sure that only one ridge is passing through.

A criterion for (a) is crucial because if a ridge falls between two inital
samples, it may be completely missed. This problem is central to any
sampling. One common way to circumvent this is to increase the size
parameter h when estimating the flow map gradient (see section 3).
However this will generally not help, to distinguish between detection
of a single or multiple ridges. We are not aware of any existing criteria
for (b). We believe that such criterion does not exist because of P2.
This is why we believe that it is impossible to get a sufficient sampling
by considering FTLE values for the final integration time τe only.

Main idea: As a solution to this problem, we propose to steer adaptive
subdivision by also incorporating FTLE sampling for shorter integration
times. This is justified by the following observations: a ridge that is
very sharp and close to its neighbors at the final integration time τe
was “better behaved” at a shorter integration time τ < τe. This means,
ridges emerge (slowly) over time. In fact, P1 and P2 show that the
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Fig. 3: Ridge geometry as vector graphic for the DOUBLE GYRE for t = 0 and τ = 30 (a). Total ridge length over integration time of the 100
longest, 1000 longest and all ridges for the DOUBLE GYRE (b) and the BOUSSINESQ (c).

ridges can stably be extracted for a shorter integration time. Increasing
the integration time from τ to τe makes a further subdivision necessary
due to the increasing sharpness as well as due to a spatial motion of the
ridge. However, ridge motion decreases with ongoing integration time
which corresponds to the fact that FTLE ridges converge to material
separation structures for increasing integration time (see [33]). This
way we can make sure that the ridges of FTLE(x, t,τe) are resolved.

5 FINDING A SUFFICIENT SAMPLING AND EXTRACT RIDGES

Algorithm specification: The input is a flow field v(x, t) in a
domain D and an integration time τe. The period τe is high such that
we expect sharp ridges, which are close to each other. It is obvious that
two ridges cannot get arbitrarily close to each other and still be robustly
separated: at some point numerical errors, e.g., from interpolation
and integration, or floating point precision will put a practical limit
on computing ridge locations precisely enough to distinguish the two
different ridges. For this reason, the algorithm takes a final input
parameter, the maximum resolution ε , which limits the minimal spatial
distance between two samples. We assume that there will be no gain of
information, if samples get closer than ε . The output of the algorithm is
a set of samples (x, t,τ) that supports the extraction of ridges within the
maximum resolution ε . For each sample, τ ≤ τe denotes the maximum
integration time until either the desired τe was reached (τ = τe) or the
maximum spatial resolution ε was reached (τ < τe) and would have
been exceeded at τe. In the first case, the sampling locally supports
the extraction of ridge geometry. In the second case, a reliable ridge
extraction is possible only for the returned τ < τe.

Domain discretization and initialization: We discretize the do-
main by a coarse grid of square cells, where each grid cell is refined by
a quadtree subdivision. The algorithm then finds the minimal amount of
subdivisions for all quadtrees and yields samples defined by leaf cells of
quadtrees. We decided to use a quadtree [4] for adaptive refinement of
the domain, because it is a fairly simple data structure with mature and
efficient operations for traversal, finding neighbors, etc. (see, e.g., [5]).
The regular structure of the quadtree fits our needs best.

Refinement of the sampling: We associate with each quadtree
cell a sample. The spatial position x is the cell’s center. Assuming a
fixed start time t, we store with each cell the current integration time
τ and FTLE(x, t,τ), which is computed from finite differences of φτ

evaluated at the four cell corners. The refinement iteratively increases
the integration time τ by a step ∆τ . The step size ∆τ determines the
sampling density of the integration time τ up to the target time τe.
Note: ∆τ is not the step size that is used for the numerical integration
of the flow map φ . The flow map is sampled at each time step for
computing finite differences. In each step of the iteration the following
two operations are performed:

1. Update FTLEτ and τ for all leaf cells.

2. Mark all leaf cells that must be split, then apply the splits.

Here, leaf cells refers to all leaf nodes of all quadtrees. The first
step is straightforward. The second step eventually splits a quadtree

at its center and refines the sampling locally, if one of the following
conditions is violated for this cell and any of its quadtree neighbors:
(a) The difference of their quad tree depth must not exceed 1.

