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Fig. 1: D-FTLE optimal domain displaced flow maps of wind flow above the Indian Sea. Uncertainty is depicted with ellipses.

Abstract— FTLE (Finite Time Lyapunov Exponent) computation is one of the standard approaches to Lagrangian flow analysis. The
main features of interest in FTLE fields are ridges that represent hyperbolic Lagrangian Coherent Structures. FTLE ridges tend to
become sharp and crisp with increasing integration time, where the sharpness of the ridges is an indicator of the strength of separation.
The additional consideration of uncertainty in flows leads to more blurred ridges in the FTLE fields. There are multiple causes for such
blurred ridges: either the locations of the ridges are uncertain, or the strength of the ridges is uncertain, or there is low uncertainty but
weak separation. Existing approaches for uncertain FTLE computation are unable to distinguish these different sources of uncertainty
in the ridges.
We introduce a new approach to define and visualize FTLE fields for flow ensembles. Before computing and comparing FTLE fields for
the ensemble members, we compute optimal displacements of the domains to mutually align the ridges of the ensemble members
as much as possible. We do so in a way that an explicit geometry extraction and alignment of the ridges is not necessary. The
additional consideration of these displacements allows for a visual distinction between uncertainty in ridge location, ridge sharpness,
and separation strength. We apply the approach to several synthetic and real ensemble data sets.

Index Terms—FTLE, uncertainty visualization, ensemble visualization

1 INTRODUCTION

FTLE (Finite Time Lyapunov Exponent) is probably the most popu-
lar approach to computing Lagrangian Coherent Structures (LCS) in
time-dependent (unsteady) flows. FTLE is particularly tailored towards
detecting hyperbolic LCS: regions of similar hyperbolic Lagrangian
flow behavior are separated by ridge structures in the FTLE field. For
increasing integration times, the increase in hyperbolic separation tends
to lead to thin, crisp and sharp FTLE ridges. While the ridges are the
main objective in analyzing FTLE fields, their numerical extraction is
challenging in various aspects like accuracy, robustness and computa-
tional cost. For this reason, FTLE computation is still an active area of
research.

In recent years, FTLE computation in the presence of uncertainty
has moved into the focus of research. Several approaches exist for
incorporating uncertainty into the analysis of FTLE fields. Although
their basic concepts are diverse, existing approaches share one common
behavior: under uncertainty, FTLE ridges tend to become more blurry,
unsharp, and weak. We show that such blurry ridges in uncertain FTLE
fields can have several reasons: either they are due to the presence of
only a weak separation, or they are the result of some uncertainty about
the ridges. In the latter case, two different kinds of uncertainty are
possible: strength or location of the FTLE ridges. There may be a high
uncertainty of the ridge location – we do not know where exactly the
ridge is located – while the strength of the ridge is certain. Conversely,
there may be no uncertainty about the exact location of the ridge, but
the strength is uncertain.

We show that existing approaches for uncertain FTLE computation
are unable to distinguish between the different kinds of the uncertainty

about ridges as they produce a similar visual output: blurred ridges. We
argue that FTLE ridges are the main objective of FTLE analysis and
that a better understanding of the kind of uncertainty of FTLE ridges is
necessary for an in-depth uncertain FTLE analysis.

In this paper, we present an approach to computing uncertain FTLE.
Our approach works under the assumption that the input is an ensemble
of velocity fields and enables distinguishing different kinds of uncer-
tainty of the ridges. The main idea is to first find an optimal domain
alignment of the flow maps, before FTLE is computed and compared
for different ensemble members.

The input of our approach is an ensemble of n velocity fields
v1(x, t), . . . ,vn(x, t). We assume that v1, . . . ,vn describe the same flow
phenomenon with slightly different parameters. In particular, we as-
sume that the LCS of v1, . . . ,vn are similar and related to each other:
for an FTLE ridge in vi, we can expect a similar FTLE ridge in v j
that is moved, continuously deformed, sharpened or weakened from
the one in vi. This assumption is reasonable due to the nature of flow
ensembles: they are typically produced by observing/simulating the
same phenomenon under slightly different observation/simulation pa-
rameters. Our approach consists in computing small displacements
of the domains of v1, . . . ,vn. We find a map from domain points to
domain points, which leads to displacements (or “deformations”) of
corresponding flow maps such that their FTLE ridges become aligned
as much as possible. Based on this, we apply a visual analysis of the
uncertain FTLE and the local displacement. This provides a tool for
distinguishing the sources of FTLE uncertainty mentioned above.
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2 RELATED WORK

Before reviewing related work, we summarize different ways of repre-
senting uncertainty in flows. This is necessary to give a classification
of existing work. There are two common ways to represent uncertainty:
either by having an ensemble v1, ...,vn of flows, or by having a velocity
field v(x, t) and a positive semidefinite matrix D(x, t) describing the
local diffusion of the flow. With v and D given, Monte Carlo integration
techniques can be defined that assume an underlying Wiener process:
the result of a stochastic integration step is independent of the steps in
the past. While some existing approaches use estimations of D from the
ensemble members v1, ...,vn, we argue that in general it is unclear if a
valid estimation is possible. This is because a Monte Carlo integration
may create trajectories that are not physically relevant, i.e., there is no
underlying velocity field that fulfills the Navier Stokes equations. In
fact, in general a barycentric combination of v1, ...,vn does not fulfill
the Navier Stokes equations, even if each ensemble member vi does.
We are not aware of reliable conditions under which D can be reliably
estimated from v1, ...,vn. Because of this, our approach restricts to the
trajectories of the ensemble members without having a Monte Carlo
integration involved.

