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Abstract

Finding projections of multidimensional data domains to the 2D screen space is a well-known problem. Multidimensional data
often comes with the property that the dimensions are measured in different physical units, which renders the ratio between
dimensions, i.e., their scale, arbitrary. The result of common projections, like PCA, t-SNE, or MDS, depends on this ratio,
i.e., these projections are variant to scaling. This results in an undesired subjective view of the data, and thus, their projection.
Simple solutions like normalization of each dimension are widely used, but do not always give high-quality results. We propose to
visually analyze the space of all scalings and to find optimal scalings w.r.t. the quality of the visualization. For this, we evaluate
different quality criteria on scatter plots. Given a quality criterion, our approach finds scalings that yield good visualizations
with little to no user input using numerical optimization. Simultaneously, our method results in a scaling invariant projection,
proposing an objective view to the projected data. We show for several examples that such an optimal scaling can significantly

improve the visualization quality.
CCS Concepts

* Human-centered computing — Visualization techniques; Visualization systems and tools;

1. Introduction

Despite the vast progress of Machine Learning techniques, visual
exploration by humans is still an inevitable tool for data analysis.
Mainly, this includes the identification of patterns and inherent struc-
ture, which allow for reasoning about the data and the process of
their generation. This poses significant challenges: First, the visu-
alization must be able to efficiently process and convey data that
appear in vast amounts, i.e., there is a huge number of records. Sec-
ond, we typically experience multivariate data with many dimen-
sions, i.e., each record stores a multitude of different attributes. In
this work, we focus on the second problem: The visual analysis of
high-dimensional multivariate data ultimately requires the synthesis
of a 2-dimensional picture. This means that a projection from the
high-dimensional data space to screen space is required.

There exists a variety of methods for the projection from high-
dimensional data spaces to low-dimensional ones. This is often re-
ferred to as dimensionality reduction. Typical examples include the
Principal Component Analysis (PCA) [Hot33] and metric Multi-
dimensional Scaling (MDS) [Tor52]. Dimensionality reduction al-
gorithms compute projections that are in some sense optimal for
the given input data. PCA, for instance, maximizes the variances
in the direction of the orthogonal principal components, which de-
fine the projection to the low dimensional space. MDS, in contrast,
minimizes the distortion of distances (strain) under the projection.

For the input data, each dimension represents some attribute,
which is often described by quantities or physical units. Typical ex-
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amples are element counts, lengths measured in meters, or weights
measured in kilograms. Here, data points like (10,0.2m, 1kg) and
(3,0.05m,0.5kg) live in a common 3-dimensional space. However,
it is unclear how one can relate two points, e.g., what is the distance
between these two points? Any metric or scaling seems arbitrary
unless all attributes represent semantically equivalent phenomena.
This is often not the case, even if attributes share the same physical
quantity or unit. For instance, extents like width and length can be
measured in meters, but it makes probably no sense to compare
them with a shipping distance. In summary, any choice of metric
for the high-dimensional space or scaling of the given dimensions
is typically arbitrary in practice. We also remark that it is difficult
to even use the concept of a vector space as there is no semantic
interpretation of linear combinations of data points.

The scale of dimensions is arbitrary and can be varied. Un-
fortunately, the variation of scaling affects the projection to low-
dimensional space, which depends on the scaled data. This effect
is often significant and results in a high variation of the generated
visualizations. Thus, scaling can improve or deteriorate the visual
analysis by exposing or hiding features of interest. This holds for
most dimensionality reduction method as they are variant to scaling.

The goal of this paper is to use appropriate scaling to explicitly
improve projections of multidimensional data. We treat the scaling
of the input data as a degree of freedom: its variation generates
different projection results. We aim at finding an optimal scaling
in the sense that certain interesting features in the data become
exposed in the 2-dimensional visualization. The idea is to compute
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Figure 1: Scaling dependence. Left: Three data points for which
pressure and rainfall are measured in different units. Depending on
the chosen units, different clusters occur. (a) three (or one) clusters
for pascal/millimeter. (b) two clusters for pascal/meter. (c) two dif-
ferent clusters for hectopascal/millimeter. Right: Different scalings
of the axes give different interpretations of the doublesine dataset.

a visually optimal projection for the given data w.r.t. a selected
visualization quality metric. This is an automatic process that uses
numerical optimization which explores the search space of different
scalings. The optimal scaling is invariant to the arbitrary initial
scaling of the given input data, and therefore, we can consider the
projection method applied to the optimally scaled data as scaling
invariant. We apply the three projections PCA, t-SNE, and MDS
which are pairwise combined with four different quality measures.

