
Vision, Modeling, and Visualization (2023)
T. Grosch and M. Guthe (Eds.)

Autonomous Particles for In-Situ-Friendly Flow Map Sampling

S. Wolligandt, C. Rössl, C. Chi, D. Thévenin, H. Theisel

University of Magdeburg, Germany

Abstract
Computing and storing flow maps is a common approach to processing and analyzing large flow simulations in a Lagrangian
way. Accurate Lagrangian-based visualizations require a good sampling of the flow map. We present an In-Situ-friendly flow
map sampling strategy for flows using Autonomous Particles that do not need information of neighboring particles: they can
be advected individually without knowing about each other. The main idea is to observe a linear neighborhood of a particle
during advection. As soon as the neighborhood cannot be considered linear anymore, an adaptive splitting is performed. For
observing the linear neighborhood, each particle is equipped with an ellipsoid that also gets advected by the flow. By splitting
these ellipsoids into smaller ones in regions of non-linear behavior, critical and more interesting regions of the flow map are
more densely sampled. Our sampling approach uses only forward integration and no adaptive integration from the past. This
makes it applicable in and well-suited for in In-Situ environments. We compare our approach to existing sampling techniques
and apply it to several artificial and real data sets.

1. Introduction

The standard representation of flows are time-dependent veloc-
ity fields stemming from measurements or numerical simulations.
From these flow fields, particle trajectories are typically obtained by
numerical integration. In recent years, an alternative representation
of flows has attracted attention: flow maps. Flow maps explicitly
encode the location of particles after integrating them for a certain
finite time. This qualifies flow maps for the analysis of Lagrangian
structures in flows. However, flow maps are hard to handle because
they are high-dimensional objects, expensive in computation and
storage, and tend to have large gradients. This makes flow map sam-
pling a challenging task, in particular, if the reconstruction from
samples is to be used as a tool in applications.

If a flow simulation is performed from a Lagrangian perspective
(e.g. by SPH), the standard output consists of a set of particle tra-
jectories, each of which is a sample of the flow map. If an Eulerian
simulation is performed (e.g., by numerically solving the Navier-
Stokes equations on a grid), its output is a discrete velocity field.
For this case, the problem is to find a good flow map sampling from
the velocity field.

Nowadays Eulerian flow simulation faces the problem that stor-
ing the output (i.e., the discrete velocity field represented at the
simulation resolution) is more expensive – both, in time and storage
space – than the actual simulation. For this reason, typically only
a small subset of the velocity field (e.g. every 1000th time step) is
written to disk – the remaining steps are discarded. This raises the
problem of accuracy of particle integration in the stored velocity
field. A popular way to deal with this is an in-situ approach: local
operations on the velocity field (e.g., particle integration) are car-
ried out during simulation: immediately after the part of the velocity

field has been simulated and before it is discarded. This enables an
exact computation of particle trajectories (up to the accuracy of
the numerical integration) on the high-resolution simulated veloc-
ity field. This accuracy boost is the main motivation for flow map
sampling, particularly in in-situ environments.

Our approach can also be beneficial if the data analysis is not
performed in-situ but as a post-process: Even if that all simulation
results, i.e., velocity fields for all time steps, can be stored, the
amount of data may be huge and expensive to load from storage. In
this case, the only option for analysis is a streaming approach with a
sliding window of time steps in main memory. From an algorithmic
perspective, this situation is similar to the in-situ scenario and fits
perfectly into our setting.

Given a time-dependent velocity field v(x, t) in the spatial domain
D and the time domain T = [ts, te] with ts < te, a flow map sampling
S is a finite set of pairs of locations

S = {(xi,yi) : xi ∈ D, yi = φ
te−ts
ts (xi), i = 1, . . . ,n} ,

where φ
τ
t (x) denotes the flow map, i.e., the location of a particle

starting at x at time t after integrating v over a finite period τ.

Flow map processing consists of two parts:

Flow map sampling: we search for a "good" sampling S of the flow
map for a certain budget (e.g., number of particles or computation
time) relative to the total "cost" of the simulation. Typically only a
small fraction of the computing time can be allocated for flow map
sampling.

Flow map reconstruction: From a sampling S, we approximate the
flow map φ

te−ts
ts (x) for an arbitrary source location x. We call this

forward flow map reconstruction. In contrast, backward flow map

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/vmv.20231242 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/vmv.20231242

S. Wolligandt & C. Rössl & C. Chi & D. Thévenin & H. Theisel / Autonomous Particles for In-Situ-Friendly Flow Map Sampling

reconstruction approximates the flow map φ
ts−te
te (y) for an destina-

tion location y. Note that both types of reconstruction are relevant
for flow analysis, because the backward direction answers the ques-
tion where a particle at a certain location came from.

Flow map reconstruction refers to estimating the flow map from
the samples for an arbitrary domain point, typically by some in-
terpolation. Most applications of flow map sampling require a re-
construction step. For example, to evaluate the quality of our flow
map sampling, we measure the reconstruction error on a regular
grid. Note also that flow map sampling should be computed in an
in-situ environment because of the increased integration accuracy.
Contrarily, flow map reconstruction can be done as post-processing
on the stored sampling S.

In this paper, we present a new approach to flow map sampling
that is evaluated on a state-of-the-art flow map reconstruction tech-
nique [BT13] for both forward and backward reconstruction.We
postulate that the following properties are desired for the construc-
tion of a flow map sampling S:

(1.) Adaptivity: Since the flow map tends to have strong gradients,
adaptive samplings S are likely to produce less reconstruction error.
In areas of strong flow map gradients, a higher sampling density is
desired.

(2.) Only forward integration: Even though we also want to recon-
struct backward flow maps (i.e., flow maps over the negative time
interval ts − te), for the creation of the sampling S we allow only
forward integration. If the simulation of v is large and complex,
the computation must be performed in-situ by streaming the data:
At any moment, we only have a small "window" of time steps of
the data available, and the simulation window is always moving
forward in time. Therefore, allowing backward integration means
that the sampling is not in-situ-friendly, i.e., it cannot be carried out
in an in-situ environment. For the reconstruction, however, a back-
ward flow map is considered because backward Lagrangian analysis
gives additional information about the flow and is frequently done
in flow analysis.