2.1 FTLE and FTLE ridges

One of the most prominent approaches to find LCS is the compu-
tation of ridge structures in scalar (FTLE) fields, as introduced by
Haller [Hal01, HY00], see also [Hal15] for an introduction to LCS,
their meaning for describing flow dynamics and their extraction via
FTLE. FTLE ridges have been used for a variety of applications
[Hal02, LCM∗05, WPJ∗08, SLP∗09]. Shadden et al. [SLM05a] have
shown that ridges of FTLE are approximate material structures, i.e.,
they converge to material structures for increasing integration times.
This fact was used in [SW10] to extract topology structures. [LM10]
and [SPFT12] introduce methods for tracking FTLE ridges by locally
sampling the FTLE field and estimating the ridge direction and location.
Due to the discrete sampling used, the accuracy is limited, especially
for very sharp ridges. In [FH12] the minor eigenvector of the Cauchy-
Green tensor is integrated to track ridge structures. This approach
is, however, prone to accumulating integration errors. Also in the vi-
sualization community, different approaches have been proposed to
increase performance, accuracy and usefulness of FTLE as a visualiza-
tion tool [GLT∗07, GGTH07, SP07a, SP07b, SRP09, GOPT11, PPF∗11].
Haller and Sapsis [HS11] additionally explore the smallest FTLE val-
ues.

While most approaches mentioned above restrict themselves to ridge
curves in 2D flows, there are a few approaches that extract ridge sur-
faces in 3D flows for moderate integration times. Schindler et al.
[SPFT12] show both, standard height ridge extraction and C-ridge
tracking to get 3D surfaces. [SFB∗12] show C-ridge surfaces for an
analysis of revolving doors. Sadlo and Peikert [SP07a] present FTLE
ridge surfaces where with focus on an adaptive grid generation. Üffin-
ger et al. [ÜSE13] present streak surfaces as approximations to FTLE
ridges. Depending on the accuracy of the seed structures (obtained by
extremely high sampling), streak surfaces and FTLE ridges show strong
agreement. [BT13] propose an adaptive smooth reconstruction of the
flow map field from the sample points based on Sibson’s interpolant on
which the ridge extraction is more stable than on the original sampling.

2.2 Local uncertainty in vector fields

Local approaches describe uncertainty as a feature that can be eval-
uated at a point inside the vector field domain without considering
the field’s “long-term” integral behavior. Sanderson et al. [SJK04]
describe patterns of uncertainty using a reaction-diffusion model, while
Botchen et al. [BWE05] introduce a texture-based visualization tech-
nique, that represents local reliabilities by cross advection and error
diffusion. The same authors used additional color schemes to empha-
size uncertainty [BWE06]. Another approach by Zuk et al. [ZDG∗08]
uses bidirectional vector fields to illustrate the impact of uncertainty.

2.3 Uncertainty for stream lines and path lines
There exist several approaches for capturing global behavior of stream
lines and path lines for ensembles of vector fields in the literature.
The perhaps simplest and most direct approach are spaghetti plots
which provide straightforward overviews but tend to produce visual
clutter [FBW16]. Mirzargar et al. [MWK14] introduce curve box-plots
for the visualization of curve-like features based on the concept of
statistical data depth. Otto et al. [OGHT10, OGT11] present a topolog-
ical approach that is based on the integration of vector PDF. A related
method by He et al. [HCLS16] for integrating uncertain stream lines
is based on a Bayesian model. Hollister and Pang [HP20] present a
method to measure uncertainty and to visualize member stream lines
from an ensemble of vector fields by incorporating velocity probabil-
ity density as a feature along each member stream line. Ferstl et al.
[FBW16] derive stream line variability plots by computing a prob-
abilistic mixture model for the stream line distribution, from which
confidence regions can be derived in which the stream lines are most
likely to reside. For a detailed overview of visualization on ensemble
data we refer to the recent survey by Wang et al. [WHLS18].

2.4 FTLE and uncertainty
Schneider et al. [SFRS12] introduce Finite Time Variance Analysis
(FTVA), a variance based FTLE-like method. The main idea is to
integrate several runs of particles along with their spatial neighbors,
and apply PCA to the resulting point sets. Guo et al. [GHP∗16]
introduce several approaches for uncertain FTLE computation: D-
FTLE computes the FTLE field for every run and then considers the
mean and the variance of the resulting scalar fields. FTLE-D computes
the flow map gradient for each run and then considers its average for
FTLE computation. Guo et al. [GHS∗19] introduce an approach for
particle tracing in uncertain flows. Haller et al. [HKK20] develop a
mathematical theory for weakly diffusive tracers to predict transport
barriers and enhancers solely from the flow velocity, without reliance
on diffusive or stochastic simulations. A fast implementation of it is
presented by Rapp et al. [RD20].

