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ABSTRACT

Sparse trajectory data consist of a low number of trajectories such that the reconstruction of an
underlying velocity field is not possible. Recently, approaches have been introduced to analyze flow
behavior based on a single trajectory only: trajectory stretching exponent (TSE) to detect hyperbolic
(stretching) behavior, and trajectory angular velocity (TRA) to detect elliptic (rotation) behavior. In
this paper, we analyze these approaches and in particular show that they are – contrary to what is
claimed in the literature – not objective in the extended phase space. Furthermore, we introduce the
first objective measure of rotation behavior that is based on only few trajectories: at least 3 in 2D, and
at least 4 in 3D. For this measure – called trajectory vorticity (TRV) – we show that it is objective and
that it can be introduced in two independent ways: by approaches for unsteadiness minimization and
by considering the relative spin tensor. We apply TRV to a number of constructed and real trajectory
data sets, including drifting buoys in the Atlantic, midge swarm tracking data, and a simulated vortex
street.

Keywords Objectivity · Flow Analysis

1 Introduction

In flow visualization, time-dependent velocity fields, obtained by simulation or measurement, are of high interest, as
they describe many natural phenomena. In fact, the data behind most techniques for flow visualization and flow analysis
are continuous time-dependent velocity fields [McLoughlin et al., 2010, Edmunds et al., 2012, Bujack et al., 2020].
Alternatively, sets of trajectories became popular as another representation of flows [Bujack and Joy, 2015, Sane et al.,
2018]. Usually, sets of trajectories are assumed to be sufficiently dense. In this paper, we are interested in flows where
only a very low number of trajectories is known. Examples are the analysis of observational drifter data [Lumpkin
and Centurioni, 2019, accessed 2021-11-15], balloon data, particle tracks from particle tracking velocimetry (PTV), or
swarms of tracked animals [Sinhuber et al., 2019] or robots. For such sparse sets of trajectories the question arises: can
we infer information about the behavior of the underlying flow if only a very few trajectories are available? We are
concerned with the question: can we get information about hyperbolic (stretching) or elliptic (rotation) behavior in
this case? In particular, we consider information that is invariant under different choices of moving reference frames,
i.e., is objective. While objectivity of flow measures is a common and obvious demand, it is in fact a rather strong
condition, especially when checking the rotation/swirling behavior of moving particles. Objective measures give the
same result, no matter whether the observer is at a fixed position, travelling e.g. with one particle, or the observer’s
coordinate system is in rotating motion itself. In fact, the most challenging part for objective measures is to distinguish
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Objective Flow Measures based on Few Trajectories

*under avg. vorticity condition

Figure 1: Summary of concepts, with our contributions highlighted in green. Using counterexamples, we show that
TSE and TRA are not objective and we discuss their camelback effects. Afterwards, we introduce the TRV measure,
which is based on multiple trajectories and proven to be objective.

between swirling around a common center and a rotating movement of the coordinate system. The first approach to
tackle this problem was proposed by Haller et al. [2021], who introduced measures based on a single trajectory only.
For this, the concept of quasi-objectivity is introduced: Contrary to classical objectivity where a scalar value must be
invariant under arbitrary time-dependent Euclidian transformations, for quasi-objectivity a condition (A) is introduced,
and invariance is not demanded for all Euclidean transformations but only for those fulfilling (A). Then, Haller et al.
[2021] introduced several measures based on a single trajectory: extended trajectory stretching exponents TSE and
TSE, and extended trajectory angular velocity TRA, TRA. Haller et al. [2021] claimed that TSE and TSE are objective
in the extended phase space, and that TRA is quasi-objective in the extended phase space under a certain condition put
to the average vorticity in a certain neighborhood of the trajectory.

In this paper, we make the following contributions:

• We show that the claims in [Haller et al., 2021] concerning objectivity of TSE, TSE, TRA are incorrect.
In fact, we show that neither TSE nor TSE are objective in the extended phase space. Further, TRA is not
quasi-objective in the extended phase space under an averaged-vorticity-based condition.

• We present a further analysis of TSE and TRA showing a "camelback effect" that limits the usefulness of TSE
and TRA.

• We introduce a new flow measure TRV (trajectory vorticity), which measures rotational behavior based on at
least three trajectories (in 2D) or four trajectories (in 3D), respectively.

• We show that TRV can be derived in two independent ways: by approaches for unsteadiness minimization,
and by considering the relative spin tensor.

• We prove that TRV is objective.
• We apply the new measure TRV to a number of sparse trajectory data sets, including drifting buoys in the

Atlantic, midge tracking data, and trajectories in a simulated vortex street.

Figure 1 summarizes the main concepts in our paper. The green components are our novel contributions.

2 Basic Concepts and Related Work

Objectivity, a concept from continuum mechanics, refers to the invariance of a measure under a moving reference
system. Let s(x, t), w(x, t), T(x, t) be time-dependent scalar-, vector-, and tensor fields, respectively. Further, let
s̃(x̃, t), w̃(x̃, t), T̃(x̃, t) be their observations under the Euclidean frame change

x = Q(t) x̃ + b(t) (1)
where Q = Q(t) is a time-dependent rotation tensor and b(t) is a time-dependent translation vector. Then s,w,T are
objective if the following conditions hold, cf. Truesdell and Noll [1965]:

s̃(x̃, t) = s(x, t) , w̃(x̃, t) = QT w(x, t) , T̃(x̃, t) = QT T(x, t)Q. (2)
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Objective Flow Measures based on Few Trajectories