(3.) No integration from the past: Once during the construction of
S a particle is forward integrated until a certain time t, it is not
allowed to start a new particle integration (e.g., for gradient esti-
mation) from a time t′ < t. This property is also necessary to get
in-situ-friendliness since in an in-situ environment each time slab is
only available once and then discarded.

(4.) Autonomous particles: During the integration of particles, deci-
sions about events like splitting, merging, birth, death or particles
are necessary to achieve adaptivity. The usual approach considers
the neighborhood of particles and tracks their spatial adjacency. Ef-
ficient adjacency queries and their temporal updates require addi-
tional data structures. Although, there exist efficient solutions (e.g.,
k-d-trees or spatial hashing), these data structures must be available
"globally". This makes a difference for parallel processing (e.g.,
with domain decomposition): any processor must be able to access
and mutate information about particle connectivity, which leads to
communication overhead (exclusively for the reconstruction). As an
alternative, we demand that all particles are autonomous, i.e., they
do not have or need any information about their neighborhood.

(5.) 3D: The flow map sampling techniques should be applicable
for 2D and 3D time-dependent velocity fields.

We consider all these five properties essential for a useful algo-
rithm for flow map sampling. Without adaptivity, we do not ex-
pect sufficient sampling accuracy in flows with a strong flow map
gradient. Forward integration and no dependence on the past are
necessary for in-situ friendliness, i.e., without them, the sampling
cannot be done in an in-situ environment and is therefore restricted
to rather small data sets. Autonomous particles ensure that a strong
parallelization of the sampling algorithm is possible. Moreover, the
mode of parallel computation is defined entirely by the simulation,
there will be no additional constraints from the reconstruction. In
an extreme scenario, this allows assigning each particle its own pro-
cessor because no communication between particles is necessary at
all.

2. Related Work

In this section, we review prior work that is related to our method.
While our main contribution is an approach to flow map sampling,
a reconstruction scheme is required for evaluation.

Flow map sampling. Generally, efficient sampling requires guid-
ance such that samples are concentrated in regions with high detail
and fewer samples are spent on homogeneous regions: the sampling
rate should be adapted to the local detail. In the following, we re-
view flow map sampling w.r.t. to the postulated desired properties
(1.)-(5.). Table 1 shows a summary.

Garth et al. [GGTH07] present a method for adaptive computa-
tion of FTLE from 2D and 3D flow fields. Sadlo and Peikert [SP07]
aim at ridge extraction to identify Lagrangian Coherent Structures
(LCS) using an adaptive mesh representation, and Hlawatsch et
al. [HSW11] sample trajectories adaptively using a hierarchical ap-
proach. All these three approaches require information about neigh-
borhoods and may require to start new integration from the past (i.e,
they ✗ lack (3.) and (4.)).

Agranovsky et al. [ACG∗14] aim at an in-situ sampling of the
flow map that can be reconstructed and analyzed in a post-process.
We share the same objective, however, taking a different approach:
They start from regular seeds, i.e., a regular sampling, that are ad-
vected in the flow. Whenever the (exponential) separation has grown
too much after a period, they re-initiate the regularly placed seeds
and iterate this process. This process can be interpreted as adapting
in the temporal domain by reseeding, but there is no adaptation in
the spatial domain (i.e., it ✗ lacks (1.)).

Kuhn et al. [KER∗14] advect a 2D triangulation (i.e., ✗ lacks (4.)
and (5.)) and record certain events like the change of orientation of
a triangle to extract LCS from sparse samples of trajectories. Rapp
et al. [RPD20] take a statistical approach to find an in some sense
optimal sampling of trajectories. This requires the use of a global
clustering and thus a notion of neighborhood and it may place new
samples (i.e., it ✗ lacks (3.) and (4.)).

Flow map reconstruction. Flow map reconstruction methods es-
timate continuous flow maps from discrete samples for purposes

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

190

S. Wolligandt & C. Rössl & C. Chi & D. Thévenin & H. Theisel / Autonomous Particles for In-Situ-Friendly Flow Map Sampling

(1.) (2.) (3.) (4.) (5.)

regular sampling ✗ ✓ ✓ ✓ ✓

[GGTH07] ✓ ✓ ✗ ✗ ✓

[SP07] ✓ ✓ ✗ ✗ ✓

[HSW11] ✓ ✓ ✗ ✗ ✓

[ACG∗14] ✗ ✓ ✓ ✓ ✓

[KER∗14] ✓ ✓ ✓ ✗ ✗

[RPD20] ✓ ✓ ✗ ✗ ✓

our approach ✓ ✓ ✓ ✓ ✓

Table 1: Summary of desired properties fulfilled by regular samples,
related work and our method.

such as resampling, evaluation from efficient or external storage, or
substituting expensive numerical integration.

Chandler et al. [COJ15] replace numerical integration by interpo-
lation in certain regions, an error analysis is provided in [CBJ16].
Agranovsky et al. [AOGJ15] provide a multi-resolution representa-
tion for a set of trajectories that enables efficient loading the data
from external storage into main memory. Bujack and Joy [BJ15]
evaluate representations of polygonal trajectories as parametric
curves, and Hummel et al. [HBJG16] analyze the Lagrangian er-
ror of trajectories.

Our method provides an adaptive sampling of the flow map with-
out tracking information of particle neighborhoods. For flow map
reconstruction, we need to be able to compute – i.e., interpolate –
the flow map at any domain point, e.g., for resampling the resulting
flow map on a dense regular grid. This is essentially a scattered
data interpolation problem.

