
PHYSICAL REVIEW FLUIDS 7, 084603 (2022)

Identification and analysis of very-large-scale turbulent motions using
multiscale proper orthogonal decomposition

Cheng Chi* and Dominique Thévenin
Laboratory of Fluid Dynamics and Technical Flows,

University of Magdeburg “Otto von Guericke,” D-39106 Magdeburg, Germany

Alexander J. Smits
Department of Mechanical and Aerospace Engineering,

Princeton University, Princeton, New Jersey 08544, USA

Steve Wolligandt and Holger Theisel
Faculty of Computer Science, University of Magdeburg
“Otto von Guericke,” D-39106 Magdeburg, Germany

(Received 15 April 2022; accepted 2 August 2022; published 15 August 2022)

To identify and characterize very-large-scale motions (VLSM) in turbulent channel
flows, direct numerical simulations are performed at Reτ = 906 and 3216. The turbulence
structure is then analyzed by proper orthogonal decomposition (POD) and multiscale POD
(mPOD). Unlike POD, mPOD is able to distinguish the most energetic modes at selected
scales (or frequencies) by imposing spectral cutoffs to separate VLSM, large-scale motions
(LSM), and small-scale motions. The VLSM can be clearly visualized from the most
energetic spatial modes of the mPOD analysis at both Reynolds numbers. The mPOD
results identify a new energetic mode that is aligned in the streamwise direction with a
characteristic length covering the whole domain length. This new mode (called eVLSM
mode) contains substantial energy, making it an important component of the VLSM in the
flow field. The other energetic modes typically appear in pairs with specific streamwise
phase shifts. The large-scale structures (apart from eVLSM) are inclined to the streamwise
direction and appear to be responsible for the typical meandering behavior or even for the
breakup of VLSM.
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I. INTRODUCTION

Very-large-scale motions (VLSM) are a class of organized structures that have been identified
relatively recently in a variety of wall-bounded turbulent flows [1–9]. VLSM are found in the
logarithmic and wake regions of wall turbulence, and they are characterized by very long (of the
order of 10δ), meandering low- and high-speed regions. Here, δ is the thickness of the boundary
layer, the radius of the pipe or the channel half-height. These structures significantly impact
near-wall flow properties and turbulent energy distributions, and their influence becomes more
pronounced at higher Reynolds number [10–12]. VLSM can contain up to 60% of the cumulative
fraction of the Reynolds shear stress [3,4,13] and they can have a large influence on turbulence
statistics [14,15]. Here, we describe a new method to identify and describe VLSM, and to help
analyze their features more precisely.
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To explain the presence of VLSM, two main hypotheses have been proposed. In the first
hypothesis, the VLSM are generated by the pseudo-streamwise alignment of large-scale motions
(LSM) [1,3,9,16,17], and the instantaneous visualization of multiple LSM leading to the formation
of a VLSM was demonstrated by Hutchins et al. [5], Lee et al. [9], and Dennis et al. [18]. In
addition, VLSM are associated with the superposition and modulation of near-wall structures at
smaller scale [5,7,19–22].

In the second hypothesis, the formation of VLSM are related to linear or nonlinear pro-
cesses [13,23,24], while Flores et al. [25,26] claimed through numerical experiments that the
out-layer dynamics are independent of the near-wall small-scale structures.

To examine these hypotheses, we need to distinguish VLSM from smaller-scale motions. This
can be done by inspecting the premultiplied energy spectrum [1], where VLSM are seen to increase
the energy content at long-wavelengths [8,10] and contribute to the formation of an outer peak in the
spectrum [8,27,28]. Such an outer peak was also observed in the streamwise normal stress profile in
the experiments by Morrison et al. [29], Hultmark et al. [12], and Samie et al. [30].

Alternatively, proper orthogonal decomposition (POD) analysis can be used to capture the most
energetic contributions to the turbulent kinetic energy and to form a low-dimensional representation
of the turbulent flow [13]. POD was first used to analyze turbulent flows by Lumley et al. [31],
focusing on spatial modes. Later, snapshot POD was introduced by Sirovich et al. [32–34] to help
accelerate the convergence of the spatial and temporal modes. Since then, POD has been widely used
to analyze both experimental and numerical data. For example, Liu et al. [35] found that large-scale
coherent motions in a turbulent channel flow can be reconstructed using only a few low-order POD
modes. Wu et al. [36,37] further showed that for a turbulent boundary layer these low-order POD
modes essentially capture the large-scale signature of the hairpin packets. POD was also used by
Hellstrom et al. [13] to analyze turbulent pipe flows. They found that the 10 most energetic modes
encompassed all the principal characteristics of the VLSM, and in later work they used POD to
characterize the kinematics and dynamics of the LSM and VLSM in turbulent pipe flows [17,38–
41], concluding that the VLSM were composed of trains of aligned LSM.