Since its introduction to flow analysis [Astarita, 1979], objectivity became a common demand for newly-introduced
flow measures[Haller, 2005]. In fact, there are a variety of objective flow measures focusing on hyperbolic (stretching)
properties, such as FTLE [Shadden et al., 2005]. Also, objective flow measures focusing on elliptic (rotational) behavior
have been introduced and can roughly be divided into three classes: (1) Replacing the spin tensor by the relative
spin tensor [Drouot and Lucius, 1976, Astarita, 1979]: These approaches use the fact that the rate-of-strain-tensor is
objective and consider the spin tensor (vorticity) in the local frame given by the rate-of-strain tensor. (2) Replacing the
spin tensor by the spin deviation tensor [Haller et al., 2016, Liu et al., 2019], where the fact is used that the difference of
two spin tensors at different locations but the same time is objective. (3) Finding optimal reference frames minimizing
the unsteadiness of the observed flow: introduced by Günther et al. [2017], this created a number of follow-up work
[Günther and Theisel, 2019, Hadwiger et al., 2019, Baeza Rojo and Günther, 2020, Günther and Theisel, 2020, Rautek
et al., 2021, Zhang et al., 2022]. Recently, objectivity of unsteadiness minimization approaches has been questioned
[Haller, 2021] but confirmed [Theisel et al., 2021].

All approaches mentioned so far have in common that they rely on an underlying velocity field and its derivatives.
For our problem where only a few trajectories are available they are not applicable. There are, however, a few flow
measures based on only few trajectories. The relative dispersion was introduced by Provenzale [1999] and was further
analyzed by Haller and Yuan [2000], Haller et al. [2021]. Given are two distinct C1 continuous trajectories x1(t),x2(t)
along with their derivatives ẋ1(t), ẋ2(t) . Defining the local relative dispersion

rd = rdx1(t),x2(t)(t) =
(x2 − x1)T (ẋ2 − ẋ1)

(x2 − x1)T (x2 − x1)
, (3)

one gets the relative dispersion by integrating rd along trajectories:

RDt0,tNx1(t),x2(t) =

∫ tN

t0

rd dt = ln
|x2(tN )− x1(tN )|
|x2(t0)− x1(t0)|

. (4)

Note that RD is objective [Haller et al., 2021].

Haller et al. [2021] introduced measures for stretching and rotation that are based on single trajectories only: Extended
trajectory stretching exponents TSE , TSE, and extended trajectory angular velocity TRA, TRA. Given is a C2

continuous trajectory x(t) for t ∈ [t0, tN ], its first and second derivatives ẋ(t), ẍ(t), and a positive constant v0

accounting for a certain ratio between space and time units to make them non-dimensionalized. Considering x(t) in an
extended phase space gives for the first and second derivative of a trajectory x(t):

ẋ(t) =

(
1
v0

ẋ(t)
1

)
, ẍ(t) =

(
1
v0

ẍ(t)
0

)
. (5)

Then a local stretching measure can be defined as

tse = tsex(t),v0(t) =
ẋT ẍ

ẋT ẋ
=

ẋT ẍ

ẋT ẋ + v2
0

(6)

from which the Lagrangian measures TSE and TSE are computed by integrating tse along the trajectory:

TSEt0,tNx(t),v0
=

1

∆t

∫ tN

t0

tse dt =
1

∆t
ln

√
|ẋ(tN )|2 + v2

0

|ẋ(t0)|2 + v2
0

(7)

TSE
t0,tN
x(t),v0 =

1

∆t

∫ tN

t0

|tse| dt ≈ 1

∆t

N−1∑
i=0

∣∣∣∣∣ln
√
|ẋ(ti+1)|2 + v2

0

|ẋ(ti)|2 + v2
0

∣∣∣∣∣ (8)

with ∆t = tN − t0. The discretization in Eq. (8) samples x(t) at N + 1 time steps t0 < t1 < ... < tN .

For defining TRA, the (n+ 1)-dimensional matrix function

tra = trax(t),v0(t) =
ẋ ẍT − ẍ ẋT

ẋT ẋ
(9)
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can be introduced that describes the local angular velocity. Note that tra is an anti-symmetric matrix, from which one
gets by integration along the trajectory Lagrangian measures

TRAt0,tNx(t),v0
=

1

∆t

√
2

2

∣∣∣∣∫ tN

t0

tra dt

∣∣∣∣
Fr

(10)

=
1

∆t
cos−1 ẋ(t0)T ẋ(tN ) + v2

0√
|ẋ(t0)|2 + v2

0

√
|ẋ(tN )|2 + v2

0

(11)

TRA
t0,tN
x(t),v0 =

1

∆t

√
2

2

∫ tN

t0

|tra|Fr dt (12)

≈ 1

∆t

N−1∑
i=0

cos−1 ẋ(ti)
T ẋ(ti+1) + v2

0√
|ẋ(ti)|2 + v2

0

√
|ẋ(ti+1)|2 + v2

0

(13)

where Fr denotes the Frobenius norm of a matrix. Haller et al. [2021] claimed that TSE and TSE are objective in the
extended phase space, and that TRA and TRA are quasi-objective in the extended phase space under a certain condition
put to the average vorticity in a certain neighborhood of the trajectory.

3 TSE, TRA, and objectivity

Single-trajectory flow measures are attractive because they need minimal information to infer the flow behavior of an
underlying field. Obviously, single-trajectory measures cannot be objective in the Euclidean observation space because
one may think of a reference system moving with the trajectory, making each trajectory zero [Haller et al., 2021].
Because of this, Haller et al. [2021] considered objectivity in an extended phase space. In this section, we analyze and
correct statements of Haller et al. [2021] about objectivity in the extended phase space.