Barakat and Tricoche [BT13] present a variant of Sibson’s natu-
ral neighbor interpolation [Sib81] that is tailored to flow map recon-
struction. Our flow map reconstruction is based on their approach.
Natural neighbor interpolation requires a partition of the domain
into Voronoi cells. We use the CGAL library [The22] for implemen-
tation.

Machine-learning approaches for reconstruction. In recent
years, machine learning methods, particularly those based on deep-
learning, have been used for flow reconstruction. There is a similar
trend for supporting flow simulation.

Guo et al. [GYH∗20] aim at spatial super-resolution for vector
fields. Sahoo et al. [SB21] additionally consider loss of accuracy
for advection in the flow. Jabob et al. [JGG21] present a “neural
flow map interpolation” that is based on learning from 8000 2D
unsteady flows with a total amount of 16TB of training data. Gu et
al. [GHCW21] reconstruct unsteady flows from incomplete infor-
mation: representative streamlines.

All these approaches give promising results. However, they re-
quire learning from a possibly huge set of training data. Our method
could certainly benefit from such learning-based interpolation in the
reconstruction phase. We prefer the above-mentioned natural neigh-
bor interpolation [BT13] as a standard approach for three reasons:
firstly, it is much simpler (and possibly more efficient), secondly,
the quality of the reconstruction is good enough. And last not least,
interpolation based on machine learning may provide good results
even for bad input. Here, the input comes from our flow map sam-

pling, and we must make sure that the interpolation does not “distort”
our results in a sense of an “unfair a posteriori improvement”.

Autonomous particles and ghost particles. Engelke et
al. [ELPH19] use the term autonomous particles in a similar
but different context: They present an interactive tool for the visual
analysis of flow data. Their method applies a particle system and
advection for adaptive sampling and feature detection. The term
autonomous is used for particles that are advected independently
and possibly in parallel without knowledge about “neighboring”
particles and events like death and split events are guided by
importance fields. The objective of the method is a visual analysis
by concentrating samples in regions of interest. While this can
certainly be classified as adaptive sampling, it does neither aim
at nor provide a reconstruction of the flow map. In particular,
the sampling is based on external information like importance or
guidance fields and explicitly ignores gradient information.

Oster at al. [OAM∗18] use ghost particles for tracking and re-
construction of flame fronts in a combustion process. The custom
simulation is expensive and conducted on a super-computer, the
tracking of the flame fronts is interleaved as an in-situ analysis with
minimal impact on the simulation in terms of, e.g., computational
cost or change of implementation. The ghost particles are used to
estimate flow map gradients, and the gradient steers split and merge
events. The objective is to provide a sampling of the tangent space of
the flame front. Our method similarly makes use of ghost particles
for gradient estimation and uses this information for defining split
events, however, in a different way and with a different objective in
mind.

3. Our method

Our method is based on the integration of an autonomous particle
with the simultaneous observation of its neighborhood: During the
integration of a particle, we also observe its neighborhood. We en-
sure that the neighborhood is small enough to be considered linear,
i.e., the supposed advection of any particle within this region can be
faithfully approximated by a linear map. If during the integration
the neighborhood cannot be considered linear anymore, it is split
into multiple smaller regions. A neighborhood around a particle
can be considered (approximately) linear if during advection a unit
sphere deforms to an (approximate) ellipsoid with the particle in
its center. In this case, the neighborhood can be considered a "safe
space": accurate reconstruction inside the neighborhood is possible
solely from the flow map and its gradient. Both are computed in-
dependently for a single – autonomous particle – none of the other
particles computed for sampling the flow map necessary.

We introduce our approach generally for 3D time-dependent
flows. 2D flows appear as a special case, there is no conceptual
difference. For sake of simplicity, we prefer using the terms ellipse
and circle instead of ellipsoid and sphere and explain with figures
showing the 2D case.

3.1. Particles and deforming neighborhoods

Given is a particle x0 at a time t0. Its new position after advection
for a period τ is given by the flow map φ(x0, t0,τ). We equip the

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

191

S. Wolligandt & C. Rössl & C. Chi & D. Thévenin & H. Theisel / Autonomous Particles for In-Situ-Friendly Flow Map Sampling

particle with an ellipsoidal neighborhood around x0 represented
by a symmetric positive definite matrix S0: Then the neighbor-
hood is bounded either by the image of the parametric surface
x0 + S0 r with ∥r∥ = 1, or implicitly as the point set that satis-
fies (x−x0)

T S−2
0 (x−x0) = 1. In the following, we treat the matrix

representation S0 as a synonym for the ellipsoidal neighborhood.

The advection of the particle x0 and its neighborhood S0 leads to
a deformation of S0. If we can assume a linear flow map within S0,
we can use the spatial gradient ∇φ := ∇φ(x0, t0,τ) to approximate
the advection by a period τ as

φ(x, t0,τ) = φ(x0, t0,τ) + ∇φ · (x−x0) .

Hence, the advection of the ellipsoidal region S0 yields an ellip-
soidal neighborhood S(τ) such that

S(τ)2 =∇φ S0
2 (∇φ)T . (1)

Note that this holds only under the assumption of a linear flow map
inside S0. If this is not the case, advection deforms the ellipsoidal
region S0 to any arbitrary shape.

Given is a particle x0 at a time t0. The standard method for numer-
ical estimation of the flow map gradient is to integrate additional
auxiliary "ghost" particles. They are usually seeded from x0 at po-
sitions shifted into the direction of the coordinate axes. We use a
similar approach in a local coordinate frame: Given the additional
neighborhood matrix S0 around x0, we seed ghost particles shifted
in the direction of the eigenvectors of S0 to estimate the flow map
gradient. Note that the use of ghost particles does not violate any
of the postulated properties: integration is still autonomous and in-
dependent of other particles, and we integrate strictly forward in
time.