2. Introductory Examples

In this section, we provide some simple examples which emphasize
the effect of scaling the input data on the 2-dimensional visualiza-
tion as output.

Scaling 2D data changes interpretation. We first consider 2D
data, i.e., these examples do not employ dimensionality reduction.
Assume we are given weather data such that each row contains
one data point with two values for pressure and rainfall. We can
measure pressure, e.g., in pascal (Pa) or in hectopascal/millibar
(hPa), and similarly, the rainfall could be measured by a rain gauge
in meters (m) or millimeters (mm). Depending on the choice of unit
— and therefore the scaling of the pressure and rainfall axis — we
obtain different visualizations. Figure 1 (left) shows an example for
three data points. Note how the distribution of the data points in
2D screen space varies. Subsets of points that are located close to
each other but separated from other subsets appear as clusters in
the scatter plot. It becomes immediately obvious that the different
scales affect the number, location and separation of clusters. At the
same time, clusters efficiently convey information about different
classes of data points within the dataset. Assume that the colors of
the points are an additional label attribute. In this case, one may
prefer the scatter plot (a) which separates the different classes (here:
colors) best. The visual separation of classes is typically important
for the interpretation of the data. This example shows that scaling
can change the interpretation.

Even if a classification by clusters is not possible or not inter-
esting for a specific application, the following example shows that
scaling may change the reasoning about a dataset completely. Fig-

(a) (b) (c)

Figure 2: (a) Original data points (gray) and eigenvectors deter-
mined by the PCA. (b) New PCA applied to data points scaled by
2 in xy-direction. (c) Scaling the eigenvectors of the original PCA
in (a) by the same factor does not yield the eigenvectors in (b): The
PCA is not scaling invariant.

ure 1 (right) shows three visualizations of the same dataset (dou-
blesine): 168 points in 2D are plotted with differently scaled axes.
The square scaling is determined by a Min-Max normalization, re-
sulting in a scatter plot for which the points seem to be aligned on
a regular grid. The scales in the x| and x; axes are reduced in the
plots on the right and below, respectively. The scatter plots show
two different wave patterns: the first wave runs horizontally while
the second wave runs vertically.

Projection methods depend on scaling. We give an example to
illustrate how varying the scaling of the input can affect projection
methods. In this example, we show this for PCA which builds on
principal components. These are the orthogonal eigenvectors of the
mean-centered covariance matrix of the data. For dimensionality
reduction, the two eigenvectors corresponding to the largest eigen-
values define a 2D basis for projection. The rationale is that the
variance of the data is maximized in these directions, i.e., in some
sense, the projection incorporates the most significant information
encoded in the data.

Figure 2 visualizes a simple experiment where the PCA is applied
to a set of data points x; € R? and to diag(2, 1)x;. The principal com-
ponents computed for the scaled data differ from scaling the original
principal components. This becomes visually most obvious by the
loss of orthogonality due to scaling. Consequently, the output of the
PCA depends on the scaling of the input data, or vice versa: The
PCA is not scaling invaraint. We remark that this holds similarly
for alternative dimensionality reduction techniques.

Scaling changes visual structures under projection. The final
example shows projections of high-dimensional data. The Penguins
dataset in Figure 3 shows different projections by PCA with differ-
ent scalings, which was chosen by common scaling techniques as
indicated by the bars. A variation of the scaling leads to different
projections, which exhibit different structures in the scatter plots.
This scale dependence holds also for other, nonlinear projection
techniques. Nonlinear projections like t-SNE and MDS similarly
depend on the scaling of the input data.

3. Related Work

In this section, we review related work, in particular, projections
from high-dimensional spaces, the evaluation of their quality for
visualization, and approaches to achieve scale invariance.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



J. Dierkes et al. / Towards Scaling-Invariant Projections for Data Visualization 3of 12

Unscaled z-Score

Figure 3: PCA applied to two different scalings of the Penguins
dataset: the unscaled (Left) and z-Score scaled (Right) one. The

bar chart visualizes the scales for each dimension. The scatter plots
show the 2D PCA projection.

3.1. Dimensionality reduction and projection

Finding “good” projections from points in high-dimensional data
spaces to the 2D screen is a standard problem in different areas
of data analysis. There exists a variety of techniques with differ-
ent taxonomies, and an exhaustive coverage is beyond the scope of
this paper, see, e.g., the surveys [NA18,BSL*08, OKMM15, VDM-
PVdHO09, WL10]. Instead, we briefly review a selection of tech-
niques, which are representative in the sense that they facilitate the
introduction and classification of our objectives.

