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Abstract. State-of-the-art density based cluster algorithms offer remark-
able speed and robustness. However, they do not allow the user to make
local changes without affecting the global outcome. The user thus has to
choose between clustering a local region well or keeping the global result.
We present a new approach, λ-DBSCAN, which augments the DBSCAN al-
gorithm to include local a priori knowledge. The parameters can be
specified per observation, rather than globally, which enables the user to
include local knowledge about the data without modifying other regions.
Furthermore, we define regions in the data that should be affected by
certain parameter choices, to reduce the workload for a user.

Keywords: prior knowledge · density-based clustering · DBSCAN.

1 Introduction

Finding relations in data is one of the most common problems in data analysis. For
the unsupervised task of clustering the goal is to combine similar observations to
clusters, whereas dissimilar observations should be in different clusters. However,
the solution to this task can often be ambiguous, since in general there is no
perfect clustering, i.e. a given ground truth, but rather multiple good ones. This
is especially true for real life datasets, since normally no ground truth exists at
all and all clusterings are open for interpretation by the viewer.

There exists a variety of cluster models, such as connectivity-, centroid-, and
density-based models. Density models assume a cluster to be a dense region of
observations bounded by less dense regions. The number of clusters does not
have to be known a priori, and neither are any assumption made about their
possible shapes. In contrast centroid-based clustering algorithms (like k-means [6])
implicitly assume that all points within a cluster can be properly represented by a
single point. However, trivial density-based clustering algorithms, like DBSCAN [3],
encounter difficulties if the non-dense regions of observations that divide dense
regions do not clearly separate clusters. Several state-of-the-art density based
cluster models, like OPTICS [1] or HDBSCAN [2], can successfully find clusters with
varying densities. They do however tend to perform poor on datasets with close
high density clusters in combination with distant low density ones [7].
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Each approach to find clusters in a given data set must make assumptions
about what a cluster actually is and how clusters should be separated. These
assumptions are usually made implicitly by the choice of the clustering algorithm
(e.g. k-means finds hyperspherical clusters, or single linkage clustering is suitable
to follow lines in the data set) or explicitly by the choice of parameters for a
clustering algorithm (e.g. the choice of the metric used to calculate (dis)similarites,
or the choice of linkage method for hierarchical clustering). Another way to direct
the clustering process would be to incorporate a priori knowledge into the
clustering process.

However, even with a priori knowledge there might not be a sufficiently good
choice of a clustering method and its parameters. This can be the case for datasets
which show too large variety in different regions of the domain. Although there
are algorithms which try to adapt to local properties of the data, they still can
fail as the selected global parameters might only deliver good results for some
(or even only for single) regions of the whole domain.

In this work we present λ-DBSCAN which is a modification of the DBSCAN
algorithm presented in [3]. Our idea is to extend the algorithm slightly to allow
the integration of prior knowledge of the data to the parameters. This enables
us to change the way clusters are formed depending on the specific location of
a data point, i.e., besides global prior knowledge the user is able to apply local
prior knowledge as well.

2 Related Work

DBSCAN is a well studied density based cluster algorithm. Each observation is
classified as either a core point, a border point, or noise. The algorithm defines a
local neighborhood as a hypersphere of radius ε around each point and counts
the number of other data points within this neighborhood to decide which class
(core, border, or noise) a point belongs to.

Nε(p) = {q ∈ D | dist(p, q) ≤ ε}. (1)

A point p is considered to be a core point if and only if the size of its ε-
neighborhood is at least minPts or µ:

coresε,µ = {p ∈ D | µ ≤ |Nε(p)|} (2)

Thus, ε and µ are the two major parameters of DBSCAN.
Furthermore, an observation is a border point if at least one and less than µ

observations are contained within its ε-neighborhood, otherwise it is noise

borderPointsε,µ = {p ∈ D | 1 ≤ |Nε(p)| < µ} (3)

noiseε,µ = {p ∈ D | 0 = |Nε(p)|}
= D \ (coresε,µ ∪ borderPointsε,µ)

(4)

To form clusters DBSCAN needs to decide which of the core and border points
belong into the same cluster. For this [3] defines a set of relations to describe the
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interaction between different points. The first is directly density reachable. Two
points are directly density-reachable if their distance is less than ε and at least
one of them is a core point. Secondly, two points p and q are density reachable if
there exists a sequence of mutually directly density reachable points which starts
with p and ends with q. Clusters are then formed by the transitive closure of the
density reachability relation.