Consider the spectral decomposition of S0 with eigenvectors as
columns of the orthogonal matrix Q0 and the diagonal matrix Σ0
with the positive eigenvalues µ1 ≥ µ2 ≥ µ3 > 0 such that

S0 = Q0 Σ0 Q0
T . (2)

We define ghost points xk in the neighborhood of a point x0 as

xk = x0 +Q0 Σ0 k

for a vector ||k||= 1. From the ghost points, we integrate particles
and obtain the flow maps

φ = φ(x0, t0,τ) and φk = φ(xk, t0,τ) .

For i = 1,2,3, we define central differences

hi =
1
2
(φei − φ−ei) ,

where e1 = (1,0,0),e2 = (0,1,0),e3 = (0,0,1) denote the canoni-
cal basis, and H is the the matrix with hi as columns:

H(τ) = (h1, h2, h3) . (3)

Applying central differences in the local coordinate system of
eigenvectors provides an approximation of the flow map gradient as

∇φ(x0, t0,τ) = H(τ) Σ0
−1 Q0

T . (4)

By substituting (2) and (4) into (1), we obtain an approximation of

ϕ
integration

x1,0x0,1 ϕ0,1 ϕ1,0

ϕ0,-1
ϕ-1,0

x-1,0 x0,-1

x1,0

S0
S(τ)

Figure 1: Particle and inner neighborhood during integration.

ϕ
0,1

ϕ
1,0

h
1d

1

ϕ
0,-1

ϕ
-1,0

ϕ

ϕ
0,1

ϕ
1,0

h
2

d
2

ϕ
0,-1

ϕ
-1,0

ϕ

Figure 2: Linearity measure (6) illustrated in 2D: di =
1
2 (φei + φ−ei)−φ denotes the deviation from mean term (Laplace),
which vanishes in a perfectly linear neighborhood. The magnitude
of the “spread” hi provides the baseline for a relative error.

S(τ) by computing its square

S(τ)2 = H(τ) H(τ)T . (5)

Figure 1 illustrates the setup. The main idea of our approach is
to observe the distortion of S(τ) during the advection. As soon as
advection cannot be approximated by a linear map anymore (i.e., the
advection of the region S(τ) is no more an ellipsoid), we subdivide
the particle.

3.2. Measuring the linearity of the flow map

We define the error term

errnl(τ) = ∑
i

|| 1
2 (φei + φ−ei)−φ||2

||h||2
. (6)

The smaller errnl, the more we can assume a linear behavior of the
flow map in S. The term measures a relative error: The nomina-
tors measure “linearity” by computing a deviation from mean (i.e.,
a discrete univariate Laplace operator should yield zero), and the
denominators relate the absolute values to the local magnitude of
"spread" in the flow map. Note also that errnl is independent of the
size of the neighborhood, because uniform scaling of φ or φk does
not change the error. Figure 2 illustrates this setting.

In addition to linearity, we measure the distortion of S by

errdi(τ) = ln
λ3
λ1

(7)

where 0 < λ1 ≤ λ2 ≤ λ3 are the eigenvalues of S(τ). A perfectly
spherical S(τ) gives errdi = 0, and by construction errdi is invariant
to uniform scaling of S.

Finally we define the global error using (6) and (7) as

err(τ) = max{errnl(τ), errdi(τ)} (8)

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

192

S. Wolligandt & C. Rössl & C. Chi & D. Thévenin & H. Theisel / Autonomous Particles for In-Situ-Friendly Flow Map Sampling

3.3. Autonomous particles

We define the state of an autonomous particle starting at time tS as
a tuple

P = (xs, Ss,∇φs, x0, t0, S0, k) .

The components xs,Ss denote the initial location and ellipsoidal
neighborhood when integration started. The components x0, t0,S0
refer to the last “safe” point during the integration such that

x0 = φ(xs, ts, t0 − ts)

∇φs = ∇φ(xs, ts, t0 − ts)

S0
2 = ∇φs Ss

2 (∇φs)
T .

For convenience, we provide a condition for the squared matrix S0
2

as introduced in section 3.1. The matrices S0 and S0
2 are symmetric

positive definite, and we obtain S0 as the matrix square root, which
can be computed, e.g., from the spectral decomposition of S0

2. The
component k denotes the current split depth. We track k to limit the
number of splits of a particle to a maximum of kmax.

Starting from the last “safe” point (x0, t0,S0), we advect x,S for
a period τ and obtain ∇φ(x0, t0,τ), S(τ) and err(τ) as defined in
(4), (5) and (8). We observe the error err(τ) during the advection
and require that a threshold errsplit is never exceeded. Then one of
two cases applies: either, the error stays below the threshold for the
entire period until t0 + τ, or a time tsplit at which the error exceeds
the threshold for the first time. Depending on which case applies,
we update the state of the particle as follows:

The error threshold is not exceeded: The advection reaches the
end time te = t0 + τ with err(τ̂) < errsplit for all 0 ≤ τ̂ ≤ τ. In this
case, the particle state is updated as

xs

Ss

∇φs

x0
t0
S0
k


→



xs√
(∇φ ∇φs)−1 H HT (∇φ ∇φs)−T

∇φ ∇φs

φ

te√
H HT

k


,

where φ = φ(x0, t0,τ), ∇φ =∇φ(x0, t0,τ), and H = H(τ). In this
case, the advection of the autonomous particle stops at time te.

The error threshold is exceeded: The advection reaches a time
0 < tsplit < te such that

err(tsplit − t0)> errsplit

for the first time, i.e., err(t − t0) ≤ errsplit for all t0 ≤ t < tsplit. In
this case, we split the particle into three new particles as follows.
(Technically, we update one particle and create two new particles.)