While POD ensures that the most energetic contributions are captured in the lower order modes,
these modes still contain contributions from all frequencies (i.e., all scales). To refine the analysis,
multiscale POD (mPOD) was proposed by Mendez et al. [42,43]. mPOD combines multiresolution
analysis (MRA) and standard POD to obtain the energetic POD modes within a certain range of
frequencies, and it was originally designed for flows that demonstrate clear scale separations. Here,
we use mPOD for the first time (to the best of the authors understanding) to examine the structure
of turbulent channel flows, thereby allowing a more precise visualization and analysis of VLSM,
as marked by the identification of a new mode which is important for the understanding of VLSM.
As noted by Mendez et al. [42], instead of filtering the correlation matrix, as in the spectral POD
(sPOD) of Sieber et al. [44], mPOD decomposes it into the contributions of different scales using
the multiresolution architecture (MRA) from wavelet theory. Also, instead of computing various
eigenbases from the spectra of different portions of the data, as in the sPOD of Towne et al. [45],
mPOD computes eigenbases on the correlation matrix of different scales. For the problem in the
present study, we aim to separate different scales, such as VLSM, LSM and small-scale motions,
considering the temporal modes and user-defined thresholds. This can be done with mPOD in a
straightforward manner. By comparison, in the sPOD of Ref. [44] only a low-pass filter is used
along the diagonals of the correlation matrix; a more complex scale separation can not be achieved
in a straightforward manner. In the sPOD of Ref. [45], each mode is described by a single frequency,
similar to DMD, while our objective is to separate between different frequency ranges (i.e., different
temporal scales). Hence we have chosen mPOD for our study.

The numerical database is described in Sec. II, the analysis and discussion of the results are given
in Sec. III, and the conclusions are presented in Sec. IV. Throughout the paper, the superscript
+ refers (as usual) to quantities normalized by the friction velocity uτ and the viscous wall unit
l∗ = ν/uτ , where ν is the kinematic viscosity. A summary of the notation used in this paper is given
in Table I.
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TABLE I. Notation.

Notations Descriptions

f +
n Normalized frequency coordinate

fs ( f +
s ) Sampling frequency (normalized)

FV (F+
V ) Splitting frequency (normalized)

h half-width of channel

kx Streamwise wave number

K (K̂) Correlation matrix (Fourier transform of)

l∗ Viscous length scale

P+
k Production of kinetic energy

Reb Bulk Reynolds number

Reτ Friction Reynolds number

tF Flow-through time

tk Instantaneous time of the samples

u/v/w x/y/z velocity fluctuations

U + Mean streamwise velocity (normalized)

u2+ Streamwise turbulent intensity

Ub Bulk velocity

uτ Friction velocity

x/y/z Streamwise/wall-normal/spanwise direction

y+ Normalized wall distance

φ Spatial mode

�uu Streamwise spectrum

η Kolmogorov length scale near the wall

λx (λ+
x ) Streamwise wavelength (normalized)

ν Kinematic viscosity
ψ (ψ̂) Temporal mode (Fourier transform of)

II. NUMERICAL DATABASE

Direct numerical simulations (DNS) were performed for fully developed turbulent flows in
long channels using the incompressible version of the in-house hybrid finite-difference/spectral
DNS solver DINO [46–48]. The code employs a sixth-order centered explicit scheme for spatial
derivatives and a third-order explicit Runge-Kutta scheme for temporal integration. The Poisson
equation for pressure is solved with spectral accuracy.

We consider two cases, Case A with Reτ = 906 and Case B with Reτ = 3216, as summarized
in Table II. Here, Reτ = huτ /ν, where h is the half-width of the channel and ν = 1.557 × 10−5

TABLE II. Summary of the two DNS cases. Here, Ub is the bulk velocity, Reb = 2hUb/ν is the bulk
Reynolds number, uτ is the friction velocity, Reτ is the friction Reynolds number, l∗ = ν/uτ is the viscous
length scale, and η is the Kolmogorov length scale near the wall.

Case Reτ Reb Ub (m/s) uτ (m/s) l∗ (μm) η (μm)

A 906 38,432 23.9 1.12 13.8 27.6
B 3216 153,330 23.9 1.00 15.5 31
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FIG. 1. Isosurface of Q-criterion with Q = 5 × 106 s−2 for a channel flow at Reτ = 3216 (Case B) at t =
3.47tF (where tF = 20h/Ub is the flow-through time), colored by streamwise (x) velocity.

m2/s. We use u, v, and w to denote streamwise, wall-normal, and spanwise velocity fluctuations,
respectively, corresponding to the x, y, and z directions. No-slip conditions are applied to all channel
walls. Case A has a domain of 20h × 2h × 4h with h = 0.0125 m. This domain is discretized by a
grid measuring 1024×1025×256, which is uniform in the streamwise and spanwise directions and
stretched in the wall-normal direction. The final spatial resolution is 
x+ = 17.56, 
z+ = 14.05,
and 0.35 � 
y+ � 8.40. Case B has a domain measuring 20h × 2h × 2h with h = 0.05 m. This
domain is discretized by a grid of 4096×2049×512, with a final spatial resolution of 
x+ = 15.68,

z+ = 12.54, and 0.54 � 
y+ � 11.22. The resolutions of both cases are considered sufficient to
capture the small scales, and the domains are long enough (20h) to correctly capture VLSM and
LSM.