3.1 Definition of TSE and TRA

We recapitulate the definition of TSE from Haller et al. [2021], keeping their notation as much as possible. We start with a
single observed trajectory x(t) in n-D (n = 2, 3) for t ∈ [t0, tN ] running from x0 = x(t0) to xN = x(tN ). Further, we
assume that x(t) is a trajectory (path line) of an underlying unsteady velocity field v(x, t), i.e., ẋ(t) = dx

dt = v(x(t), t)
for all t ∈ [t0, tN ]. Following Haller et al. [2021], v is transformed into a non-dimensionalized field u by

y =
x

L
, τ = τ0 +

t− t0
T

, v0 =
L

T
(14)

where L, T, v0 are certain positive constants for a field that need to be determined by additional knowledge about
the data. Generally, the scaling factor v0 is non-zero, i.e., v0 6= 0. This transformation rephrases x(t) into the
non-dimensionalized trajectory

y(τ) =
1

L
x(t0 + T (τ − τ0)) (15)

running from y0 = y(τ0) = 1
Lx0 to yN = y(τN ) = 1

LxN with τN = τ0 + tN−t0
T . Further, it gives the non-

dimensionalized vector field

u(y, τ) =
1

v0
v (Ly, t0 + T (τ − τ0)) . (16)

Note that (16) contains a correction of a missing term 1
v0

in formula (26) in [Haller et al., 2021]. The error in formula
(26) in [Haller et al., 2021] can be seen in the following way: suppose v is a constant vector field, i.e., v(x, t) = vc.
Then formula (26) in [Haller et al., 2021] would give u(y, τ) = vc no matter how v0 is chosen. This would contradict
to the formula before (33) in [Haller et al., 2021].

Following [Haller et al., 2021] further, an extended phase space Y =

(
y
z

)
is introduced. Transformation of y(τ) and

u(y, τ) into this extended phase space gives

Y(τ) =

(
y(τ)
τ

)
, U(Y) =

(
u(y, z)

1

)
(17)

4



Objective Flow Measures based on Few Trajectories

where Y(τ) is the trajectory in the extended phase space running from Y0 = Y(τ0) =

(
y0

τ0

)
to YN = Y(τN ) =(

yN
τN

)
, and U(Y) is the underlying vector field. The tangent vector of Y(τ) is

Y′(τ) =
dY

d τ
=

(
y′(τ)

1

)
=

(
1
v0
ẋ(t0 + T (τ − τ0))

1

)
. (18)

Note that U(Y) is an autonomous dynamical system now: U is a steady velocity field in the extended phase space.
Then Haller et al. [2021] defines TSE and TRA as

TSEtNt0 (x0, v0) =
1

∆t
ln
|Y′(τN )|
|Y′(τ0)|

=
1

∆t
ln
|U(YN )|
|U(Y0)|

(19)

TRAtNt0 (x0, v0) =
1

∆t
cos−1 Y′(τ0)T Y′(τN )

|Y′(τ0)||Y′(τN )|
(20)

=
1

∆t
cos−1 U(Y0)T U(YN )

|U(Y0)||U(YN )|
(21)

where ∆t = tN − t0, (19) is identical to the right-hand side of (7), and (20) is identical to the right-hand side of (11).
To show objectivity of TSE in the extended phase space, one has to prove that TSE is invariant under observation in any
moving Euclidean reference system in the extended phase space. Analogous to Eq. (1), such moving reference system
is defined by

Y = Q(τ )Ỹ + B(τ) , Q(τ) =

(
Q(τ) 0
0T 1

)
, B(τ) =

(
b(τ)

0

)
(22)

with Q(τ) ∈ SO(n) being a rotation matrix, and 0 being the zero-vector. The observed trajectory Ỹ(τ) and the
underlying velocity field Ũ(Ỹ, τ) in the new moving reference system are

Ỹ(τ) = QT(τ)(Y(τ)−B(τ)) (23)

Ũ(Ỹ, τ) = QT(τ)
(
U
(
Q(τ)Ỹ + B(τ)

)
− Q̇(τ)Ỹ − Ḃ(τ)

)
(24)

where the new trajectory Ỹ(τ) runs from Ỹ0 = Ỹ(τ0) to ỸN = Ỹ(τN ). Then, TSE in the moving reference system is

T̃SE
tN

t0 (x0, v0) =
1

∆t
ln
|Ỹ′(τN )|
|Ỹ′(τ0)|

=
1

∆t
ln
|Ũ(ỸN , τN )|
|Ũ(Ỹ0, τ0)|

. (25)

T̃RA
tN

t0 (x0, v0) =
1

∆t
cos−1 Ỹ′(τ0)T Ỹ′(τN )

|Ỹ′(τ0)||Ỹ′(τN )|
(26)

To show objectivity of TSE in the extended phase space, one has to prove TSE = T̃SE for any moving reference
frame, as given by Eq. (22). To show quasi-objectivity of TRA under averaged-vorticity condition, one has to prove
TRA = T̃RA for all reference frames (22) in which the averaged-vorticity condition is fullfilled.

3.2 A simple counter-example

We show the non-objectivity of TSE in the extended phase space by a simple counter-example. We set the 2D observed
trajectory x(t) and the underlying velocity field v(x, t) as

x(t) =

(
et − 1
t (t+ 1)

)
, v(x, t) =

(
x+ 1
2 t+ 1

)
(27)

for t ∈ [t0, tN ] = [0, 1] and x = (x, y)T. To calculate TSE as in Eq. (7), we only need information at time t0 and tN .
This gives

x0 = (0, 0)T , xN = (e− 1, 2)T (28)

ẋ(t0) = v(x0, t0) = (1, 1)T , ẋ(tN ) = v(xN , tN ) = (e, 3)T. (29)

For the non-dimensionalization transformation, we set τ0 = 0, resulting in τN = 1
T . This gives with Eqs. (15) and (16)

y(τ) =
1

L

(
eTτ − 1

Tτ(Tτ + 1)

)
, u(y, τ) =

1

v0

(
Lx̄+ 1

2Tτ + 1

)
(30)

5
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with y = (x̄, ȳ)T, and therefore we obtain at τ0 and τN

y0 =

(
0
0

)
, yN =

1

L

(
e− 1

2

)
(31)

u(y0, τ0) =
1

v0

(
1
1

)
, u(yN , τN ) =

1

v0

(
e
3

)
. (32)