Note here that p is in the ε-neighborhood of a point q if and only if q is in
the ε-neighborhood of p:

p ∈ Nε(q) ⇔ q ∈ Nε(p) (5)

While DBSCAN enables the user to find clusters with similar densities, it
struggles to produce good results if the densities within different clusters vary
vastly. Other versions of the DBSCAN algorithms have been invented to cope with
its limitations, such as OPTICS [1] or HDBSCAN [2].

OPTICS [1] (Ordering Points To Identify the Clustering Structure) is a density-
based clustering algorithm designed to find patterns in spatial datasets. It gener-
ates a reachability plot, revealing clusters with varying density and hierarchies.
HDBSCAN [2] (Hierarchical Density-Based Spatial Clustering of Applications with
Noise) leverages a hierarchical approach combined with a density-based one. It
creates a tree of cluster relationships which allows the algorithm to find clusters
with varying densities.

A completely different approach able to cope with clusters of varying density
would be spectral clustering [9] which turn clustering into a graph-based problem
and leverages the eigenvalues and eigenvectors of the similarity matrix to identify
clusters. It transforms the data into a lower-dimensional space using the similarity
matrix and runs a cluster algorithm on these structures.

While these also find clusters with varying densities, they fail to produce
good results in situations with close high-density clusters together with distant
low-density ones. All of these extensions to DBSCAN have in common, that they
use a set of global parameters which cannot be locally adapted. Although these
parameter choices may have local influences they are usually not very intuitive
to determine.

Another approach that is able to achieve comparable results is C-DBSCAN [14],
which uses pairwise must-link and cannot-link constraints to force pairs of points
into either the same cluster or into different clusters. Cannot-link constraints can
be used to separate a point from another cluster that it would normally belong
to. It could be seen as locally setting µ or ε to such values that each of the points
involved in the constraint is not contained in the others ε-neighborhood. Must-link
constraints on the other hand merge clusters that would not be combined by
DBSCAN because no two points’ ε-neighborhoods overlap sufficiently. This can
merge clusters that are close to each other (which could be seen as modifying µ
or ε again) but also those which are too dissimilar to each other to be found by
purely distance- based approaches. For both types of constraints these have to
be given for each involved pair of data points. Creating a large set of constraint
may therefore be prohibitively expensive or counter-intuitive.
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3 Implementation

Algorithm 1 Pseudocode of the λ-DBSCAN Algorithm
Input: DB: Database
Input: ε: Neighborhood size
Input: µ: MinPts
Input: dist: Distance function
Output: label: Points labels, initially undefined
1: for p ∈ DB do
2: if label(p) 6= undefined then continue end if
3: Neighbors N ← RangeQuery(DB, dist,p, ε(p) )
4: if |N | < µ then
5: label(p)← Noise
6: continue
7: end if
8: c← next cluster label
9: label(p)← c

10: Seed set S ← N \ {p}
11: for q ∈ S do
12: if label(q) = Noise then label(q)← c end if
13: if label(q) 6= undefined then continue end if
14: Neighbors N ← RangeQuery(DB, dist, q, ε(p) )
15: label(q)← c
16: if |N | < µ then continue end if
17: S ← S ∪N
18: end for
19: end for

When we want to extend DBSCAN in a way that allows us to incorporate prior
knowledge (or different understandings of which points should be able to form a
cluster and which not) the only parameters within the original algorithm are ε
and µ and thus our first target for adjusting DBSCAN’s clustering behaviour.

The λ-DBSCAN algorithm is based on the DBSCAN implementation. We still
distinct between core, border, and noise points. The parameter ε which is used to
determine which of these classes a point belongs to can be chosen for individual
points rather than using one global value for each point, respectively. For the
sake of this paper we will not alter the meaning of µ as our adaption of ε is
sufficient. Technically a user of λ-DBSCAN could decide for each point individually
which class a point belongs to (without calculating the membership to each class)
but this will turn any practical application infeasible, of such a decision would
have to be made for many points, points in a high-dimensional space, or both.
Instead we select these parameters for whole regions of points, which enables the
algorithm to be reasonably autonomous. The algorithm only relies on provided
domain knowledge, if needed, except for one initial global choice of parameters.