Figure 1 shows a single realization of the full channel flow for Case B coloured by streamwise
velocity on an isosurface of Q-criterion. The simulations were performed on the supercomputer
JUWELS at the Juelich supercomputing center (JSC) using 8192 processors. In total, 8.4 million
CPU hours were necessary for these two simulations, producing 3.4 TB of raw data for Case A and
45 TB of raw data for Case B. These data will be published and freely shared through the database
of DFG Priority-Programme 1881 [49], so that other research groups are able to access it for further
investigations on turbulence.

To give an overview of the large-scale structures in our test cases, Fig. 2 shows the isosurfaces of
streamwise velocity fluctuations u (scaled by the friction velocity uτ ) at a wall distance y/h = 0.19
for Case A and Case B. To achieve a fair comparison with Case B, only 2h spanwise wide domain
(from the full 4h wide domain) has been chosen for all the analysis in Case A. The VLSM are evident

FIG. 2. Isosurfaces of velocity at y/h = 0.19 for (a) Reτ = 906 (Case A); (b) Reτ = 3216 (Case B). For
reference, U + ≈ 18.5 for Case A, and ≈20 for Case B.
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in Case B by the low speed regions separated by high speed regions with streamwise lengths of the
order of 10h. These low and high speed regions can be also seen in Case A, with a similar spanwise
spacing but possibly a shorter streamwise length than in Case B. The maximum velocity difference
between low and high-speed regions is typically greater than ±15%.

III. ANALYSIS AND DISCUSSION

In the following sections, the overline q means the average of the quantities over the x-z plane,
and the capital letter U indicates the temporally and spatially (over the x-z plane) averaged statistics.

A. Turbulence statistics

The mean streamwise velocity U + = U/uτ profiles for the two cases are compared with previous
studies in Fig. 3(a). The velocity profiles match well the results of Ref. [50], given that they were
obtained at somewhat different values of the Reynolds number. Figure 3(b) shows the streamwise
turbulence intensity u2+ at different wall distances. The results follow the general trend with
Reynolds number shown by previous data in the peak streamwise turbulence intensity and its
position with increasing Reynolds number.

The premultiplied turbulent kinetic energy production is shown in Fig. 4 for five different
Reynolds numbers. The area below each curve quantifies the contribution to turbulence production.
At the lower Reynolds number, the major contribution to the production comes from the near-wall
region (with a peak at y+ ≈ 20), while the contribution from the logarithmic region increases with
Reynolds number, demonstrating the increasingly important role of the LSM and VLSM.

B. Premultiplied spectrum analysis

To analyze the contributions of the larger scales to the total turbulence intensity, the premultiplied
velocity spectra kx�uu/u2

τ are shown in Fig. 5. Here, kx is the streamwise wave number and �uu is
the streamwise spectrum. For both Reynolds numbers the energy peak is found at nearly the same
point (y+ = 15, λ+

x = 1000), with λ+
x the normalized streamwise wavelength. This peak is located

at a wall distance where the maximum occurs in the turbulence intensity, and close to the peak in
the premultiplied streamwise turbulence production, as demonstrated in Figs. 3 and 4.

At the higher Reynolds number, shown in Fig. 5(b), a second energy peak appears to emerge
in the outer region, although it is also present, somewhat less prominently, at the lower Reynolds
number. To gauge the energy distributions more precisely, Fig. 6 shows the contributions to the
premultiplied spectrum sorted by wavelength. For Case A the second energy peak is located at
λ+

x ≈ 6000, while for Case B it is located at λ+
x ≈ 12 000. We see that the distributions near the wall

are dominated by the small wavelength contributions, while this contribution becomes less and less
important as y+ increases. This trend becomes more conspicuous at the higher Reynolds number
[Fig. 6(b)]. For example in Case A at y+ = 277 (y/h = 0.19), the contributions from large and small
wavelength portions are comparable, whereas for Case B at y+ = 602 (y/h = 0.19) the contributions
from the large wavelengths begin to dominate.