3 NOTATION AND PROBLEM SETTING

Given is an ensemble of n time-dependent q-dimensional (q= 2,3) flow
data sets over the same spatial domain D ⊂ Rq and temporal domain
T = [ts, te]

vi : D×T → Rq

(x, t) → vi(x, t) for i = 1, . . . ,n .

We consider the flow maps

φi : D×T ×T → D
(x, t,τ) → φi(x, t,τ) ,

which describe the location of a massless particle that is seeded at (x, t)
and integrated in vi over a time interval τ such that t + τ ∈ T . As a
consequence, φi must satisfy

∂φi(x, t,τ)
∂τ

= vi (φi(x, t,τ), t + τ) with φi(x, t,0) = x

for all x ∈ D, t ∈ T , t + τ ∈ T . Note that we assume for simplicity that
the integration of vi does not leave the domain D.

Based on this, we consider the standard definition of FTLE as

FTLEi(x, t,τ) =
1
|τ|

ln
√

λmax ((∇φi)T ∇φi)

for i = 1, . . . ,n, where ∇φi = ∇φi(x, t,τ) is the spatial gradient of φi
and λmax denotes the largest eigenvalue of a matrix.

A common approach in the literature is creating more than n flow
maps by a probabilistic process like repeated Monte Carlo integration.
Such approaches consider a local distribution of the velocity field and
use the assumption that the Monte Carlo integration is a Wiener process,
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i.e., the probability distribution for each integration step is independent
of the integration results from the past. For flow ensembles we do not
make this assumption because only the presence of ensemble members
does not allow to estimate a local distribution of a vector field under
consideration of a Wiener process.

Within this setup, existing approaches for uncertain FTLE computa-
tion can be summarized as follows: provide a visual representation and
analysis of the distribution of

φ1, . . . ,φn or ∇φ1, . . . ,∇φn or FTLE1, . . . ,FTLEn , (1)

where different assumptions on the distribution and different options
for a visual representation exist.

4 AN INTRODUCTORY EXAMPLE

To illustrate the issues with existing FTLE approaches, we construct
three ensembles containing 50 members each. We define a family of
steady template vector fields

vk,r(x) = k vDG(x,r)

where vDG is the double gyre field from [SLM05b] (see (13) in the 2D
domain x ∈ [0,2]× [0,1] with two parameters k > 0 and r, where time
t = r. For computing the flow map and FTLE of vk,r(x), we choose
τ = 1. This way, vk,r consists of an LCS that is represented by the FTLE
ridge whose location depends on r. Further, the strength of separation
(corresponding to the sharpness of FTLE ridges) is controlled by k: the
larger k, the sharper the FTLE ridge.

We define three ensembles with 50 members each:

E1 : v1 = v5,−0.4, . . . , v25 = v5,0, . . . , v50 = v5,0.4

E2 : v1 = v2,0, . . . , v25 = v3,0, . . . , v50 = v4,0

E3 : v1 = v2,0, . . . , v25 = v2,0, . . . , v50 = v2,0.

This definition implies the following properties of uncertainty:
• In E1 there is low uncertainty about the strength of the FTLE ridge:

each ensemble member has an FTLE ridge of approximately the
same strength. But there is high uncertainty about the location of
the ridges: the ridges of the ensemble members are all in different
locations.

• In E2 there is high uncertainty about the strength of the FTLE ridge:
the ensemble members have an FTLE ridges of different strength.
But there is a low uncertainty about the location of the ridges: all
ensemble members have the ridge at the same location.

• In E3 there is low uncertainty about the strength of the FTLE ridge
and low uncertainty about the location of the ridges. In fact, this
ensemble does not have any uncertainty at all because all ensemble
members are identical. However, the strength of separation is weaker
than in E1 and E2.
The ensemble E1 is illustrated in figure 2. In the left column we see

the FTLE fields of the ensemble members, while the right column gives
a collection of standard uncertain FTLE measures (from top to down:
D-FTLE, variance of D-FTLE, FTVA. They show a common behavior:
a rather blurry ridge near the line x = 1. Due to the 50 ensembles with
a slight difference in the ridge position, there is no possibility to detect
the source of the blurred ridge in the D-FTLE image. The variance
does not help as it could also indicate variance in ridge strength.

Ensemble E2 is illustrated figure 3. In the left column we see the
FTLE fields of the ensemble members, the right column gives a collec-
tion of standard uncertain FTLE measures (from top to down: D-FTLE,
variance of D-FTLE, FTVA. They also show a rather blurry ridge
around the line x = 1.