1:3 split of a particle. Splitting a particle with state P into three
particles gives three state transitions

P → P′
i f or i = 1,2,3 ,

which are obtained by refining along the major axis of the ellipsoid
neighborhood as follows. Let

HHT = UΛUT

denote the spectral decomposition of HHT where the diagonal ma-
trix Λ captures the eigenvalues 0 < λ1 ≤ λ2 ≤ λ3, and the eigen-
vectors u1,u2,u3 are the columns of the orthogonal matrix U. For

x
0,1

x
1,0

x
0,-1

x
-1,0

x
0ϕ

S

Figure 3: Split of autonomous particle with linear neighborhood
S to three new particles and neighborhoods.

tsplit

t0

ts
Ss

S0

S(τ)

t

y y

x x

split

t0

ts

t

Figure 4: Split of autonomous particle at time tsplit creates three
new autonomous particles.

i = 1,2,3, we define the new states as

P′
i =



xs + △x
i√

(∇φ ∇φs)−1 U Λ′
i UT (∇φ ∇φs)−T

∇φ ∇φs

φ + △φ

i
tsplit

U Λ′
i UT

k+1


,

with displacements

△x
i =

{
0 for i = 1
± 3

4

√
λ3 (∇φ∇φS)

−1 u3 for i = 2,3

△φ

i =

{
0 for i = 1
± 3

4

√
λ3u3 for i = 2,3

and nonuniform scaling by diagonal matrices

Λ
′
i =

{
diag(

√
λ1,

√
λ2,

1
2

√
λ3) for i = 1

diag(1
2

√
λ1,

1
2

√
λ2,

1
4

√
λ3) for i = 2,3

.

Figures 3 and 4 illustrate the splitting process. The local coordinate
system for translation and scaling is induced by the eigenvectors
ui. Splitting generates three new ellipsoidal regions with centers
positioned along the main axis in direction u3 with a nonuniform
scaling using eigenvalues λi. The translation and the scaling are
chosen carefully: The three generated ellipsoids are separated by
their centers, they do not intersect, they are all located within and
cover a large area of the original neighborhood.

3.4. Seeding autonomous particles

To start the integration of autonomous particles, we place a certain
number of particles x ∈ S from a set of seeds S. Their initial neigh-
borhoods are spheres of radius rS . We arrange the seeds on a regular
grid with a rather coarse cell size and chose the maximum radius
rS such that adjacent neighborhoods touch but do not intersect. To
fill the gaps that appear between four adjacent particles (or eight
particles in 3D), we add a second set of particles that are arranged

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

193

S. Wolligandt & C. Rössl & C. Chi & D. Thévenin & H. Theisel / Autonomous Particles for In-Situ-Friendly Flow Map Sampling

on a grid that is offset by rS
2 . For each particle x ∈ S , its initial state

is (x, rS I, I, x, ts, rS I, 0) , where all particles start at time tS.

3.5. Flow map reconstruction

The set of advected and split autonomous particles gives a discrete
representation of the flow map. To continuously evaluate the flow
map or its inverse at any domain point, we require an interpolation
scheme. There are various methods for scattered data interpolation.
We prefer a local reconstruction and chose Sibson’s natural neigh-
bor interpolation [Sib81], which has been adapted for flow map
reconstruction [BT13]. This interpolation scheme is simple because
it requires essentially a (assuming normalized weights) barycentric
combination of samples in the neighborhood of the evaluation point.
We use the CGAL [The22] library.

3.6. Reseeding

Flow maps typically show exponential behavior, i.e., there is strong
distortion of linear neighborhoods. This can lead to excessive parti-
cle splitting in certain regions, e.g., near FTLE ridges. As a conse-
quence, the number of particles increases exponentially without sig-
nificant benefit for the reconstruction. We limit the number of splits
for each particle to kmax. However, not being able to split anymore
affects the adaptation. To cope with this problem and to effectively
limit the number of particles, we apply temporal reseeding as pro-
posed Agranovsky et al. [ACG∗14]: The temporal domain [t0, t0+τ]
is partitioned into N time intervals of length τ

N . This result in a piece-
wise flow map in τ that consists N pieces φi(x, t0 +(i−1) τ

N , τ

N) for
i = 1, . . . ,N.

Agranovsky et al. [ACG∗14] advect particles that are always
seeded from a sufficiently dense rectilinear grid at start times
t0 +(i− 1) τ

N and advected for a period τ

N . In contrast, we advect
autonomous particles: As their advection adapts to separation by
splitting, we also start from a regular but can use a less dense grid
of seeds. Due to the adaptation, we require particles and fewer steps
of numerical integration for a similar reconstruction error.

4. Results

4.1. Double Gyre

As benchmark data set we use the 2D double gyre flow introduced
by Shadden [SLM05] with parameters ε = 1

4 , ω = 2π

10 , A = 1
10 . The

vector field consists of two regions that share a vertical bound-
ary. The boundary and the centers of the two eddies are moving
periodically from left to right and back. Its domain is defined in
[0,2]× [0,1].

For measuring the accuracy we compare the reconstructed flow
map fields φapfrom our method and φagrafrom [ACG∗14]. We con-
struct a ground truth flow map φgt as the advection of massless
particles that have been integrated numerically using an adaptive
7th-order Runge-Kutta-Fehlberg scheme and define errors

eap = ||φap −φgt||22 and eagra = ||φagra −φgt||22 .

A negative difference

c = eap − eagra (9)

indicates that our method performs better than [ACG∗14]. We com-
pute the errors and diffrences on a regular grid of a solution of
2000×1000.

We use the following parameters for the advection of the au-
tonomous particles: period τ = 0.1, |S| = 20 · 10 + 19 · 9 = 371,
kmax = 3. After the advection of the initial set of autonomous par-
ticles we have a total number of 57915 particles with a temporal
resolution of N = 5. To make the comparisons fair we try to match
the number of final particles that are being advected with the cumu-
lative number of grid cells of [ACG∗14] (see table 2).

Our method
Nap 1 2 3 4 5

#adv.particles 11,583 23,166 34,749 46,332 57,915
Agranovksy

Nagra Total number of advected particles
1 11,858 23,328 23,765 46,818 58,482
2 11,990 23,562 35,156 47,306 58,564
3 12,015 23,625 35,343 47,259 58,806
4 12,012 23,328 34,848 47,124 58,824
5 12,075 23,765 35,700 47,265 58,905

Table 2: Number of advected Particles in parameter study (see
additionalmaterial). The numbers of particles used for the method
by Agranovsky et al. approximately equals the number of particles
of our approach.