As indicated by Önder and Meyers [51], the first and second peaks in Fig. 6 correspond to
LSM and VLSM, respectively, when y+ > 100. A spectral cutoff needs to be defined to make
this demarcation, and a number of levels have been proposed in the literature. For example, Mathis
et al. [19] used the cutoff λx/δ = 1 in the near-wall layer of the turbulent boundary layer, while
Guala et al. [3] used λx/δ = π in the outer layer of pipe flow where Bailey et al. [7] instead
used λx/δ = 2π . Based on the slope of the spectrum curve, the cutoff λx/δ = 5 was proposed by
Önder and Meyers [51] in a turbulent boundary layer, whereas for turbulent channel flow Balakumar
et al. [4] used λx/δ = π . From Fig. 6 we see that for the current channel flow data the slopes of the
premultiplied spectra begin to flatten at about λx/h = 1.65 (corresponding to λ+

x = 1495 for Case
A and λ+

x = 5306 for case B). Therefore, a cutoff at λx/h = 1.65 was adopted in the present study
to distinguish contributions due to LSM from those due to VLSM. Also a cutoff at λx/h = 0.88
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FIG. 3. Mean streamwise velocity (a) and streamwise turbulence intensity (b) at different wall-normal
positions. The results for Reτ = 906 (Case A) and 3216 (Case B), shown with continuous and dashed lines,
respectively, are from the present DNS. The results for Reτ = 1000, 2003, and 5186 are taken from Ref. [50].

was adopted to distinguish contributions due to LSM from those due to small-scale motions (see
Table III). The choice of these two cutoffs are confirmed in the later discussions.

C. POD and mPOD analysis

To distinguish more clearly the LSM and VLSM, POD and mPOD were performed on 2D slices
of the 3D DNS datasets �u(x, tk ) = [u(x, tk ), v(x, tk ), w(x, tk )]. Here, x indicates all the grid points
in the 2D slices, and tk indicates different time instants. The analysis is performed in a plane which
is parallel to the wall, resulting in a uniform grid for x (the grid is only stretched in wall-normal
direction). The distribution of tk is also uniform along the temporal axis, with tk+1 − tk = 
t , where

t = 1/ fs is the constant time step and fs is the sampling frequency.
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FIG. 4. Premultiplied turbulent kinetic energy production for different Reynolds numbers. Here P+
k =

−uv+dU +/dy+ is the production of kinetic energy. The results for Reτ = 906 (Case A) and 3216 (Case
B), shown with continuous and dashed lines, respectively, are from the present DNS. The results for Reτ =
1000, 2003, and 5186 are taken from Ref. [50].

In POD the full spatial-temporal data �u(x, tk ) is decomposed into a linear combination of spatial
structures �φn(x) and temporal structures ψn(tk), where n is the mode number, so that

�u(x, tk ) =
N∑

n=1

δn �φn(x)ψn(tk ), (1)

where δn is the corresponding mode amplitude. The rank N = min(ns, nt ) is the full rank, with
ns = np × nu, where np is the number of grid points, nu is the number of velocity components, and
nt is the number of snapshots. In this manner, �u(x, tk ) can be transformed into a ns × nt matrix D,
with columns containing the data in space and rows containing the data in time. A compact form of
Eq. (1) is thus obtained as

D = φδψT , (2)

where δ = diag[δ1, δ2, ..., δN ] is the diagonal matrix containing the energy con-
tribution of each mode, the superscript T denotes matrix transposition, and φ =
[φx1, ..., φxN , φy1, ..., φyN , φz1, ..., φzN ], where the subscripts x, y and z denote the three velocity
component directions. Finally, ψ = [ψ1, ..., ψN ].

POD sorts on the energy contribution of each mode, which is done by taking the temporal
structures ψ as eigenvectors of the correlation matrix K = D†D, where the superscript † indicates a
conjugate transpose. In this way,

K = ψλψT . (3)

Here, the correlation matrix K is symmetric and positive definite. The temporal structures are
orthonormal. If D is real, as considered in this work, Eq. (2) yields

K = D†D = ψδφT φδψT . (4)

Thus,

λ = δφT φδ. (5)
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FIG. 5. Premultiplied spectra of streamwise velocity fluctuations as a function of y+ and λ+
x . (a) Case A,

Reτ = 906; (b) Case B, Reτ = 3216.

Since λ is diagonal, φT φ = I and λ = δ2. As a consequence, the spatial structures are also real and
orthonormal; they correspond to the eigenvectors of the correlation matrix C = DD†. The energy
contribution of each mode becomes the square-root of the eigenvalues of the correlation matrix.