Transforming to the extended phase space
Y = (x̄, ȳ, z)T (33)

using Eq. (17) gives

Y(τ) =

 1
L (eTτ − 1)

1
L (Tτ(Tτ + 1))

τ

 , U(Y) =

 1
v0

(Lx̄+ 1)
1
v0

(2Tz + 1)
1

 (34)

with the following position and tangent at the curve end points

Y0 = (0, 0, 0)T , YN =

(
e− 1

L
,

2

L
,

1

T

)T

(35)

U(Y0) =

(
1

v0
,

1

v0
, 1

)T

, U(YN ) =

(
e

v0
,

3

v0
, 1

)T

. (36)

Inserting into Eqs. (19) and (20), this results in TSE and TRA:

TSE = ln

√
e2 + 9 + v2

0

2 + v2
0

, TRA = cos−1
e+ 3 + v2

0√
2 + v2

0

√
e2 + 9 + v2

0

. (37)

For our counterexample, it is sufficient to choose a particular moving Euclidean reference system (22) by

Q(τ) = I , B(τ) = τ

(
bc
0

)
(38)

where I is the identity matrix and bc = (xc, yc)
T is a constant 2D vector. For this particular reference system, we get

by (23), (24):

Ỹ(τ) = Y(τ)− τ
(
bc
0

)
(39)

Ũ(Ỹ, τ) = U

(
Y + τ

(
bc
0

))
−
(
bc
0

)
. (40)

This gives the following trajectory end points and tangents:

Ỹ0 = (0, 0, 0)T , ỸN =

(
e− 1

L
− xc
T

,
2

L
− yc
T
,

1

T

)T

(41)

Ũ(Ỹ0, τ0) = Ỹ′(τ0) =

(
1

v0
− xc ,

1

v0
− yc , 1

)T

(42)

Ũ(ỸN , τN ) = Ỹ′(τN ) =

(
e

v0
− xc ,

3

v0
− yc , 1

)T

(43)

and finally by inserting into Eq. (25), we get T̃SE:

T̃SE = ln

√
(e− v0xc)2 + (3− v0yc)2 + v2

0

(1− v0xc)2 + (1− v0yc)2 + v2
0

(44)

Analogously, T̃RA follows by inserting (42)–(43) into (26). Since there is no positive constant v0, cf. (14), that makes
TSE in (37) and T̃SE in (44) identical for any bc = (xc, yc)

T, non-objectivity of TSE in the extended phase space is
shown. Since in our example both U(Y) and Ũ(Ỹ, τ) have zero vorticity, the average-vorticity condition in [Haller
et al., 2021] is trivially fulfilled. Thus, the difference of TRA and T̃RA gives that TRA is not quasi-objective in the
extended phase under the average-vorticity condition.

6
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3.3 Where is the error?

Haller et al. [2021] considered a non-zero vector ξ0 at (x0, t0) that is advected with v along x(t), resulting in

ξ̇(t) = ∇v(x(t), t) ξ(t) , ξ(t0) = ξ0. (45)

Then, ξ(t) is observed under a moving reference system (1). Objectivity of ξ is deduced from (45), (1):

ξ̃(t) = QT(t) ξ(t) (46)

where ξ̃ is the observation of ξ under the moving reference system (1). From (46) follows the objectivity of 1
∆t ln |ξ(tN )|

|ξ0|
.

We note that (46) follows from (45) and (1) only if another implicit assumption holds: objectivity of the seeding vector
ξ0, i.e., ξ̃0 = QT(t0) ξ0.

The approach of Haller et al. [2021] is to set ξ0 = v0 = v(x0, t0). With this, additional conditions are necessary to
ensure

v̇(t) = ∇v(x(t), t) v(x, t) (47)

ṽ(x̃, t) = QT(t) v(x, t) (48)

where (47) corresponds to (45) and (48) corresponds to (46). To ensure (47), Haller et al. [2021] introduced the
condition

(A1) δtv(x, t) = 0

in the current observation frame. However, condition (A1) does not ensure (48) because ξ0 = v0 is not objective. Since
the observation of v under the moving reference system (1) is [Haller, 2021]

ṽ(x̃, t) = QT(t)
(
v(x, t)− Q̇(t) x̃− ḃ(t)

)
, (49)

Eq. (48) is only fulfilled for Q̇ = 0, ḃ = 0, i.e., the reference frame is not moving but static, resulting in demanding
that ṽ(x̃, t) is steady. This means that the condition for the quasi-objectivity of TSE is the steadiness of both v and ṽ in
all considered reference frames. We remark that this is a rather strong condition for quasi-objectivity: it excludes the
consideration of all moving reference frames.

The transformation to the extended reference system transforms v to the steady vector field U, making the condition
(A1) for (47) in the extended reference frame obsolete. However, the observation Ũ of U under a moving reference
system (22) is not a steady vector field anymore, as shown in (24). This means that

Ũ(Ỹ, τ) = Q(τ ) U(Y) (50)

does not hold in general but only for particular steady reference frames. Because of this, TSE is in the extended phase
space not objective but only quasi-objective under restriction to a static reference system.

Summary: The error was to assume that the observation of an autonomous system (steady vector field) in the extended
phase space under a moving reference frame remains an autonomous system.

Remarks: A similar argumentation gives that TSE is not objective in the extended phase space, and and that TRA is
is not quasi-objective in the extended phase space under the averaged-vorticity-based condition. TSE, TSE, TRA and
TRA are not even Galilean invariant because the moving reference system (38) in the counterexample was performing a
Galilean transformation.