Finally, figure 4 gives an illustration of ensemble E3: in the left
column we see the FTLE fields of the ensemble members, while right
column gives a collection of standard uncertain FTLE measures (from
top to bottom: D-FTLE, variance of D-FTLE,s FTVA. They also show a
rather blurry ridge around the line x = 1. In fact, here we have identical

Fig. 2: Ensemble E1. Left column from top to bottom: FTLE of
ensemble members r =−0.4, r = 0, r = 0.4. Right column from top
to bottom: D-FTLE, variance of D-FTLE, FTVA of the ensemble.

Fig. 3: Ensemble E2. Left row from top to bottom: FTLE of ensemble
runs with k = 2, k = 3, k = 4,.
Right row from top to bottom: D-FTLE, variance of D-FTLE, FTVA.

Fig. 4: Ensemble E3. Left row from top to bottom: FTLE of ensemble
runs (all identical).
Right row from top to bottom: D-FTLE, variance of D-FTLE, FTVA.



ensemble members having a weak separation. The variance of D-FTLE
is 0.

Figures 2–4 show that standard uncertain FTLE concepts do not give
sufficient information to distinguish different sources of uncertainty of
FTLE ridges. This is the motivation for introducing our new approach.

5 OVERVIEW OF OUR METHOD

Given an ensemble of velocity fields v1, ...,vn with the corresponding
flow maps φ1, ...,φn, our method consists of the following algorithmic
steps:

1. Median flow. We find the ensemble index m ∈ {1, . . . ,n} such
that φm is the best representative of the flows φ1, . . . ,φn. We
select φm with the lowest sum of all squared point-wise distances
to every other flow map. We call φm the median flow.

2. Computation of domain displacements. We compute a do-
main displacement for each pair of the median and the ensemble
member.

pm,i : D×T ×T → Rq

that maps points (x, t) to displaced points (x′, t) with

x′ = x+pm,i(x, t,τ) ∈ D .

Note that the displaced points x′ stay within the domain.

ψi = φi(x′, t,τ)

We expect the displacement pm,i to be of small magnitude and
smooth, and it should align the FTLE ridges of φm(x, t,τ) as
much as possible to the FTLE ridges of φi(x′, t,τ).

3. Computation of displaced flow maps and displaced FTLE.
We apply the domain displacements on the corresponding flow
maps such that they align with the median flow map. The flow
map φi is displaced to “match” the median flow. We denote this
displaced flow map ψi. We can compute gradients and FTLE
from the displaced flow maps ψi. Due to the construction of the
domain displacements, we expect the “displaced” FTLE ridges of
ψi to be aligned as much as possible with the FTLE ridges of the
median ψm = φm.

4. Visual analysis. The visual analysis consists of two parts. Firstly,
a visualization of the distribution of displaced flow maps ψi,
their gradients and their FTLE fields using existing approaches
from the literature to visualize the distributions in (1). Secondly,
we conduct a visual analysis of the distribution of the domain
pm,1, . . . ,pm,n, which captures information about the uncertainty
of both the location and strength of the FTLE ridges.

6 DETAILS OF OUR METHOD

In the following, we present the steps of our method in detail. For a
concise notation, we may omit the arguments t,τ whenever they can be
regarded as constants.

6.1 Selection of the median flow φm

We select the index m of the median flow φm as the minimizer of the
sums

m = argmin
i

{
n

∑
j=1

∫
D

∣∣∣∣φi −φ j
∣∣∣∣2 dx | i = 1, . . . ,n

}

This means that we choose φm so that the sum of squared distances for
all flows to φm becomes minimal.

6.2 Computation of the displacement pm,i

The objective of the domain displacement function pm,i is aligning the
FTLE ridges of φm as much as possible with the ridges of the flow φi.
To characterize the best alignment of φm and φi, we define the energy

A(p) =
1

area(D)

∫
D
||φm(x+p(x))−φi(x)||22 dx ,

which measures the deviation of the displaced flow map φm from φi
for varying a displacement function p. In addition, the transformation
(x+pm,i) should be as rigid as possible: (x+pm,i) is rigid if

(∇(x+pm,i))
T (∇(x+pm,i)) = I ,

which requires (due to ∇x ̸= 0)

∇pT
m,i ∇pm,i +∇pT

m,i +∇pm,i = 0.

We capture this in a second energy term

B(p) =
1

area(D)

∫
D

∣∣∣∣∣∣∇pT
∇p+∇pT +∇p

∣∣∣∣∣∣2
F

dx ,

Where ||·||F denotes the Frobenius norm of a matrix. Depending on the
application, we may also consider the additional boundary condition

δD+pm,i(δD) = δD (2)

where δD denotes the boundary of D. (2) ensures that a point on the
boundary of D is mapped to (another) boundary point of D.

We minimize a blend of the alignment term A and the “rigidity” term
B to determine the optimal domain displacement as

pm,i = argmin
p

(1−ρ) A(p)+ρ B(p) (3)

for a weight ρ ∈ [0,1]. Note that for the extreme cases ρ = 0 and ρ = 1,
(3) has a closed-form minimizer: For ρ = 1 the trivial minimizer is

pm,i = 0 (4)

For ρ = 0, the function

pm,i = φm (φi(x, t, τ), t + τ,−τ)−x (5)

yields A(pm,i) = 0 and this minimizes (3)). This minimizer (5) is
obtained as follows: for each location and time (x, t), we first integrate
v j over a period τ . From the resulting point φi(x, t,τ), we apply a
backward integration of vm over the negative period −τ .