In contrast to POD, the temporal structures of mPOD are computed by adding spectral constraints
to the classical POD. To this end, the correlation matrix K is grouped into contributions from
different scales by multiresolution analysis (MRA), as also done in wavelet analysis [52]. A transfer
function Hm (a vector with size nt ) is proposed to select a given scale m (frequencies ranging from
fm1 to fm2). Hm is set to 1 for the frequencies within scale m, and 0 otherwise. For ideal conditions,
the transfer functions satisfy

∑M
m=1 Hm = 1 and Hi � Hj = 0 ∀i �= j, where M is the total number

of scales and � denotes the entry-by-entry product. Because a sharp frequency cutoff is difficult
to implement at lower frequencies, smoothing transfer functions were used following the approach
described in Ref. [42]. The remaining spectral overlap between the transfer function of adjacent
scales appears to be small enough to allow a clear scale separation. To use the transfer function
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FIG. 6. Premultiplied spectra of streamwise velocity fluctuations as a function of λ+
x . (a) Case A, Reτ =

906 (y+ = 276.7 corresponds to y/h = 0.19); (b) Case B, Reτ = 3216 (y+ = 602.3 corresponds to y/h =
0.19). The vertical lines are at λx/h = 0.88 and 1.65.

properly, it needs to be copied row-wise to create a matrix H ′
m with size ns × nt . The splitting of the

correlation matrix is then achieved as

K =
M∑

m=1

K (m) =
M∑

m=1

�F [K̂ � H ′′
m]�F , (6)
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TABLE III. Splitting frequencies for Cases A and B.

Case Reτ F+
V × 103 FV h/Ub λ+

x λx/h

A 906 6.23 0.264 2970 3.3
12.46 0.528 1485 1.65
23.36 0.986 792 0.88

B 3216 1.88 0.252 10613 3.3
7.07 0.948 2830 0.88

where K̂ = �F K�F is the 2D Fourier transform of K , �F [i, j] = exp(2πq/nt )(i−1)×( j−1) is the
Fourier matrix, with q2 = −1 and i, j ∈ [1, nt ]. The overbar denotes complex conjugation, and
H ′′

m = H ′
m

T H ′
m is the 2D transfer function. After splitting, POD can be done for each scale separately

as

K (m) = ψ(m)λ(m)ψ(m)T . (7)

Then, all the eigenvalues are sorted in decreasing order and the eigenvectors are re-arranged into a
single matrix. The correlation matrices at each scale are kept symmetric, and so the eigenvectors are
orthonormal. A perfect spectral splitting ensures orthogonality of the final temporal matrix. More
detailed information concerning mPOD is given by Mendez et al. [42].

D. Results for Case A

For the lower Reynolds number Case A (Reτ = 906), 254 snapshots were used for the analysis
with a sampling frequency f +

s = fsν/u2
τ = 0.1559 and fsh/Ub = 6.569. The 2D slice at wall

distance y/h = 0.19 was selected since it is located in the outer region, nominally near the end of
the logarithmic region, although at these Reynolds numbers the logarithmic region is not yet fully
formed [53,54]. Here, the sampling wavelength is λ+

x = U +/ f +
s = 118.78. At this wall distance,

as shown in Fig. 6(a), the spectral contributions from different scales are comparable. For mPOD,
three splitting frequencies were chosen as F+

V = [6.23, 12.46, 23.36] × 10−3, which correspond
to FV h/Ub = [0.264, 0.528, 0.986], λ+

x = [2970, 1485, 792], and λx/h = [3.3, 1.65, 0.88]; see Ta-
ble III. These values were chosen based on the cutoffs defined in Sec. III B and the Fourier transform
of the full temporal mode shown in Fig. 7, where the dominant frequencies can be identified. The
cutoffs at λx/h = 0.88 and 1.65 separate VLSM from LSM, and LSM from small-scale motions,

FIG. 7. Fourier transform of the complete temporal information (diagonal of K̂) for Case A at y/h = 0.19,
and corresponding transfer functions for the four selected frequency ranges (colored lines) corresponding to
F+

V × 103 = 6.23, 12.46, and 23.36. See Table III.

084603-10



IDENTIFICATION AND ANALYSIS OF …

FIG. 8. Scaled energy for Case A at y/h = 0.19 of the first 30 most energetic POD modes (left) and mPOD
modes (right). The integrated energy with increasing mode number is shown by the solid line.

but a third cutoff at λx/h = 3.3 is also used based on the results in Fig. 7 that suggest the presence
of structures even longer than VLSM.

Figure 8 shows the scaled energy content of the 30 most energetic POD and mPOD modes. The
distribution among modes is similar for POD and mPOD, with substantial energy (15% of the total
energy) contained in the first three modes. The temporal modes for POD and mPOD, however,
display significant differences. First, Fig. 9 shows the Fourier transform of the temporal modes,
demonstrating that mPOD clearly separates the temporal structures in different frequency ranges
for its 1st and 2nd mode, while the 1st and 2nd POD modes are mixed and overlap with each other
in frequency space. Second, Fig. 10 shows the temporal modes themselves. The primary difference
between mPOD and POD is in the 1st temporal mode. Here, mPOD removes the smaller scales
(with typical λ+

x ≈ 1850, λx/h ≈ 2) and retains only the larger scales, while the 1st temporal POD
mode is mixed and involves both large and small scales. The 2nd mPOD mode also shows more
regularity than the 2nd POD mode.