3.4 Further Analysis of TSE and TRA

Being not objective (neither in Euclidean nor in extended phase space) does not necessarily mean that TSE and TRA
are not useful. In fact, Haller et al. [2021] and Bartos et al. [2021] show a number of successful applications. Because
of this, we further analyze TSE and TRA on a dense field of trajectories. We observe a "camelback effect" of TSE that
can be seen in Figure 2: in a flow, hyperbolic separators are usually lines in 2D and surfaces in 3D (one may think
of FTLE ridges). TSE tends to become large in areas close to hyperbolic separators, but small again exactly on the
separators. This means, a low TSE can indicate either absence of hyperbolic separators, or an exact hit of a hyperbolic
separator. For TRA and TRA, we observe a "radial camelback effect" in Figure 3: in a neighborhood of a vortical area
TRA and TRA tend to get large, but towards the center of rotation (vortex core) both measures exhibit smaller values.
Also this makes the interpretation of low TRA values ambiguous, limiting the applicability of TRA. For both images,
we set v0 = 1. For reference, we visualized the vortices with Lagrangian averaged vorticity deviation (LAVD) [Haller
et al., 2016], where the vorticity average was computed for the entire domain.
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0.005−0.005 TSE 0.0250 TSE 0.60 FTLE

Figure 2: TSE (left), TSE (center) and FTLE (right) calculated on a STEADY DOUBLE GYRE flow for integration
duration τ = 10: v(x, y) = (−0.1π sin(xπ) cos(yπ), 0.1π cos(xπ) sin(yπ))T. The centerline is a strongly separating
structure, as can be seen in the FTLE image. However, both TSE and TSE exhibit high values not on this line, but rather
a "camelback" around it. This result is similar for different choices of v0, shown here for v0 = 1.
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Figure 3: Comparison of TRA, TRA, and LAVD for an integration duration of τ = 3 in the CYLINDER flow. Note
the radial camelback effects in TRA and TRA, both having low values in the interior of vortices. In LAVD, the avg.
vorticity was taken from the full domain.

4 Trajectory Vorticity

Once we have seen that single-trajectory measures are not objective (neither in the Euclidean nor in the extended
phase space), we search for objective measures that are based on more than one but still few trajectories. For this, we
assume that the trajectories are in coherent (hyperbolic or elliptic) areas and therefore driven by similar phenomena.
For hyperbolic regions, such an objective measure is relative dispersion, cf. Eqs. (3)–(4), which is computed from (at
least) two trajectories. In the following, we introduce the – to the best of our knowledge – first objective measure of
elliptic flow behavior that is based on very few trajectories only, called Trajectory Vorticity (TRV). We begin with the
formal definition in Section 4.1. Afterwards, we explain the derivation and properties in Section 4.2.
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4.1 Definition of TRV

In 2D/3D, we consider three/four distinctC2 continuous trajectories x1 = x1(t), x2 = x2(t), x3 = x3(t), [x4 = x4(t)]
with first derivatives ẋ1, ẋ2, ẋ3, [ẋ4] and second derivatives ẍ1, ẍ2, ẍ3, [ẍ4]. (Note that content in brackets [ ] refers to
additional content present in 3D but not in 2D.) We introduce an n-dimensional anti-symmetric matrix function

trv = trvx1,x2,x3[,x4](t), (51)

based on this, we define the Lagrangian Trajectory Vorticity TRV by integrating trv as

TRVt0,tNx1,x2,x3[,x4] =
1

∆t

√
2

2

∣∣∣∣∫ tN

t0

trv dt

∣∣∣∣
Fr

(52)

TRV
t0,tN
x1,x2,x3[,x4] =

1

∆t

√
2

2

∫ tN

t0

|trv|Fr dt (53)

with ∆t = tN − t0 and Fr denoting the Frobenius norm of a matrix. To define trv, we introduce the time-dependent
matrices

X = X(t) =

(
x1 x2 x3 [x4]
1 1 1 [1]

)
(54)

Ẋ = Ẋ(t) =

(
ẋ1 ẋ2 ẋ3 [ẋ4]
0 0 0 [0]

)
(55)

Ẍ = Ẍ(t) =

(
ẍ1 ẍ2 ẍ3 [ẍ4]
0 0 0 [0]

)
(56)

from which we compute

H = H(t) = Ẋ X−1 , Ḣ = Ḣ(t) = (Ẍ−HẊ) X−1. (57)

Setting Iz = (I,0) with I being the identity matrix and 0 being the zero column-vector, we compute

J = J(t) = Iz H Iz
T , J̇ = J̇(t) = Iz Ḣ Iz

T. (58)

Further, we consider the symmetric and anti-symmetric parts

S =
J + JT

2
, Ṡ =

J̇ + J̇T

2
, W =

J− JT

2
. (59)

Let E be the rotational matrix containing the (normalized) eigenvectors of S as columns, i.e., the transformation

S = ET S E , Ṡ = ET Ṡ E (60)

yields a diagonal matrix S. From this, we compute

Ws =

(
0 −u3 [u2]
u3 0 [−u1]

[−u2] [u1] [0]

)
(61)

with

([u1, u2, ]u3) =

([
Ṡ3,2

S2,2 − S3,3

,
Ṡ1,3

S3,3 − S1,1

,

]
Ṡ2,1

S1,1 − S2,2

)
(62)

where Si,j denotes the entry at [i, j] of the matrix S. Then, the back transformation

Ws = E Ws E
T (63)

gives

trvx1,x2,x3[,x4](t) =

{
W −Ws if Ws is computable

0 else (64)

where Ws is computable if X is invertible and Ṡ has distinct eigenvalues. Here, 0 denotes the zero matrix.

TRV can also be computed for more than 3 (in 2D) or 4 (in 3D) trajectories. In this case, X, Ẍ, Ẍ in (54)–(56) receive
more columns, and X−1 in (57) denotes the right Moore-Penrose pseudo-inverse XT(XXT)−1 instead of the matrix
inverse.
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4.2 Properties and equivalent definitions of TRV

Theorem 1 trvt0,tNx1,x2,x3[,x4](t) is objective.

The formal proof of this theorem is in the appendix. From theorem 1 follows directly that TRV and TRV are objective
as well. In addition to this, we give further information about the interpretation of TRV and TRV in the following.