In addition, we interpolate the samples that are generated by
[ACG∗14] using [BT13]. Figure 5 shows error plots for forward and
backward reconstructions. For both methods, ours and [ACG∗14],
we observer larger errors near FTLE ridges .

The figures in the additional material show a parameter study
to compare the impact of the temporal resolutions Nap (for our ap-
proach) and Nagra (for [ACG∗14]). Tables 3 and 4 show the averaged
errors over all samples for the temporal resolution setups in these
figures. Nap grows from left to right and Nagra grows from top to
bottom.

The top row shows Nagra = 1 which means that a standard flow
map sampling on a rectilinear grid was computed. For a positive
advection time (see additional material) our method yields better
results for this scenario with Nap > 2 around the FTLE ridges. The
average error is smaller for every Nap. For Nap = 5 the average error
of our approach is smaller in most cases of Nagra = 5.

Our method
Nap 1 2 3 4 5

error 1.07e-2 6.27e-3 2.86e-3 2.35e-3 2.38e-3
Agranovksy

Nagra error
1 1.80e-2 1.13e-2 8.43e-3 7.04e-3 6.15e-2
2 6.79e-3 3.54e-3 2.62e-3 1.89e-3 1.47e-2
3 4.13e-3 1.42e-3 0.51e-3 0.65e-3 0.59e-2
4 3.68e-3 1.72e-3 1.15e-3 0.72e-3 0.63e-2
5 7.25e-3 1.93e-3 1.26e-3 0.95e-3 6.39e-5

Table 3: Accumulated flow map errors of double gyre with varying
N and positive advection time τ. Green: our method performs better.
Red: [ACG∗14] performs better.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

194

S. Wolligandt & C. Rössl & C. Chi & D. Thévenin & H. Theisel / Autonomous Particles for In-Situ-Friendly Flow Map Sampling

Our method
Nap 1 2 3 4 5

error 1.59e-2 6.57e-3 3.49e-3 3.24e-3 1.84e-3
Agranovksy

Nagra error
1 1.13e-2 6.44e-3 4.99e-3 4.13e-3 3.48e-3
2 8.40e-3 5.68e-3 4.40e-3 3.57e-3 3.07e-3
3 7.44e-3 4.53e-3 3.42e-3 2.86e-3 2.43e-3
4 7.41e-3 3.99e-3 2.85e-3 2.27e-3 1.84e-3
5 7.25e-3 3.32e-3 2.09e-3 2.78e-3 2.29e-3

Table 4: Accumulated flow map errors of double gyre with varying
N and negative advection time τ. Green: our method performs better.
Red: [ACG∗14] performs better.

Figure 5: Error plots of the flow map of the doublegyre for our
approach and for [ACG∗14]. From top to bottom: eap | eagra | c =
eap − eagra, left τ = 10, right τ =−10

For a negative advection time our method performs better in most
areas for arbitrary Nap. For Nap > 2 our approach performs better
in nearly every situation. The average error is always smaller for
Nap = 5 and in certain cases for smaller Nap.

4.2. Channel flow

A fully developed turbulent flow in a long channel has been simu-
lated by direct numerical simulation (DNS) using the DNS solver

Figure 6: Reconstruction with with Sibson’s (left) and Shepard’s
method (right). Note that scales differ by a factor of 10.

Reτ Reb Ub (m/s) uτ (m/s) l∗ (µm) η (µm)
906 38,432 23.9 1.12 13.8 27.6

Table 5: Summary of the DNS case. Here, Ub is the bulk velocity,
Reb = 2hUb/ν is the bulk Reynolds number, uτ is the friction veloc-
ity, Reτ is the friction Reynolds number, l∗ = ν/uτ is the viscous
length scale, and η is the Kolmogorov length scale near the wall.

Figure 7: Top: Velocity magnitude ||v||, bottom: Line Integral Con-
volution [CL93] of the velocity (bottom) of the channel flow.

DINO [AFO∗16,CAT20,OCGT22]. There is 6th-order centered ex-
plicit scheme for spatial derivatives and a 3rd-order explicit Runge-
Kutta scheme for temporal integration in DINO. The Poisson equa-
tion for pressure is solved with spectral accuracy.

The properties of the turbulent channel flow are summarized in
Table 5. Here, Reτ = huτ/ν, where h is the half-width of the chan-
nel and ν = 1.557× 10−5 m2/s. The channel domain has length
20h× 2h× 4h with h = 0.0125 m. This domain is discretized by
1024×1025×256 grids, with uniform spacing in the streamwise
and spanwise directions and stretched spacing in the wall-normal
direction. We use u, v, and w to denote streamwise, wall-normal,
and spanwise velocity fluctuations, respectively, corresponding to
the x-, y-, and z-directions. The final spatial resolution is ∆x+ =
17.56, ∆z+ = 14.05, and 0.35 ≤ ∆y+ ≤ 8.40, which is sufficient
to capture the small scale turbulences. The superscript + refers to
quantities normalized by the friction velocity uτ and the viscous
wall unit l∗ = ν/uτ.

We advected a set S of initial Autonomous Particles in the do-
main of the channel flow with a resolution of 30 · 300 · 60+ 29 ·
299 · 59 = 1051589 and a kmax = 3. Since the channel flow has a

Figure 8: x-coordinate of flow map. Top: numerical integration,
bottom: reconstruction with autonomous particles. Only the x-
coordinate is color coded as y and z evolve rather constant and
show a simple gradient.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

195

S. Wolligandt & C. Rössl & C. Chi & D. Thévenin & H. Theisel / Autonomous Particles for In-Situ-Friendly Flow Map Sampling

Figure 9: FTLE field. Top: numerical integration, bottom: recon-
struction with autonomous particles (red: no reconstruction).

very high velocity, only a small advection time can be considered.
We used τ = 5× 10−4, N = 10. The period τ of the Autonomous
Particles is set to 5×10−6 The sampling of the error eap and eagraA
and c are computed on regular grid with 200×2000×400 nodes.