The spatial modes of POD and mPOD are given in Fig. 11. For both mPOD and POD, some
modes come in pairs, as in the 2nd and 3rd modes, the 4th and 5th modes, and the 7th and 8th
modes. The pairs have a similar energy content (see Fig. 8), and a streamwise phase shift that is
about half the length of a typical structure, so that each member of a given pair overlaps the other
to some extent. The spatial arrangement of the pairs is consistent with the evolutionary cycle of
large-scale motion described by Hellström et al. [17], or possibly the presence of helical modes.
Note that the spatial structures in the 2nd modes of mPOD and POD [Figs. 11(c) and 11(k)] have
the opposite sign, which is due to the opposite sign of the temporal structure in the 2nd POD and
mPOD modes as shown in Figs. 10(b) and 10(d).

FIG. 9. Fourier transform of temporal modes for Case A at y/h = 0.19: (a) mPOD 1st mode; (b) mPOD
2nd mode; (c) POD 1st mode; (d) POD 2nd mode.
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FIG. 10. Temporal modes for Case A at y/h = 0.19: (a) mPOD 1st mode; (b) mPOD 2nd mode; (c) POD
1st mode; (d) POD 2nd mode.

The primary differences between the mPOD and POD modes are in the 1st and 6th modes, which
do not have a corresponding pair. Long and straight coherent structures appear in the 1st mPOD
mode with a length that covers the full domain, much longer than that typically associated with
VLSM. A similar behavior is seen in the 6th mode, albeit with a reduced spanwise spacing. The
corresponding POD modes, however, indicate meandering structures with lengths that are closer to
10h. The temporal filtering inherent in mPOD therefore suggests that these streamwise invariant

FIG. 11. Spatial modes for Case A at y/h = 0.19. (a) Original streamwise velocity fluctuation flow field;
(b) 1st mPOD mode; (c) 2nd mPOD mode; (d) 3rd mPOD mode, (e) 4th mPOD mode; (f) 5th mPOD mode;
(g) 6th mPOD mode; (h) 7th mPOD mode; (i) 8th mPOD mode; (j) 1st POD mode; (k) 2nd POD mode; (l) 3rd
POD mode; (m) 4th POD mode; (n) 5th POD mode; (o) 6th POD mode; (p) 7th POD mode and (q) 8th POD
mode. Note that the 1st and 6th mPOD modes have λx/h � 3.3; the 2nd, 3rd, 4th, and 5th mPOD modes have
1.65 � λx/h < 3.3; the 7th and 8th mPOD modes have 0.88 � λx/h < 1.65.
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FIG. 12. Reconstructed streamwise velocity fluctuation flow field for Case A at y/h = 0.19. (a) Original
velocity field; (b) reconstructed field using the 4 most energetic mPOD modes with f +

n � 6.23 × 10−3 (λx/h �
3.3); (c) using the 4 most energetic mPOD modes with 6.23 × 10−3 < f +

n � 12.46 × 10−3 (1.65 � λx/h <

3.3); (d) using the 4 most energetic mPOD modes with 12.46 × 10−3 < f +
n � 23.36 × 10−3 (0.88 � λx/h <

1.65); (e) using the 4 most energetic POD modes; (f) using the 8 most energetic POD modes; (g) using the 12
most energetic POD modes.

spatial modes, not previously identified in channel flows, are an important part of the most energetic
motions. In what follows, we will call these streamwise invariant spatial modes “extended VLSM”
(eVLSM).

It is important to note that we have labeled the coherent structures in the decomposed modes
as VLSM, LSM, and small-scale motions using their typical streamwise lengths. These structures,
however, are component contributions to the full velocity field. For example, the VLSM and LSM
seen in the full velocity field are the sum of the decomposed modes. Therefore, identification of the
new mode eVLSM does not necessarily identify a new coherent structure in the original flow field.

As to the characteristic lengths of the other modes, the 7th and 8th mPOD modes have lengths
in the range 2–4h, which are typical for LSM, while for the 2nd, 3rd, 4th and 5th mPOD mode
they are 8–10h, which are in the range expected for VLSM. This result confirms that the cutoff
at λx/h = 1.65 is a good choice for distinguishing between VLSM and LSM. By combining the
results shown in Figs. 9 and 11, it can be inferred that the 1st POD mode represents a combination
of VLSM (with typical streamwise length of 8–10h) and eVLSM, resulting in meandering structures
with shorter length than the full channel length. This is particularly evident for the lowest high speed
streak in Fig. 11(k).