The main idea for the introduction of trv is to consider a time-dependent vector field v(x, t) that is fitted locally to the
given trajectories, and to apply existing approaches for the objectivization of v. In fact, the vector field v(x, t) given by(

v(x, t)
0

)
= H(t)

(
x
1

)
(65)

fits x1(t),x2(t),x3(t)[,x4(t)] in the sense that all trajectories x1(t),x2(t),x3(t)[,x4(t)] are path lines of v. Note that
v is linear in space but non-linear in time: fixing t results in a linear vector field. Then, the Jacobian and the time partial
derivative of v are

vt(x, t) = Ḣ(t)

(
x
1

)
,

(
J(t) a(t)
0T 0

)
= H(t). (66)

Note that vt is linear in space, and J and a are constant in space. Also note that S and W in (59) denote the rate-of-strain
tensor and the spin tensor of v, respectively.

Now, trv is obtained by applying standard objectivization approaches to v. In fact, trv is obtained by replacing W
with the relative spin tensor Wr = W −Ws using the strain rotation rate tensor

Ws = −EEt
T (67)

where E is defined in (60) and Et = ∂ E
∂ t , as done by Drouot and Lucius [1976], Astarita [1979]. The identity of (63)

and (67) follows directly from (60)–(62).

Interestingly, trv can also be obtained in a different way: by unsteadiness minimization following Günther et al. [2017].
Observing v defined in (65) in a moving reference frame x̃ = R(t)x + c(t) gives for the time-derivative of v in the
new reference frame [Günther et al., 2017]

ṽt = R (vt −Mu) (68)

with M = (−Jxp + vp , J , xp , I), xp =

(
0 −1
1 0

)
x, vp =

(
0 −1
1 0

)
v in 2D, and M = (−JX + V , J , X , I),

X = sk(x), V = sk(v) in 3D, and u is a 6-vector in 2D and 12-vector in 3D:

u =

u1

u2

u3

u4

 =


ap(RTṘ)

RTċ

ap(RTR̈− (RTṘ)2)

−(RTc̈−RTṘRTċ)

 (69)

where ap transforms the anti-symmetric part of a matrix to a scalar/vector: ap(M) = 1
2 (M1,2 −M2,1) in 2D and

ap(M) = 1
2 (M3,2−M2,3 , M1,3−M3,1 , M2,1−M1,2)T in 3D. Conversely, sk is the inverse function transforming

a scalar/vector to an anti-symmetric matrix, here for 2D/3D:

sk(α) =

(
0 α
−α 0

)
/ sk

(
α
β
γ

)
=

(
0 −γ β
γ 0 −α
−β α 0

)
(70)

Note that due to the spatial linearity of v, both vt and ṽt are spatially linear as well. Then, searching for an unsteadiness
minimizing observation frame results in searching an unknown u fulfilling∫

U

‖ṽt‖2 dV → min (71)

where U is a certain 2D/3D cube. Note that due to the spatial linearity of v, the problem in Eq. (71) is under-determined
in u, i.e., it has a whole family of solutions u. However, all solutions of (71) have the same component u1, that is,
component u1 is independent of the size and location of U . With this, we get

Ws = −sk(u1) (72)

The proof of the equivalence of (63) and (72) is a straight computation for which we provide a Maple sheet in the
accompanying material. Eq. (72) gives that trv can be computed by observing W in an unsteadiness minimizing
reference frame following Günther et al. [2017].
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(p, q) = (6.75,−2.25) (p, q) = (3.25, 1.25) (p, q) = (1.25, 3.25) (p, q) = (−2.25, 6.75)
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Figure 4: Example of three trajectories rotating around a point on a circle at different speeds. In the first row, the
trajectories and reference frame are shown over π/4. Removing the respective reference frame gives the result in
the second row, rendered over π/2: the particles are moving in an ellipse around the origin, with their speed and
direction depending on the choice of q. Removing the wrong reference frame (here taken from the first line set) leads to
non-stationary behavior, as shown in the third row.

Remarks: The equivalence of unsteadiness minimization and relative spin tensor consideration shown here does not
hold for general vector fields but only for spatially linear ones as considered here.

Another popular approach to objectivize flow measures is to replace W by the spin-deviation tensor

W − 1

vol(U)

∫
U

W dV. (73)

For v defined in (65), this gives a perfectly objective but trivial solution: it is zero everywhere.

Haller [2021] raises concerns against considering the relative spin tensor by defining a compatibility condition and
showing that general relative spin tensor consideration do not fulfill them. For our approach, this is not an issue because
due to the spatial linearity of v the compatibility condition of Haller [2021] is always fulfilled.

5 Results

In the following, we apply our approach to four data sets. We begin with a synthetic example to demonstrate the
capability of our approach to separate rotating motion from reference frame rotation.
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5.1 Three trajectories

We consider a simple data set consisting of the three 2D trajectories

x1(t) = o +
3

10
cos(q t) r1 +

1

5
sin(q t) r2 (74)

x2(t) = o +
4

5

(
3

10
cos

(
q t− 2

3
π

)
r1 +

1

5
sin

(
q t− 2

3
π

)
r2

)
x3(t) = o +

6

5

(
3

10
cos

(
q t+

2

3
π

)
r1 +

1

5
sin

(
q t+

2

3
π

)
r2

)
with

o =

(
cos(t)
sin(t)

)
, (r1, r2) =

(
cos(p t) − sin(p t)
sin(p t) cos(p t)

)
. (75)

The trajectories are the result of a superposition of three rotational movements: a rotation around the origin with the
angular speed 1, a rotation of the local reference system with the angular speed p, and a rotation of the particles in this
local reference system with the angular speed q.