The effect of this can be seen in Figure 1 where we see 11 points arranged on
a grid of equilateral triangles such that for every choice of ε and µ DBSCAN must
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either assign all points to the same cluster or to no cluster at all. Our Proposed
algorithm λ-DBSCAN can however be parameterized in a way that the upper five
points and the lower five points can be separated.

(a) DBSCAN (b) DBSCAN (smaller ε) (c) Our λ-DBSCAN

Fig. 1: Clustering of equidistant points with the classical DBSCAN and λ-DBSCAN.

Algorithm 1 outlines an implementation with a global µ and individual ε
based on [15, Chapter 2.2]. The changes have been marked in Algorithm 1. Note
that we use a function ε(p) which returns individual εs for each data point.
Hence the name λ-DBSCAN, coming from the Python unnamed lambda functions.
Regarding a practical implementation each individual ε could be pre-computed
and stored in a list. This only adds a linear complexity to the algorithm (w.r.t.
to the complexity class of ε(p) which will mostly be in O(1)) and therefore does
not impact the performance by much (cf. Table 1). However, this computation is
only performed once before the clustering starts and will diminish with larger
datasets.

It is important to notice here that Equation (5) does not necessarily hold
anymore. If set accordingly, a point p could be in the ε-neighborhood of another
point q, without q being the in the ε-neighborhood of p. We see three possible
solutions:

1. Rely on the order in which the algorithm traverses the dataset.
2. Keep the original interpretation of Equation (5) intact and only consider p

and q as directly density reachable if they are mutually contained in each
other’s ε-neighborhoods

3. Alter the interpretation of Equation (5) such that p and q as directly density
reachable if either is contained in the other’s ε-neighborhood

We discard the first approach, since the clustering should be independent of the
iteration of the observations. We tested implementations 2. and 3., both yielded
the same result for all datasets in this paper.
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4 Evaluation

In the following, we compare results of λ-DBSCAN with selected algorithms on a
variety of artificial and two real world datasets. Table 2 shows the parameters
we used for each algorithm to cluster the synthetic datasets. Table 1 shows the
runtimes and scores.

4.1 Synthetic Datasets
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Fig. 2: Different clustering results for a dataset with clusters that form concentric
rings. The number of observations per cluster are the same, the densities vary
due to the different radii.

Rings: Figure 2 shows different cluster results for an artificial concentric ring
data. All rings contain the same number of elements, which results in different
densities because of their varying radii. Such datasets pose a challenge for density
based cluster algorithms. In order to separate the two inner rings one has to
choose a rather small value for ε which in turn leads to the points on the outermost
ring to not be assigned to the same cluster. With the variation in density in side
of the same clusters even HDBSCAN and OPTICS sometimes either detect noise
where none should be or separates one cluster into two different clusters. Only
spectral clustering yields a perfect result with the nearest neighbor affinity.

λ-DBSCAN allows us to define a ε parameter based on the location of the points.
Since it is known a priori that the clusters get sparser the farther away they are
from the origin, one can set the ε parameter to a value depending on the distance
of the point to the origin – in this case to one third of the distance of a point
to the origin. Spectral clustering however needed more than 28 times longer to
compute this result than DBSCAN or λ-DBSCAN (see Table 1).

Spirals: Figure 3 displays cluster results for an artificial spiral data. The
spirals are meet at the origin, which makes them indistinguishable for any basic
density based cluster algorithms. The points are farther away from each other the
further they are away from the origin, resulting in clusters with varying densities.
DBSCAN and OPTICS both fail to yield a result comparable to the ground truth,
not matter how the parameter are chosen. Spectral clustering finds three clusters
(because it has to given the parameter choice) but those have virtually nothing
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Fig. 3: A dataset with clusters that form concentric spirals. The number of
observations per cluster are the same, the densities within each cluster decreases
the further away a point is from the origin.

in common with the desired result. This stems from the underlying cluster model
that is implicitly encoded in the algorithm itself.