In the pipe flow results given by Ref. [13], the LSM with typical length 4h were observed in the
2nd POD mode, while such coherent structures appear first in the 7th POD mode in the channel
flow considered here. One reason might be the relatively short temporal window (equivalent to
about 20R in length) in Ref. [13] make the 1st mode over-represented. Another reason could be the
lower Reynolds number for the pipe flow, where Reτ = 354 compared to 906 for the channel flow
Case A.

The reconstructed flow field using the most energetic modes within different scales are shown in
Fig. 12. eVLSM (typical length covering the domain length 20h) can be clearly identified from the
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FIG. 13. Fourier transform of the complete temporal information for Case B at y/h = 0.19.

reconstruction using the four most energetic mPOD modes with f +
n � 6.23 × 10−3 (λx/h � 3.3).

VLSM with a typical length of 8–10h appear in the reconstruction using the four most energetic
mPOD mode with 6.23 × 10−3 < f +

n � 12.46 × 10−3 (1.65 � λx/h < 3.3). LSM with typical
length of 2–4h can be identified from the reconstruction using the four most energetic mPOD mode
with 12.46 × 10−3 < f +

n � 23.36 × 10−3 (0.88 � λ/h < 1.65). Hence, with the help of mPOD the
coherent structures at different scales are clearly separated. Furthermore, it can be observed that
the reconstructed structures in Fig. 12(c) are slightly inclined to the streamwise direction, with an
angle of approximately 5◦, which may be related to the helix angle of 5◦ seen for the most energetic
POD mode in pipe flow [41]. The structures in Fig. 12(d) are inclined with an angle of approximately
10◦. The meandering of the VLSM observed in the original flow field is clearly identified with the
spanwise tilt of the LSM, as seen in Fig. 12(d). In contrast, with POD the reconstructions using the
4, 8, and 12 most energetic modes are much less informative regarding the role of these different
scales [see Figs. 12(e)–12(g)].

E. Results for Case B

For the higher Reynolds number Case B (Reτ = 3216), 103 snapshots were used with f +
s =

fsν/u2
τ = 0.0489 and fsh/Ub = 6.56. As in Case A, the 2D slice at a wall distance y/h = 0.19 is

considered in the analysis. Here, the sampling wavelength is λ+
x = U +/ f +

s = 409. In mPOD, the
splitting frequency is set to F+

V = [1.88, 7.07] × 10−3, which corresponds to the scale separation
wavelength at λ+

x = [10613, 2830] and λx/h = [3.3, 0.88], as shown in Table III. Due to the limited
number of snapshots for this case, the cutoff at λx/h = 1.65 used in Case A could not be applied,

FIG. 14. Scaled energy for Case B at y/h = 0.19 of the first 30 most energetic POD modes (left) and
mPOD modes (right). The integrated energy with increasing mode number is shown by the solid line.
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FIG. 15. Fourier transform of temporal modes for Case B at y/h = 0.19: (a–f) mPOD 1st to 6th mode;
(g–l) POD 1st to 6th mode. For f +

n = 0.00188, λx/h = 3.3 and for f +
n = 0.00707, λx/h = 0.88.

so that our analysis for Case B is restricted to examining the eVLSM and the combined mode of
VLSM and LSM.

Figure 13 shows the Fourier transform of the complete temporal information. The normalized
spectrum broadly decreases as λ+

x decreases although some small, localized peaks occur. In contrast
to Case A (Fig. 7), the spectrum does not exhibit obvious spectral peaks that could help identify the
various large scale motions.

Figure 14 shows the scaled energy content of the 30 most energetic POD and mPOD modes for
Case B. The distributions for mPOD and POD modes are very similar, and some modal pairs can be
observed with comparable energy content.

The first 6 temporal modes for mPOD and POD are given in Figure 15. The scale separation in
mPOD is much cleaner than in POD, and in mPOD we see a distinct classification for modes 1 and 2
( f +

n � 0.00188, λx/h � 3.3), modes 3 and 4 (0.00707 � f +
n > 0.00188, 0.88 � λx/h < 3.3), and

modes 5 and 6 ( f +
n > 0.00707, λx/h < 0.88). In contrast, the POD modes are more mixed.
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FIG. 16. Spatial modes for Case B at y/h = 0.19. (a) Original streamwise velocity fluctuation flow field;
(b) spatial structures of the 1st mPOD mode; (c) the 2nd mPOD mode; (d) the 3rd mPOD mode; (e) the
4th mPOD mode; (f) the 5th mPOD mode; (g) the 6th mPOD mode (h) reconstructed streamwise velocity
fluctuation flow field using the first four mPOD modes; (i) the 1st POD mode; (j) the 2nd POD mode; (k)
the 3rd POD mode; (l) the 4th POD mode; (m) the 5th POD mode; (n) the 6th POD mode; (o) reconstructed
streamwise velocity fluctuation flow field using the first four POD modes. Note that the 1st and 2nd mPOD
modes have λx/h � 3.3; the 3rd and 4th mPOD modes have 0.88 � λx/h < 3.3, and the 5th and 6th mPOD
modes have λx/h < 0.88.