For a better view of the data we are showing a 2D slice of the 3D
domain in the center of the x-range.

Fig. 7 shows the velocity magnitude and a LIC image [CL93].
Even if the LIC image of this slice seems to be laminar the full 3D
flow is turbulent as can be seen in the velocity magnitude ||v||. Fig.
8 shows the x-component of the ground truth flow map and the flow
map created by our method. Besides minor artifacts both fields are
visually identical. The same is true for the ground truth FTLE field
and the FTLE field that was computed with the flow map that was
created by our method (fig. 9).

In figures 8 and 9, red encodes regions where no flow map data
is available. This is the case because the initial set S is advected
in positive y-direction which leads to areas with no autonomous
particles near y = 0. Sibson’s interpolation scheme [Sib81] results
in these areas because interpolation is only possible in the convex
hull of the scattered data.

5. Discussion

We present an approach to flow map sampling and reconstruction
that fulfills our design goals (1.)–(5.) as postulated in section 1. In
particular, our approach is adaptive and suited for in-situ sampling,
e.g., during a simulation, or for streaming data, e.g., from mass stor-
age: We strictly proceed forward in time, and the implementation
requires minimal interference with the host application, because we
only require evaluation of the flow field.

Reconstruction. Flow map reconstruction is a scattered data in-
terpolation problem. There are various interpolation methods. We
excluded global methods like radial basis interpolation, because
all design choices for autonomous particles strive to be local or
independent. Also, the benefit of a global interpolation method is
unclear: Concerning cost, we need to solve at least a (possibly large)
linear system. Concerning accuracy, there may be no benefit due to
the (possibly) large flow map gradients.

The simplest local method is probably Shepard’s interpolation,
e.g., by inverse distance weighting. It turns out that this method may
be too simple. More importantly, it requires a global parameter: the
radius defining the local neighborhood. Our experiment showed that
firstly, it is difficult to find a good parameter setting. Secondly, the

achieved reconstruction error is significantly higher than for natural
neighbor interpolation. A similar argument applies to moving least-
squares approximation. In contrast, Sibson’s interpolation [Sib81,
BT13] is parameter-free, and we see this as a significant advantage.

Performance. The computations of the tests for the double gyre
have been done on a machine with an Intel Core i7-7700K CPU
with 4.20GHz and 8 virtual cores. The advection of the particles
for the double gyre flow takes about 5 minutes. A reconstruction at
2000×1000 sample points takes about 2 minutes.

The computations of the turbulent channel flow have been done
on a machine with 50 cores of a Intel Xeon E5-2690 each with
2,6 GHz that are provided by a virtual machine on a server. This
machine has 300GB of RAM. The advection of the autonomous
particles in the turbulent channel flow took about 4 hours. A re-
construction of the flow map with 200×2000×400 samples takes
about 10 minutes.

Application scenarios. We constructed our method to be in-situ
friendly, i.e., it can run in a possibly large simulation running on
multiple nodes with low overhead in terms of computational cost,
communication and interfacing for the implementation. In this set-
ting, only a small fraction of the simulated data is stored, i.e., the
flow map sampling must proceed with the simulation. This is, how-
ever, only one possible scenario.

Similarly important are scenarios, where all data, e.g., all time-
steps of a simulated flow, is available on external storage. If the data
is huge, reading, e.g., from storage arrays or networks, is expensive
and reading the entire data set into memory is impossible. The only
option may be streaming the data and processing only within a small
temporal window. In fact, this is the scenario for our experiments.
The size of the turbulent channel flow is 8GB.

Evaluation times. We present our method for evaluation of the
flow map after a fixed period τ. For the experiments, this is reason-
able because we can expect higher reconstruction error for higher
integration times. However, an extension to evaluate for arbitrary
integration times τ

′ ∈ [0,τ] may be useful in practice. Such an exten-
sion is possible, however, it may require some extra considerations
like “reusing” or incrementally updating Voronoi partitions for nat-
ural neighbor interpolation.

Temporal reseeding. We adopt the temporal reseeding from Agra-
novsky et al. [ACG∗14] to limit the number of autonomous parti-
cles. This is necessary due to the exponential behavior of flow maps,
which leads to locally excessive splitting. In our current method, par-
ticles can only split. There is nothing like merge events: they are
impossible without neighborhood tracking, which would not only
complicate the method itself but would also require significantly
more interdependence with, e.g., a simulation. One possible direc-
tion may be an extension to probabilistic sampling with a criterion
for discarding particles (or splits) based on a a random process that
can be evaluated autonomously. We leave this, however, as subject
of future work.

Acknowledgments
This work is supported by the Priority Programme SPP 1881
Turbulent Superstructures of the Deutsche Forschungsge-
meinschaft (DFG), grant TH 692/18-1 and TH 881/30-1.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

196

S. Wolligandt & C. Rössl & C. Chi & D. Thévenin & H. Theisel / Autonomous Particles for In-Situ-Friendly Flow Map Sampling

References

[ACG∗14] AGRANOVSKY A., CAMP D., GARTH C., BETHEL E. W.,
JOY K. I., CHILDS H.: Improved post hoc flow analysis via lagrangian
representations. In LDAV (2014), IEEE Computer Society, pp. 67–75. 2,
3, 6, 7, 8

[AFO∗16] ABDELSAMIE A., FRU G., OSTER T., DIETZSCH F., JANIGA
G., THÉVENIN D.: Towards direct numerical simulations of low-Mach
number turbulent reacting and two-phase flows using immersed bound-
aries. Comput. Fluids 131 (2016), 123–141. 7