(b) The difference of their FTLEτ must not exceed a threshold θ .
Condition (a) accounts for a regular and “smooth” refinement of the
quadtree. This way, information from comparison of FTLEτ values is
reliable for neighboring cells. Condition (b) is the essential one, and it
is motivated as follows. Ridges gain sharpness over integration time.
They are “thicker” and “lower” for smaller τ and become “thinner”
and “higher” with increasing τ . Whenever we observe an FTLEτ value
that gets locally maximal (“higher”) for some τ , the cell (or one of
its neighbors) is a candidate for supporting a ridge. While this reads
trivial, the only reason why this refinement rule can work reliably is
that the algorithm tracks ridges and their development over time. At
observation time, the ridge is not yet too sharp, it may become sharper
in the future. The refinement takes care of this and adapts the resolution
locally – and exponentially – such that the ridge can be tracked further
and such that the event that new, close ridges develop can be detected.
The maximum resolution ε may stop further refinement locally. The
splitting process eventually is influenced by two parameters: ∆τ and
θ . We recommend a choice in the order ∆τ = 1%τe. The output of
the algorithm is not sensitive to this choice unless a much larger time
step is used, in this case split events may be missed. In contrast, the
algorithm is sensitive to the choice of the threshold θ , which steers
the local refinement. If this threshold is too large, there is not enough
adaptation and the generated sampling is not sufficient as ridges may
be missed. If it is too low, the refinement will be too aggressive. We
recommend a value of 1% of the maximum FTLE (FT LEmax) value at
τe that is estimated from a coarse sampling.

Ridge Extraction: The adaptive quadtree refinement provides a
sufficient sampling for the extraction of ridges that can be reliably
observed within the maximal resolution. A three-step process of filter-
ing, clustering and post-processing is used for extracting ridges from
quadtree cells.

1. Find ridge candidates: a leaf node of the quadtree is considered
a candidate if its FTLE value is a local maximum in co-gradient
direction and one of its neighbours in gradient direction has the
same property. This rule rejects isolated candidates and filters out
those which clearly support a ridge.

2. Cluster ridge candidates: neighbouring candidates are partitioned
into groups of connected “chains” such that each group supports
a ridge.

3. Connect ridge clusters: consecutive clusters are connected, if they
are separated by a single cell. Effectively, this stage closes small
gaps that may arise from step 1.

Finally, ridge lines are extracted from cells. We do not aim at finding
the “exact” ridge locations but instead output a polyline that has the
ridge cells as vertices. This gives lines that are suitable for ridge
statistics and avoids pretending exactness by a, e.g., marching cubes
like, interpolation or a potentially error-prone optimization near the
maximum resolution.
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Fig. 4: BOUSSINESQ flow: FTLE field for different integration times
with close-up views (a)–(d). Close-up with overlaid ridge geometry of
the 1000 longest ridges (e)

6 RESULTS

We show the results of two challenging data sets we used to test our
algorithm: the DOUBLE GYRE is a synthetic data set, which can be
evaluated at arbitrary resolution. The BOUSSINESQ data set stems from
simulation and is given as discrete samples on uniform grid.

Double Gyre: The DOUBLE GYRE is a synthetic data set, which
was introduced by Shadden et al. [33]. It represents a periodic 2D
unsteady vector field

v(x,y, t) =
(

− π

10 sin(π f (x, t)) cos(πy)
π

10 cos(π f (x, t)) sin(πy) d
dx f (x, t)

)
with

f (x, t) = a(t)x2 + b(t)x , a(t) = 1
4 sin π

5 t , b(t) = 1− 1
2 sin π

5 t .