Note that neither (5) nor (4) are useful solutions: (5) is perfectly
rigid but has no effect, and while (5) maximizes the alignment of φm
and φi, it also tends to have strong gradients (which grow exponentially
in τ) and can therefore neither expected to be small nor smooth. Instead,
we search for a solution of (3) for a parameter 0 < ρ < 1 that keeps
pm,i small and smooth while simultaneously aligning the ridges. The
influence of the parameter ρ is discussed in section 8 and figure 17.

Minimizing (3) is a nonlinear optimization problem. We describe
the discretization and the numerical solution in section 6.5
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Fig. 5: Optimization for alignment of 2 Double Gyre ensembles. Top
row (from left): two ensemble members and energy A(p) to be mini-
mized.
Rows 2–5 show the state of optimization after 7, 46, 99 and 151 itera-
tions. Each row shows (from left): p, FTLE, A(p).

6.3 Displaced flow maps and displaced FTLE.
For each ensemble member i = 1 . . . ,n, we compute the displaced flow
map

ψi(x, t,τ) = φi(x+pm,i(x, t,τ), t,τ) . (6)

We can compute the (spatial) gradient

∇ψi(x, t,τ) = ∇φi(x+pm,i(x, t,τ), t,τ)
(
I+∇pm,i(x, t,τ)

)
(7)

where I denotes the identity. Based on ∇ψi, we define displaced FTLE

FTLEi(x, t,τ) =
1
|τ|

ln
√

λmax ((∇ψi)T ∇ψi) . (8)

Note again that the idea behind the displacement pm,i is to align the
ridges of FTLEi with the ridges of FTLEm as close as possible , i.e.,
the ridges of the median flow. Remarks:

• (6) shows that ψi is not obtained by integrating a new velocity
field. Instead, ψi is obtained by a deformation of the precalculated
flow map φi with the domain displacement pm,i.

• (7) shows the relation between the gradients of φi and ψi. In
particular, it shows that ∇φi only becomes extremal if either ∇ψi
or ∇pm,i become extremal. Since the condition B(pm,i) prevents
∇pm,i from becoming extremal and keeping in mind that FTLE
is based on considering the extremals in φi and ψi respectively,
there is a one-to-one relation between the ridges of ∇φi and ∇ψi.
Therefore, our alignment approach cannot produce new FTLE
ridges or make existing ones disappear. It can only transform and
align their locations.

6.4 Visual analysis and interpretation
Visual analysis can be based on either of

ψ1, . . . ,ψn or ∇ψ1, . . . ,∇ψn or FTLE1, . . . ,FTLEn .

For the visualization of ψ1, . . . ,ψn, we apply existing techniques for
uncertain FTLE visualization: D-FTLE and FTVA.

In addition, we can visually analyze the distribution of the domain
displacements pm,i. This provides information about the uncertainty of

both, the location and the strength of FTLE ridges. Assuming a normal
distribution of all pm,i, we analyze the covariance

C(x, t,τ) =
1
n

n

∑
i=1

pm,i(x, t,τ) pm,i(x, t,τ)T . (9)

Assume that the integration time t and period τ are fixed. Then the ten-
sor field C assigns a symmetric positive definite matrix to every domain
point x . For a given direction vector r with ||r||= 1, the quadratic form
rT Cr measures the variance of the domain displacements in this direc-
tion. We are interested in the variances near FTLE ridges: high variance
in a direction perpendicular to a ridge indicates a high uncertainty in
ridge location, whereas high variance in a direction parallel to a ridge
indicates high uncertainty in the strength of separation. The case C = 0
indicates that the ridges of all ensemble members are perfectly aligned
and have similar strength.

This tool complements the analysis of the distribution of FTLE:
Visualizing FTLE1, . . . ,FTLEn gives information about the average
strength of separation, while the analysis of C reveals the uncertainty
of ridge location and strength.

We visualize the tensor field C by placing non-overlapping ellipses.
We are therefore computing the corresponding ellipse for every FTLE
value above a certain FTLE value. As higher FTLE values tend to be
close to each other, ellipses would overlap. We therefore prioritize
ellipses with corresponding higher FTLE values in a case of overlap-
ping. In order to prevent occluding the LCS structures, the ellipses are
rendered semi-transparent. This reduces clutter while preserving to
render ellipses on the more important regions. Ellipses below a certain
diameter will also be discarded to prevent the clutter of dots on ridges
with a high certainty. High FTLE values which are not covered by
ellipses therefore have a high certainty. The scale of the ellipses is
chosen as the 95 percentile of the normal distribution. Figures 7 and 8
show examples. Based on this, we observe the extent and orientation
of the ellipses along the ridges of the underlying uncertain FTLE fields,
which gives the following interpretation:

• The width and sharpness of a ridge indicate the strength of sepa-
ration: the sharper the ridge, the stronger the flow separation.