The first six spatial modes for both mPOD and POD are shown in Fig. 16, together with the
reconstructed velocity fields using the first four modes. The 1st and 2nd modes make a pair, and
show relatively straight and very long coherent structures (covering the domain length). Similar
structures were seen in Case A and dubbed eVLSM. although in that case the first mode did not
have a pair (this is discussed further below). The 1st mPOD and POD modes are broadly similar, but
the 2nd mPOD mode is much more defined than the 2nd POD mode. The 3rd and 4th mPOD modes
make up another pair, with a streamwise shift of about 3.6h, a typical length of 8–12h (indicative
of VLSM), and a slight inclination to the streamwise direction. The 3rd and 4th POD modes also
form a pair, in this case with a streamwise shift of about 2.2h, but they appear to be more of a mix
of shorter (∼3h) and longer structures (∼6–8h). The next pair is made up of the 5th and 6th modes,
where the mPOD modes show distinct structures with a typical length less than 2h (indicative of
small-scale motions) and a streamwise shift of about 1.8h. The 5th and 6th POD modes, as for the
3rd and 4th POD modes, seem to be a mix of shorter (∼3h) and longer structures (∼6–8h), although
they have a consistent streamwise shift of approximately 2.2h.

As noted earlier, in Case A the eVSLM mode is the 1st mPOD mode while in Case B it is a pair
made up of the 1st and 2nd mPOD modes. Although it is not clear why this is so, one possibility is
that this eVLSM mode evolves with Reynolds number. For example, the combined energy content
of the 1st and 2nd mPOD modes in Case B is approximately 0.08 of the total energy, whereas
the 1st mPOD mode in Case A contains only 0.05 of the total energy. Another possibility is the
limited spanwise width of the domain, where periodic boundary conditions are enforced. In Case
A, that width is 4h (only 2h is shown in Fig. 11) but in Case B it is only 2h. Comparing Figs. 11(b)
and 16(b), 16(c) it is likely that the smaller domain width imposes constraints on the spanwise length
scales which could lead to changes in the inferred modes.
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The inclined structures in the 3rd and 4th mPOD modes have a typical angle of 5◦ to the
streamwise direction. This is consistent with Fig. 12(c) in Case A for VLSM. Comparing the original
flow field (especially for the low-speed streaks) with the inclined structures in the 3rd and 4th
mPOD modes, similar tilt angles are observed, and this inclination of the modes could be the main
reason for meandering features of the VLSM. The reconstruction using the first four mPOD modes
combines eVLSM and the inclined VLSM. As is seen from Fig. 16(h), the inclined VLSM terminate
the very long structure in the streamwise direction (see the low-speed streak) and the reconstructed
field is dominated by eVLSM, which contain much more energy than the smaller scale motions.
The reconstructed fields using the first four modes are very similar for mPOD and POD, primarily
because the 1st and 2nd modes contain considerably more energy than the 3rd and 4th modes (as
also seen from Fig. 14), and these two most energetic modes are similar for POD and mPOD.

IV. CONCLUSIONS

DNS for turbulent channel flows at Reτ = 906 and 3216 was used to compare mPOD and POD
for the visualization and analysis of VLSM. The premultiplied spectra analysis showed that a second
kinetic energy peak exists at a higher wave number in the outer region at both Reynolds numbers,
suggesting a possible mixing of different scales when using energy-based decomposition such as
POD. Multiscale POD (mPOD) was found to help separate different scales and to provide a more
detailed analysis of the individual contribution from different scales. In particular, a new energetic
mode (eVLSM) was identified by mPOD, which is aligned in the streamwise direction with a
characteristic length covering the full 20h domain length. This eVLSM mode was found to be the
most energetic mode at both Reynolds numbers, and therefore crucial for the VLSM representation
in the full flow field. Mode pairs were seen to be more distinct in mPOD modes, with each member
of the pair displaying very similar temporal and spatial mode shapes and specific streamwise phase
shifts. The streamwise phase shift in each mode pair make the reconstructed structures (as shown
in Case A) or combined mode structures (as shown in Case B) inclined to the streamwise direction
that are consistent with the meandering features of VLSM in the original flow field. Furthermore,
the inclined structures are able to terminate the VLSM, as shown in Case B.
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