λ-DBSCAN can use knowledge about local regions and thus separate the clusters
around the origin. At the same time, it can use the knowledge about the spirals to
solve the issue of varying densities in the clusters itself. Figure 3 and Table 2 show
that the way we calculate the individual ε is rather simple. A more sophisticated
choice might even lead to a perfect clustering result around the origin.
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Fig. 4: The ground truth and five different clusterings of the compound dataset.

Zahn’s Compound: The Compound dataset [4] represents a challenge for spectral
clustering, since it can not clearly distinguish the two clusters where one cluster
encapsulates another cluster with different densities. OPTICS fails to distinguish
them at all. Since DBSCAN uses the ε and µ globally it fails to cluster the shapes
without noise. λ-DBSCAN produces results better than DBSCAN while taking the
same amount of time.

4.2 Real World Datasets
GPS pickup data: The GPS pickup dataset is a collection of roughly 2′800
GPS coordinates of pick-up and drop-off locations of customers of a ride pooling
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Table 1: Comparison of the runtime and ARI scores for each algorithm and
dataset. The PC used for the experiments features an AMD Ryzen 7 5700G
processor and 32 GB DDR4-RAM.

Algorithm Runtime in ms ARI Homogeneity Completeness V-measure

Rings
DBSCAN 1.3 0.689 0.828 0.820 0.824
OPTICS 106.4 0.867 0.938 0.854 0.894
HDBSCAN 2.6 0.940 1.000 0.915 0.956
Spectral Clustering 36.7 1.000 1.000 1.000 1.000
λ-DBSCAN 1.3 1.000 1.000 1.000 1.000

Spirals
DBSCAN 1.0 -0.008 0.000 0.000 0.000
OPTICS 63.3 -0.008 0.000 0.000 0.000
HDBSCAN 1.3 0.034 0.220 0.314 0.259
Spectral Clustering 13.7 0.065 0.072 0.072 0.072
λ-DBSCAN 1.2 0.921 0.898 0.898 0.898

Zahn’s Compund
DBSCAN 1.4 0.976 0.949 0.953 0.951
OPTICS 164.1 0.788 0.767 0.942 0.845
HDBSCAN 2.9 0.826 0.819 0.900 0.858
Spectral Clustering 83.2 0.585 0.776 0.809 0.792
λ-DBSCAN 1.5 0.997 0.993 0.992 0.992

company. The aim is to find a suitable selection of locations that represent a
pick-up or drop-off location for a group of users – or in other terms: find clusters in
the GPS data. The dataset contains groups of GPS points with varying densities
and member counts, as well as different distances between the clusters.

While [7] finds clusters with varying densities and few points, they fail to
split close clusters with high densities. The train station, for example, is one big
cluster, while it could possibly be an aggregation of four to five close but separate
clusters. None of the referenced algorithms in [7] can cluster these close bigger
clusters effectively, leaving the customers with only one pick-up and drop-off
location for a rather large area. λ-DBSCAN can select these regions in the data
with appropriate ε and µ values.

Application in Flow Visualization We also applied λ-DBSCAN to a practical
example in the field of flow visualization. We consider the finite-time Lyapunov
exponent (FTLE) for a 2D flow. FTLE fields are scalar fields, its ridges are lines
which one can see as a skeleton of the underlying flow. This skeleton divides the
flow into multiple regions. Material inside the same region which is moved by the
flow over time stays comparably close to each other over time. The extraction
of FTLE ridges can greatly assist in many modern fields, e.g. path planning for
autonomous underwater vehicles [13], tracking the movement of air pollution
and its effects [10], and understanding medical phenomenons like aortic valve
calcifications [8]. [16] recently proposed a new efficient and reliable attempt for
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Table 2: Parameters for the artificial datasets.
Algorithm Parameters

Rings
DBSCAN ε = 1, µ = 2
OPTICS µ = 26
HDBSCAN µ = 6
Spectral Clustering k = 5, affinity = nearest neighbors
λ-DBSCAN ε = |p|/3, µ = 3

Spirals
DBSCAN ε = 0.5, µ = 2
OPTICS µ = 10
HDBSCAN µ = 1
Spectral Clustering k = 3, affinity = nearest neighbors