• The uncertainty in the strength of separation is encoded in expan-
sion of the ellipses in the direction of the ridge: large expansion
in ridge direction corresponds to high uncertainty in the strength
of separation along the ridge.

• The uncertainty in the ridge location is encoded in the ellipse ex-
pansion in the direction perpendicular to the ridges: the larger the
ellipse expansion perpendicular to the ridge is, the more uncertain
the ridge locations.

Figure 6 illustrates the interpretation of uncertain ridges.

s

us

ul

uncertain FTLE ridge

ellipses of C  

Fig. 6: Sources of uncertainty encoded by our approach using tensors
C (see (9)): The width s of a ridge corresponds to the strength of
separation. The expansion us of the ellipse parallel to the ridge encodes
uncertainty of the strength of separation. Expansion ul perpendicular
to the ridge encodes uncertainty of ridge location.



6.5 Numerical optimization
We sample flow maps φi for all ensemble members and compute pair-
wise distances to select the median flow map. As the flow maps are
sampled on a regular grid and represented as matrices, we measure the
distance between two flow maps i, j simply as invnφi −φ jF . Then the
main task is finding an optimal displacement pi,m for each flow field φi
w.r.t. the median flow φm as outlined in section 6.2.

We represent domain displacements as bilinear maps D → D, which
are parameterized by a grid of nodes or control points in 2d. For each
map we can evaluate the cost function (3) by replacing the integrals
in the terms A and B by discrete sums. Note that this summation acts
on the discrete flow map, i.e., in the sampling resolution. We use the
L-BFGS algorithm, a quasi-Newton method, for minimizing the cost
function. This requires also the evaluation of the gradient of the cost
function. We use central differences for approximating the gradient
an the following observation for avoiding redundant computations:
The displacement map is defined using a bilinear basis functions with
compact support, i.e., each control points acts only on a neighborhood
w.r.t. to the control grid. This is a well-known property: our setting is a
simple case of a tensor product B-splines.

For the estimation of a partial derivative w.r.t one node using a finite
difference, this means that the summation (i.e., the discrete integration)
can be restricted to a local neighborhood: as all contributions away from
this neighborhood stay constant, they cancel in the finite difference.
Note that a similar argument applies in a continuous formulation.

As the gradient estimation dominates the computational cost for
minimization, this observation has a significant impact on performance,
because it “decouples” the resolution of the sampling grid from the
resolution of the grid of nodes controlling the displacement: The com-
putation cost is de facto bound by the significantly lower resolution of
the control grid. For additional speedup, we take advantage of paral-
lel computation for both, the summation over the whole domain for
evaluation the cost function and for the evaluation of partial derivatives.

We apply the following boundary conditions for the minimization:
all nodes must stay within the domain, and displacements – i.e., nodes
– on the boundary must map to a boundary point, i.e., they have only
one degree of freedom along the boundary curve. This ensures that the
displaced points stay within the domain. Displacements at the corners
of the rectangular domain vanish: corners remain corners. Note that
the latter condition is only meaningful if there are feature points such
as corners on the domain boundary curve (e.g., for a rectangle).

Note that the term B(p) that penalizes nonrigid behavior enforces
a smooth displacement and to some extent penalized non-bijective
displacements maps, i.e., “flipped” cells in the deformed grid. We
don’t see any need to add further constraints that guarantee a bijective
deformation of the domain (see also section ).

Finally, the computations required for the visual analysis and in-
terpretation (section 6.4), are straightforward: replace φi by ψi. We
sample ψi for computing ∇ψi and FTLE similarly as for computing
∇φi and FTLE from sampled flow maps φi.

7 RESULTS

7.1 Introductory example
We start the analysis of our method in comparison to the introductory
example in section 4, previously illustrated in figures 2–4. Figure 7
(top) shows D-FTLE of the optimal domain displaced flow ensemble
ψ1, ...,ψ50. We see a rather sharp ridge at the location x = 1, encoding
a strong separation. Further, we see that the ellipses of C on the
ridges have a strong expansion in the direction perpendicular to the
ridge direction, where the expansion parallel to the ridge expansion
is low. This encodes the strong uncertainty of ridge location, and
weak uncertainty of the strength of separation. Figure 7 (bottom)
shows the variance of domain displaced D-FTLE, in comparison to its
non-displaced version in figure2 (right column, second row). Figure
8 (top) shows the result for the ensemble E2. Here the ellipses of
C align with the ridge direction, encoding a strong uncertainty of
the separation strength but low uncertainty in the ridge location. For
reference, compare the variance of the domain displaced D-FTLE figure

8 (bottom) with the variance of the original D-FTLE figure 3 (right
column, second row). Figure 9 shows D-FTLE and its variance for the
ensemble E3. Here, we see no ellipses of C at all. In fact, all ellipses
are vanishing, indicating no uncertainty in ridge location and strength
of separation.

Fig. 7: The optimal domain displaced D-FTLE and its variance for
ensemble E1.

Fig. 8: The optimal domain displaced D-FTLE and its variance for the
ensemble E2.