The objectivity of TRV ensures that we can separate the movement of the reference system from the movement of the
particles in it. In fact, applying our approach gives

trv =

(
0 − 13

12q
13
12q 0

)
, (76)

as shown in the supplemental Maple sheet. Then, the optimal moving coordinate system is given by Eq. (75) where o is
the origin and r1, r2 are the coordinate axes. We illustrate the trajectories and the corresponding coordinate axes for the
combinations (p, q) = (6.75,−2.25), (3.25, 1.25), (1.25, 3.25), (−2.25, 6.75) in Figure 4 in three different reference
systems each. Note that the sum of the angular speed of the reference system and the particles therein is constant for
all 4 instances: p+ q = 4.5. The upper row of Figure 4 shows the motion of the particles in a fixed global reference
system as well as the motion of the optimal moving reference systems. From the particle motion in the fixed global
system it is hard to infer the rotation behavior of the trajectories around each other. This changes when switching to
the optimal local moving reference system (middle rows): here we can clearly observe clockwise rotation in the first
column and a counterclockwise rotation of different angular speed in the remaining columns. For reference, the lower
row shows the observation in the reference frame of the first column, showing a non-stationary particle behavior.

5.2 Cylinder Flow

We apply our approach to the numerically simulated CYLINDER data set, which was simulated using Gerris flow
solver [Popinet, 2004] and was published by Günther et al. [2017]. Such a data set is not the main target of our approach
because here the underlying velocity field is available. We use it as test data set since we can compute an arbitrary
number of trajectories and can compare measures based on them with "ground truth" measures form the underlying
velocity field.

Figure 5 shows trajectory measures for rotating behavior from 500 randomly seeded trajectories (pathlines) observed
in three different reference systems: a system moving with the approximate speed of the vortices (left column), the
original references system (middle column), and a system moving faster (right column). For reference, we color code
the vorticity magnitude of the underlying velocity field in the first time slice, giving a reliable indicator where to expect
rotation behavior. To compute TRV and TRV, for a trajectory, the 4 nearest neighboring curves were selected from the
sampled set of trajectories based on the squared distance:

d(x1(t),x2(t)) =

∫ tN

t0

|x1(τ)− x2(τ)|2 dτ. (77)

Since the trajectories were in temporal correspondence, more general distance metrics, such as the reduced mean closest
point distance [Oeltze et al., 2014], were not necessary. Figure 5 illustrates again that TRA and TRA are not objective:
corresponding trajectories for different observations frames (columns in Figure 5) have different colors. For TRV and
TRV, we observe the same colors for different frames, confirming objectivity. We also note that TRV and TRV tend to
have high values in regions of high vorticity magnitude, confirming the detection of rotation trajectory behavior.
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Figure 5: Trajectory vortex measures calculated from 500 randomly placed pathlines in the CYLINDER flow for three
Galilean observers, here shown in 2D space-time. Left to right: observer moving approximately relative to vortices,
the original observer, and observer moving faster. For reference, vorticity magnitude is visualized in the first time
slice. Note that the value of TRA and TRA changes for different observers, while TRV and TRV give consistent results.
Pathlines were transformed from the original via Eq. (1) with Q(t) = I and b(t) = (±0.9 t, 0)T to the near-steady and
fast-moving frame, respectively.

0.6

1.0

Figure 6: On the left, input trajectories of drifting buoys in the Atlantic are shown. On the right, our new trajectory
vortex measure TRV is visualized, revealing rotational particle behavior. The TRV value is mapped to color and line
radius. Lines with too small TRV are removed to avoid visual clutter.

5.3 Ocean Drifter Trajectories

One instrument for measuring oceanic flow are drifting buoys, which get released into the ocean and are tracked by
satellites. The result is a time series per buoy encompassing their position, speed, and potentially other measurements
from equipment attached to the drifters. Several hundred such drifters are currently deployed by the National Oceanic
and Atmospheric Administration (NOAA) of the USA, with tracking data freely available [Lumpkin and Centurioni,
2019, accessed 2021-11-15]. We applied our TRV measure with (77) and 2 nearest neighbors per curve on a subset of
203 drifters in the North Atlantic ocean, tracked over two years, to identify vortical behavior. The results are shown in
Figure 6: strong rotational behavior can be seen in the center of the North Atlantic Gyre, a region where water gets
trapped by the surrounding currents. Other regions highlighted by TRV include the beginning of the Gulf stream west
of Florida, where eddy vortices are known to shear off, and areas close to the European coastline.
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1.4

Figure 7: TRV calculated for two different seeding times in the measured MIDGE data set. For this 3D data set, four
neighboring lines are considered. The total number of input trajectories in the data sets are 38 (left) and 56 (right).

5.4 Midge Trajectories

We analyze trajectories of tracked swarms of Chironomus riparius. The data set is described and provided by Sinhuber
et al. [2019]. Chironomus riparius are a midge species that consistently and predictably forms mating swarms over
visual cues [Downe and Caspary, 1973]. To create the data set, the midges were bred in a laboratory environment,
including a constant temperature and humidity and day/night sequences by artificial illumination. The observed swarms
describe male midges, mostly observed in artificial dusk. The tracking was done by an optical 3-camera system. Swarms
of Chironomus riparius are known to nucleate over visual features on the ground, such as tree stumps or stream banks
[Downe and Caspary, 1973]. In the experiment, this was simulated by adding "swarm markers" to the setup. We apply
TRV to further analyze the movement around visual features. In particular, we analyze if a common objective rotation
behavior can be observed. Figure 7 shows the trajectories for two different seeding times. While the pure shape of the
trajectories does not reveal any patters, we found a few trajectories with high TRV values, mostly in the inner parts of
the data set. Our approach can confirm a swirling behavior of a few trajectories, while for the majority of the particles,
no objective rotation behavior is detected.