[AOGJ15] AGRANOVSKY A., OBERMAIER H., GARTH C., JOY K. I.: A
multi-resolution interpolation scheme for pathline based lagrangian flow
representations. In Visualization and Data Analysis (2015), vol. 9397 of
SPIE Proceedings, SPIE, p. 93970K. 3

[BJ15] BUJACK R., JOY K. I.: Lagrangian representations of flow fields
with parameter curves. In 5th IEEE Symposium on Large Data Anal-
ysis and Visualization, LDAV 2015, Chicago, IL, USA, October 25-26,
2015 (2015), Bennett J., Childs H., Hadwiger M., (Eds.), IEEE Computer
Society, pp. 41–48. 3

[BT13] BARAKAT S. S., TRICOCHE X.: Adaptive refinement of the
flow map using sparse samples. IEEE transactions on visualization and
computer graphics 19, 12 (2013), 2753–2762. 2, 3, 6, 8

[CAT20] CHI C., ABDELSAMIE A., THÉVENIN D.: A directional ghost-
cell immersed boundary method for incompressible flows. Journal of
Computational Physics 404 (2020), 109122. 7

[CBJ16] CHANDLER J., BUJACK R., JOY K. I.: Analysis of Error in
Interpolation-Based Pathline Tracing. In EuroVis 2016 - Short Papers
(2016), Bertini E., Elmqvist N., Wischgoll T., (Eds.), The Eurographics
Association. 3

[CL93] CABRAL B., LEEDOM L. C.: Imaging vector fields using line inte-
gral convolution. In Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques (New York, NY, USA, 1993),
SIGGRAPH ’93, Association for Computing Machinery, p. 263–270. 7,
8

[COJ15] CHANDLER J., OBERMAIER H., JOY K. I.: Interpolation-based
pathline tracing in particle-based flow visualization. IEEE Transactions
on Visualization and Computer Graphics 21, 1 (2015), 68–80. 3

[ELPH19] ENGELKE W., LAWONN K., PREIM B., HOTZ I.: Au-
tonomous particles for interactive flow visualization. Comput. Graph.
Forum 38, 1 (2019), 248–259. 3

[GGTH07] GARTH C., GERHARDT F., TRICOCHE X., HANS H.: Effi-
cient computation and visualization of coherent structures in fluid flow
applications. IEEE Transactions on Visualization and Computer Graph-
ics 13, 6 (2007), 1464–1471. 2, 3

[GHCW21] GU P., HAN J., CHEN D. Z., WANG C.: Reconstructing
unsteady flow data from representative streamlines via diffusion and deep-
learning-based denoising. IEEE Computer Graphics and Applications
41, 6 (2021), 111–121. 3

[GYH∗20] GUO L., YE S., HAN J., ZHENG H., GAO H., CHEN D. Z.,
WANG J.-X., WANG C.: Ssr-vfd: Spatial super-resolution for vector
field data analysis and visualization. In 2020 IEEE Pacific Visualization
Symposium (PacificVis) (2020), pp. 71–80. 3

[HBJG16] HUMMEL M., BUJACK R., JOY K. I., GARTH C.: Error es-
timates for lagrangian flow field representations. In Eurographics Con-
ference on Visualization, EuroVis 2016, Short Papers, Groningen, The
Netherlands, 6-10 June 2016 (2016), Bertini E., Elmqvist N., Wischgoll
T., (Eds.), Eurographics Association, pp. 7–11. 3

[HSW11] HLAWATSCH M., SADLO F., WEISKOPF D.: Hierarchical line
integration. IEEE Trans. Vis. Comput. Graph. 17, 8 (2011), 1148–1163.
2, 3

[JGG21] JAKOB J., GROSS M., GÜNTHER T.: A fluid flow data set
for machine learning and its application to neural flow map interpolation.
IEEE Transactions on Visualization and Computer Graphics 27, 2 (2021),
1279–1289. 3

[KER∗14] KUHN A., ENGELKE W., RÖSSL C., HADWIGER M.,
THEISEL H.: Time line cell tracking for the approximation of lagrangian
coherent structures with subgrid accuracy. Computer Graphics Forum 33,
1 (2014), 222–234. 2, 3

[OAM∗18] OSTER T., ABDELSAMIE A., MOTEJAT M., GERRITS T.,
RÖSSL C., THÉVENIN D., THEISEL H.: On-the-fly tracking of flame sur-
faces for the visual analysis of combustion processes. Computer Graphics
Forum 37, 6 (2018), 358–369. 3

[OCGT22] OU Z., CHI C., GUO L., THÉVENIN D.: A directional ghost-
cell immersed boundary method for low mach number reacting flows with
interphase heat and mass transfer. Journal of Computational Physics 468
(2022), 111447. 7

[RPD20] RAPP T., PETERS C., DACHSBACHER C.: Void-and-cluster
sampling of large scattered data and trajectories. IEEE Transactions on
Visualization and Computer Graphics 26, 1 (2020), 780–789. 2, 3

[SB21] SAHOO S., BERGER M.: Integration-Aware Vector Field Super
Resolution. In EuroVis 2021 - Short Papers (2021), Agus M., Garth C.,
Kerren A., (Eds.), The Eurographics Association. 3

[Sib81] SIBSON R.: A brief description of natural neighbor interpolation.
In Interpreting Multivariate Data (1981), Barnet V., (Ed.), pp. 21–36. 3,
6, 8

[SLM05] SHADDEN S. C., LEKIEN F., MARSDEN J. E.: Definition and
properties of Lagrangian coherent structures from finite-time Lyapunov
exponents in two-dimensional aperiodic flows. Physica D 212, 7 (2005).
6

[SP07] SADLO F., PEIKERT R.: Efficient visualization of lagrangian
coherent structures by filtered amr ridge extraction. IEEE Transactions
on Visualization and Computer Graphics 13, 6 (2007), 1456–1463. 2, 3

[The22] THE CGAL PROJECT: CGAL User and Reference Manual,
5.5.1 ed. CGAL Editorial Board, 2022. 3, 6

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

197