Fig. 9: The optimal domain displaced D-FTLE and its variance for the
ensemble E3.
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7.2 Double gyre
We consider the double gyre data set from [SLM05b] that is defined as

f (x, t) = a(t)x2 +b(t)x (10)
a(t) = ε sin(ωt) (11)
b(t) = 1−2ε sin(ωt) (12)

vDG(x, t) = vDG(x,y, t) =

(
π Asin(π f (x))cos(πy)
π Acos(π f (x))sin(πy)

)
(13)

We use A = 0.1, ε = 0.25 and ω = 2π

10 . The data set is an interesting
test case because we can create different ensemble members by varying
t and τ . In fact, varying t results in ridges at different positions, as the
Gyres oscillate. Different integration times τ result in FTLE ridges
of different strength and width. Figure 10 shows an ensemble of
50 members with times in the range of t = −0.5,0.5 and constant
integration time τ = 11 of the Double Gyre.

Fig. 10: Double Gyre ensemble with τ = 11. Left column from top to
bottom: FTLE of ensemble runs with t =−0.5, t = 0, t = 0.5,.
Right column from top to bottom: D-FTLE, variance of D-FTLE,
FTVA.

Fig. 11: The optimal domain displaced D-FTLE and its variance for
the Double Gyre ensemble.

Figure 10(left column) shows the FTLE fields of the ensemble mem-
bers. The right-hand column of 10 shows standard uncertain FTLE
visualizations: D-FTLE, variance of D-FTLE, FTVA (from top to bot-
tom). They show broad and unsharp ridges which are nearly vanishing.
Figure 11 shows the result of our approach: D-FTLE and its variance
for the domain displaced ensemble members. We see sharp ridges,
encoding a strong separation. Along the ridges we observe different
kinds of behavior of the ellipses of C. In most regions they are rather
"thin" (i.e, having a strong aspect ratio). Further, in some regions they
are aligned with the ridge directions, while in other parts orientation is
perpendicular to the ridge direction.

7.3 Displacement example

To give further insight of the optimal domain displacement, we want
to give an example of the Double Gyre optimal domain displacements.
Figure 12 shows the difference of the domain alignments along the
ensembles. Note that ensembles closer to the median tend to have
smaller domain displacements too. The resulting domain displaced
FTLE fields are similar to the FTLE field of the selected median flow.

Fig. 12: Double Gyre ensemble with τ = 11. Left column from top
to bottom: Optimal domain displacement onto median flow φm with
m = 25 visualized as grid deformation: pm,1, pm,13, pm,m, pm,38, pm,50
Right column from top to bottom: Optimal displaced FTLE ensemble
member onto median flow 25: FTLE1, FTLE13, FTLE25, FTLE38,
FTLE50



7.4 Red Sea

We apply our method to all 50 members of the Red Sea Data set from
the SCIVis-Contest 2020 [Sci]. In particular, we take a closer look
at the south of the Red Sea and the Bab-el-Mandeb strait. Figure 13
shows the FTLE fields of the 4 ensemble members, revealing that the
ensembles are quite divers and different in some regions. The red sea
has a relative constant inflow through the Bab-el-Mandeb strait, the
differences are low in this region along the ensemble members. This
can also be observed in the magnified area of the Bab-el-Mandeb strait.
This changes drastically for the northern part where ensembles are
quite different. Those differences can especially be observed in the
magnified northern region of the Red Sea. Some showing low to no
seperation at all 13(top left and top right), while other show higher
seperation (bottom left) or even eddies (bottom right). We consider this
as an extreme case for our approach in trying to find alignments of the
ensemble members.

Fig. 13: Red Sea ensemble with τ = 48 which relates to an integration
time of two days. Top row from left to right: FTLE of the Red Sea
ensemble data set 1 and 2.
Bottom row from left to right: FTLE of the Red Sea ensemble data set
13 and 16.

Figure 14 (top left) shows D-FTLE for the ensemble members,
revealing a blurry image for most of the domain. This is predictable
due to the large differences among the ensembles, especially in the
northern part of the Red Sea. Nevertheless there are slightly better
results for the region of the Bab-el-Mandeb strait. 14 (top right) shows
the optimal domain displaced D-FTLE. It can be observed that there
is no improvement for the northern part of the Red Sea. As close to
zero alignment is possible in this region, our method gives equal results
to the standard method. Nevertheless it can be observed that in the
region of the Bab-el-Mandeb strait, alignment is possible resulting in
slightly sharper FTLE ridges. The bottom Images of figure 14 shows
the uncertainty of the underlying aligned D-FTLE fields. Those ellipses
underline the interpretation of higher uncertainty in the northern part
while ellipses aligning with the ridges in the Bab-el-Mandeb strait
describing more certainty of location than in seperation strength. The
magnified region is also showing a FTLE ridge covered by ellipses
aligning along it while those ellipses get brighter northwards, showing
a change of uncertainty in this direction.