Figure 1 shows the result of our algorithm for τ = 30 and a close-up
with the quadtree. Figure 3(a) shows the corresponding ridge geometry

for τ = 30 (as scalable vector graphics). Due to parallel computation
the domain was split into eight parts, which leads to the visible missing
ridge connections in the middle of the image. The time series in Fig-
ure 2(b)–(e) shows a close-up of a ridge that emerges over integration
time in the middle of the domain. Figure 3(b) provides some ridge
statistics on the DOUBLE GYRE: for given integration time τ , we sum
the length of all, the 1000 longest and the 100 longest ridges. The
DOUBLE GYRE was processed in the domain [0,2]× [0,1] and with
t = 0, τe = 30, ∆τ = 1

100 τe, θ = 1
100 FT LEmax.

Boussinesq: The BOUSSINESQ data set represents the natural
convection generated by a heated cylinder: a stagnant fluid is heated
and after short time develops highly turbulent plume above the cylin-
der. The data is given as a series of 1.600 time steps for t ∈ [0,20] of
100×300 spatial grids for [−0.5,0.5]× [−0.5,2.5]. The flow field is re-
constructed by trilinear interpolation. Figure 4 shows FTLE for τ = 10
and τ = 15 for the region [−0.45,0.45]× [−0.45,0.90] of the domain.
Figure 4(e) shows a close-up view for τ = 15 with overlaid ridge geom-
etry. Please note that we only show the 1000 longest extracted ridges,
meaning the ones that are most relevant for the description of the flow.
Figure 3(c) show statistics for the accumulated ridge length with respect
to the integration time τ . The BOUSSINESQ flow was processed with
t = 5, τe = 15, ∆τ = 1

100 τe, θ = 1
100 FT LEmax.

7 DISCUSSION

For both data sets our approach was able to compute high amounts
of ridge geometries. The DOUBLE GYRE and the BOUSSINESQ were
considered in a comparable domain with side lengths in the order of
1-2 length units. For these two data sets we were able to extract 350
to 400 length units of ridge lines. To the best of our knowledge, no
other approach comes even close to extracting such a rich ridge line
geometry. This is mainly made possible by a sampling that is tuned to
the particular problem: It is based on sampling of FTLE not only at the
final integration time but at intermediate times as well.

Based on the extraction of the line geometry, ridge statistics for
increasing integration times became possible. We do not know any
previous publications that compute ridge statistics in this or a similar
way. In our opinion the statistics have the potential to characterize the
global behavior of FTLE ridges over time. Hence they could be a future
tool for the transition from long integration times to even longer ones.
Here the test data sets show a significantly different behavior. The
DOUBLE GYRE exhibits an exponential behavior in the total amount
of ridges. It has a few ridges, that become longer over time – rapidly
but smoothly. This reflects the behavior of the underlying flow field,
which changes constantly but smoothly over time. The length of the
ridge lines grows approximately linearly for the BOUSSINESQ flow.
The plot reveals that there are only a few long ridges (yellow bars),
that do not become longer over time. For further integration times we
expect the number of the short ridges (green bars) to increase. The
BOUSSINESQ flow becomes turbulent after short integration times,
which could explain stagnation of long ridges.

8 LIMITATIONS AND FUTURE WORK

If the flow v is smooth and differentiable, FTLE is smooth and differ-
entiable as well for a finite integration time. This means that there is
only a finite number of ridges, and ridges have finite length. It would
be desirable to give guarantees that our algorithm finds all of them.
However, this cannot be guaranteed because the algorithm depends
on numerical integration which introduces errors especially for the
estimation of the gradient of the flow map. While these numerical
artifacts occur to particular lines, they do not have an impact on the
ridge statistics. For future research, an extension to 3D ridge surfaces is
desirable. There is no conceptional reason that prohibits the extension:
also in 3D, ridge surfaces become sharper and closer to each other with
increasing integration times. To compute statistics the FTLE surfaces
need to be extracted. We expect this to be the most challenging task for
the step to 3D.
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