Data set dist. (ms) TRV (ms) lines vertices fit
DRIFTER 26.41 161.98 203 125,472 4
MIDGE 0.17 8.81 38 1,558 3
MIDGE 0.36 15.19 56 2,728 3

CYLINDER 25.93 162.54 500 115,241 5
CYLINDER 25.99 184.01 500 112,014 10
CYLINDER 27.49 229.90 500 109,815 15
CYLINDER 354.35 482.14 2,000 471,906 5
CYLINDER 357.94 571.12 2,000 462,457 10
CYLINDER 360.12 758.48 2,000 455,018 15
CYLINDER 1,945.26 1,204.98 5,000 1,199,686 5
CYLINDER 1,930.10 1,440.55 5,000 1,183,928 10
CYLINDER 1,933.80 1,948.60 5,000 1,171,023 15

Table 1: Runtime measurements for the computation of the full distance matrix (in millisec.), the TRV computation (in
millisec.), the number of trajectories in the set, the total number of vertices in the set, and the number of neighboring
lines used for the fit.
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Figure 8: Parameter studies for the number of input trajectories (rows) and the number of neighboring lines used for
fitting H (columns), here for TRV. For a low number of input trajectories (top row), adding too many neighbors includes
lines that might not be part of a vortex. For a large number of input trajectories (bottom row), more neighboring lines
result in a more stable estimation of rotating motion. Note that with increasing number of input trajectories, vortices are
estimated more accurately, as the continuous field is sampled more densely.

6 Discussion

Since the input of TRV, TRV is a finite (low) number of trajectories, the quality of the results depends on the input
trajectories. We analyze how the results depend on the density of the input trajectories, and how TRV and TRV behave
if the input is "garbage" (i.e., trajectories far away from each other, showing a different behavior driven by different
phenomena). We do the analysis on the cylinder data set because for this an underlying velocity field as "ground truth"
is available. Figure 8 shows the result for different amounts of input trajectories (rows) and different sample sizes
(columns) for computing TRV. For a low number of input trajectories, sampling many lines tends to include more lines
from different regions. This results in fewer detected high TRV (Figure 8 upper right). This confirms a desired behavior:
"garbage input" leads to low TRV values. On the other hand, a larger number of input trajectories (lower row) give a
more stable estimation of the rotating motion.

Table 1 lists performance measurements for all considered data sets, computed on an Intel Core i9-10980XE CPU with
3.00 GHz. For the real-world data, computations were in the order of milliseconds, while the largest test set took in
total about 4 seconds to compute TRV for all 5,000 trajectories. In our implementation, we compute the full distance
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matrix between all trajectories first. Afterwards, the distance matrix is reused when finding the k-nearest trajectories
for each of the curves, by iterating the corresponding row in the distance matrix and collecting the k smallest items in
a max heap. To calculate the tangents and accelerations numerically, we use a sixth-order accurate finite-difference
scheme [Fornberg, 1988].

7 Conclusion

We have introduced Trajectory Vorticity (TRV), the – to the best of our knowledge – first approach to analyze rotation
behavior based on only few trajectories in an objective way. We proved objectivity of TRV and showed that TRV can be
carried over from two independent established objectivization methods for velocity field data. We also analyzed and
corrected statements about objectivity of previous trajectory based techniques from the literature.

A Appendix

What follows is the proof that trv as defined in (54)–(64) is objective. We have to show that the computability condition
in (64) is objective, and that W −Ws is objective. The first condition holds because Ṡ is objective [Astarita, 1979].
To show the objectivity of W −Ws, we consider the observation of the trajectories in a moving reference system
performing a Euclidean transformation of the form as in Eq. (1). We denote the observed measures from (54)–(64) with
a tilde. This gives for the observations of X, Ẋ, Ẍ in the new reference system:

X̃ = RT(X−A) (78)˜̇X = ṘT
(X−A) + RT(Ẋ− Ȧ) (79)˜̈X = R̈T
(X−A) + 2ṘT

(Ẋ− Ȧ) + RT(Ẍ− Ä) (80)
with

A =

(
a a a [a]
0 0 0 [0]

)
, Ȧ =

(
ȧ ȧ ȧ [ȧ]
0 0 0 [0]

)
, Ä =

(
ä ä ä [ä]
0 0 0 [0]

)
R =

(
R 0
0T 1

)
, Ṙ =

(
Ṙ 0
0T 0

)
, R̈ =

(
R̈ 0
0T 0

)
.

Eqs. (57) and (78) give

X̃−1 = X−1

(
I a
0T 1

)
R (81)

H̃ = RT HR + ṘTR +

(
0 , RT

(
ẊX−1

(
a
0

)
−
(
ȧ
0

)))
(82)

and from Eqs. (58) and (82) follows
J̃ = Iz H̃ IT

z = RT JR + ṘT R˜̇J = RT J̇R + ṘT JR + RT J Ṙ + ṘT Ṙ + R̈T R.

Since ṘT R and ṘT Ṙ + R̈T R are anti-symmetric, we get

W̃ = RT WR + ṘT R (83)

S̃ = RT SR (84)˜̇S = RT ṠR + ṘT SR + RT S Ṙ. (85)
Eq. (84) gives: if e is an eigenvector of S, then RT e is an eigenvector of S̃. From this follows

Ẽ = RT E (86)
which gives

S̃ = ẼT S̃ Ẽ = (ET R) (RT SR) (RT E) = S (87)˜̇
S = ẼT ˜̇S Ẽ (88)

= Ṡ + ET (RṘT S + S ṘRT)E (89)

= Ṡ + (ET RṘTE)S + S (ET ṘRT E) (90)

= Ṡ + (ET RṘTE)S− S (ET RṘTE). (91)
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Eqs. (87) and (91), S being a diagonal matrix, and (ET RṘTE) being anti-symmetric gives

W̃s = Ws + ET RṘTE. (92)

Then, Eqs. (63), (86), and (92) give

W̃s = Ẽ W̃s Ẽ
T = RT WsR + ṘT R. (93)

Finally, Eqs. (83) and (93) give t̃rv = W̃ − W̃s = RT trvR which proves the theorem.
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