λ-DBSCAN µ = 3, ε =

{
|p|0.2 |p| > 1

0.1 else

Zahn’s Compund
DBSCAN ε = 1.48, µ = 3
OPTICS µ = 20
HDBSCAN µ = 7
Spectral Clustering k = 5, affinity = rbf

λ-DBSCAN µ = 5, ε =


1 |p− (16.5, 9.5)T | < 7 ∨ p0 > 25

0.0001 13.25 < p0 < 17.5 ∧ 15 < p1

2.5 else

sampling FTLE ridges with a population of particles. It results in a uniform
sampling of these structures. Unfortunately, ridges in FTLE fields tend to be
sharp and closely located to each other which leads to numerical difficulties.
[16] point out the need for an appropriate clustering method in order to to detect
outliers and to connect the correct ridges. We applied the cluster methods to an
extraction example for a 2D flow around a cylinder inside a channel [5,12]. In
this dataset the flow streams from left to right and is bounded by solid walls.

The FTLE ridge extraction resulting in 22,000 particles is shown in Figure 6.
The particles create many lines on the left side of the cylinder, indicating a strong
turbulence with thin coherent regions. Further to the right, there are fewer lines,
thus, less turbulence. However, numerical problems lead to outliers and partly
discontinuous structures.

Figure 6 also displays five different clusterings of the ridges dataset. DBSCAN
with ε = 0.0008 and µ = 3 does yield a meaningful clustering of ridges that are
further away from the origin (approx. x > 0.5) with only some ridges merged.
The ridges near the origin however can not be separated at all. Other parameter
choices yield a better result for the ridges near the origin, but fracture the
clusters further away. OPTICS with µ = 2 and ξ = 0.00001 results in a lot of noise
mislabeling, while other parameter choices merge many ridges into one. HDBSCAN
with µ = 13 does a good job of finding ridges in less turbulent regions, however
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(a) DBSCAN: µ = 4, ε = 5m (b) OPTICS: µ = 5, ξ = 0.2

(c) HDBSCAN (ε̂): µ = 3, ε̂ = 5m (d) λ-DBSCAN: ε and µ shown
in their respective regions.

Fig. 5: Different results for the GPS dataset. Parameters taken from [7] (except
for λ-DBSCAN)

it also is unable to differentiate the lines in turbulent regions. Spectral clustering
with k = 50 and the nearest neighbors affinity splits and joins lines almost at
random, also merging the lines in the turbulent regions.

Given the prior knowledge that turbulent regions form around the origin and
contain more close ridges, while less turbulent regions form further away from
the origin and contain fewer ridges which are further spread apart, one can set
the parameters for the λ-DBSCAN algorithm accordingly. A clustering with

µ = 3, ε(x, y) =

{
0.0035 x < 0.5

0.008 else

is seen at the bottom of Figure 6. The algorithm detects ridges around the origin,
with only some being merged that are very close to each other.

5 Conclusion and Future Work

In this paper, we proposed a new algorithm for using local specific knowledge
λ-DBSCAN. Effectively our algorithms allows the user to run different instances
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Fig. 6: The ridges dataset and five possible clusterings.

of the DBSCAN algorithm on different portions of the dataset while seamlessly
merging their outcomes into a single result.

The speed of λ-DBSCAN enables the algorithm to be used in interactive appli-
cations and be a drop-in for a pure DBSCAN implementation since it is usually not
slower while yielding at least the same – if not better – results. A program that
leverages the user as an oracle who marks regions that need parameter changes
comes to mind allowing some form of semi-supervised clustering. The cluster
result could update in real time (only re-cluster the parts that changed) and thus
allow processing big datasets.

The initial regions in which different parameters for λ-DBSCAN might be needed
could also be automatically be identified by running k-means with a sufficiently
large k and use the density around the so-found proto-clusters to initialize the
function ε(p).

Source Code The implementation of our algorithm is based on scikit-learn’s [11]
implmention of DBSCAN. Our changes are available at

https://visual2.cs.ovgu.de/pubres/lambda-dbscan.

https://visual2.cs.ovgu.de/pubres/lambda-dbscan 
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