Fig. 14: Red Sea data set with 50 ensemble members; (top left) D-
FTLE revealing different kind of ridges; (top right) D-FTLE of the
domain displaced ensemble members gives slightly sharper ridges than
(top left) especially in the Bab-el-Mandeb strait; (bottom left) D-FTLE
of the domain displaced ensemble members with ellipses of the C field
shown for FTLE values obove 18% and 25% (bottom right) of the value
range.

7.5 Wind data over the Indian Sea

We apply our approach to all 21 members of the Global Ensemble
Forecast System (GEFS) of wind flow. Although the data set includes
the whole earth, we are having a closer look at the wind flow close
to the Indian Sea. Figure 15 shows two FTLE fields of the (GEFS)
ensemble set which are distinct while showing similar structures. There
is also a difference in maximum separation strength between these two
ensembles recognizable by the range of color bars. Figure 16 (top)
shows D-FTLE for the whole 21 ensemble members. Due to the lower
number of ensembles and less variation than the data set of the Red Sea,
D-FTLE still produces reasonable images. Nevertheless most of the
ridges are blurry and tend to fade out rather quickly. We magnify the
region of the Philippines to take a closer look and compare our results
16(middle). Sharper ridges can be observed with our method not only
in the magnified area but the whole domain. The domain displaced D-
FTLE fields with ellipses (bottom) gives also insight about the amount
and source of uncertainty for each ridge. As most of the ellipses align
with the ridge direction, the source of uncertainty is dominated by
uncertainty in ridge separation strength.

Fig. 15: FTLE of ensemble member 1 and 2 of the GEFS data set.
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Fig. 16: GEFS ensemble with τ = 48 which relates to an integration
time of two days. From top to bottom: D-FTLE, optimal domain
displaced D-FTLE without ellipses, ellipses on FTLE values above
25% of the value range.

7.6 Performance
The computation times for the examples used in this paper are shown
in table 1. n denotes the number of ensembles while ψ Res. and p Res.
cover the spatial resolution of the flow and displace maps. Note, that
timings for the flow map covers the time to compute for all ensembles.
Same holds for p which shows the total compute time for all displace
maps. All images shown here were computed on a 10 times higher
resolution. As the computation of the optimal domain displacement is
a one time preprocess which can be saved for later use, one can create
higher resolution optimal domain displaced D-FTLE fields at a later
time.

Flow n ψ Res. p Res. ψ Time p Time
Steady DG 50 (75,150) (17,35) 0.25 sec. 2521 sec.
Unsteady DG 50 (75,150) (17,35) 0.25 sec. 2524 sec.
Red Sea 50 (112,112) (41,41) 3.02 sec. 15113 sec.
Indian Sea 21 (100,300) (21,61) 4.13 sec. 7564 sec.

Table 1: Runtime measurements for the different data sets that were
used. ψ Time is the time for a single iteration towards the optimal
domain displacement for a single flow map. p Time is the summed time
for all computations in order to find the optimal domain displacement
for all ensemble members. This depends on the maximum iterations
for the optimization which we set to 100. All measurements were taken
on a Ryzen 9 3950x 16-core processor.
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8 DISCUSSION

Alternative approaches. We propose to align flow maps. Instead,
one may consider standard methods for image alignment applied to
the FTLE fields of the ensemble members. Unfortunately, image-
processing approaches cannot be easily applied here: they are typically
based on the extraction and the alignment of point features in the image.
FTLE images, however, show curved features. Therefore, the proposed
flow map alignment gave more robust results than image-based FTLE
alignment or alignment of the flow map gradients.

Parameters. Our method requires some parameters: the weight
ρ determines the balance between alignment and rigidness (and also
smoothness) for computing the domain displacements. Figure 17 shows
a parameter study. In summary, we require a significant influence of
the rigidity term B. We chose a value of ρ = 0.2, which worked for all
examples. Small variations of ρ had no significant effect on the results.

Furthermore, we need to prescribe the grid defining the distortion.
The number of nodes defines the degrees of freedom of the displacement
function. As the displacements are expected to be smooth, this grid
size can be chosen independently from the data resolution. The choice
is also a balance between accurate alignment and computational cost,
which increases with the degrees of freedom. We chose 30–60 nodes
along the larger extent of the rectangular domains.

Note that we do not enforce bijective displacements by additional
penalty terms. Figure 17 shows “flipped” cells in the deformed grid
for small ρ , which results in a displacement mapping that cannot be
inverted. This may be a rare case for our choice of ρ , but it is a
perfectly possible case. However, our approach does not strictly require
a bijective deformation of the domain. We only evaluate the “forward”
deformation, but never the inverse.

3D case. We describe our approach for 2D flows. The extension
to 3D flows poses additional challenges to the general setting, the
numerical optimization, performance and finally also to the visual
representation. However, we do not see any fundamental issue that
prevents an extension of the approach to 3D. We leave the extension to
3D for future research.

Fig. 17: p1,50 for Double Gyre ensemble at τ = 11 with different
weights ρ for the smoothness term.
Left column from top to bottom: ρ = 0,0.2,0.4.
Right column from top to bottom: ρ = 0.6,0.8,1.
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