Automatic methods. These techniques aim to automatically find
optimal projections by linear or nonlinear optimization. Linear tech-
niques minimize a quadratic form, either by solving a linear sys-
tem or an eigenvalue problem. Examples are the Principal Com-
ponent Analysis (PCA) [Hot33], Fischer’s Linear Discriminant
Analysis (LDA) [Fis36], Metric Multidimensional Scaling (MDS)
[Tor52], and a variety of their variants (e.g., uncertainty-aware
PCA [GSS*20]). Examples of nonlinear techniques are Locally
Linear Embedding (LLE) [RS00], Maximum Variance Enfolding
(MVU) [WSO06], Local Similarity Preserving (LSP) [PNMLO8], Lo-
cal Affine Multidimensional Projection (LAMP) [JCC*11], Stochas-
tic Neighbor Embedding (SNE) [HRO3], t-SNE [vdMHO08], and
Uniform Manifold Approximation and Projection (UMAP) [MH18].
Each of these methods comes with several extensions and variants.

Besides the classification into linear and nonlinear methods, there
exist further taxonomies of automatic projections [NA18]. In con-
trast to non-supervised methods, supervised ones utilize class la-
bel information to construct the mapping: They aim to place in-
stances of the same class close to each other in the low-dimensional
space. A typical example is LDA. Other methods can be modi-
fied to become supervised, such as NeRV [VPN*10], t-SNE, MVU,
Isomap [TdSLOO], LLE, and LSP.

Automatic projections can be classified into single-level and
multi-level. Multi-level projections typically employ hierarchies and
operate in two steps by first building a hierarchical representation
of the data, and then mapping data from hierarchical levels to the
screen space. Examples of techniques that can be made multi-level
are LSP, SNE, LAMP, and Part-Linear Multidimensional Projection
(PLMP) [PSN10].
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Visual support for automatic projections. The methods men-
tioned above are automatic, i.e., they work without user interac-
tion. In recent years there emerged an alternative focus of intro-
ducing visual interaction with — or guidance of — the projection
algorithms. Moreover, visual techniques are used to analyze the
results of automatic projection methods. This combination of vi-
sual and automatic techniques is driven by Visual Analytics, where
a variety of theoretical models and frameworks have been pro-
posed [CBP09, EHM*11,KKE10,SSZ*16,SSS*14].

Several guiding scenarios have been identified [SZS*17] for
the interaction with automatic projection techniques: data selec-
tion (e.g., [JFSK15]), annotation and labeling [BNHL14, GRM10,
HSO07], data manipulation [JZF*09], feature selection [JZF*09,
ML 14], parameter tuning [CLKP10, SBVLKO09, Dri12,ML14], con-
straints definition [EHM*11, BNHL 14, DKMO06], and type selec-
tion [RL15,LWBP14].

Interactive projections. Interactive projections aim to find good
projections within a manual or semi-automatic process. The user
interactively varies projection parameters such as coordinate axes or
anchor points for each dimension. Each variation provides instant
visual feedback such that the user “manually” explores the parame-
ter space and the “quality” of a specific parameter configuration is
evaluated visually.

iPCA [JZF*09] is an example of a general map, which allows for
interactive visual data exploration using the PCA. It lets the user
scale the data dimensions prior to PCA projection and visualization
by a scatter plot, parallel coordinates, and a correlation matrix. In
addition, the system emphasizes the transitions caused by scale vari-
ation by fading out the previous visualizations. Our new method is
similar to the iPCA in that both methods scale the input data and
both apply PCA for projection. However, our goal is not an inter-
active visual exploration of the data, but instead a one-shot method
that provides a single, unique, in some sense optimal projection.

3.2. Criteria for good projections

Several criteria for the quality of a projection have been identi-
fied [NA18]: minimizing a certain energy function, excluding or
minimizing missing neighbors, excluding or minimizing false neigh-
bors, reproducing clusters in data space in the projection, describing
paths, discovering outliers, or evaluation of class compactness. Also,
the error function to be minimized may describe a certain measure
of distortion, such as Euclidian distance [BSL*08, Kru64, Sam69],
Spearmans correlation [SC88], or the Kullback-Leibler divergence
[HRO3].

Sedlmair and Aupetit [SA15] evaluate different measures that
assess the quality of scatter plots. The input is a set of projected
2D data points and associated labels that indicates the membership
in a cluster. The output is a scalar quality rating which indicates
how well the scatter plot conveys structure in the data including
the shape and separation of clusters. Our method applies three of
the best quality measures in a numerical optimization. Section 4
provides a more detailed review.

3.3. Scaling invariant projections

There exist well-known standard approaches in statistics to elimi-
nate scaling as a degree of freedom (see, e.g., [Flu97]): Whitening
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scales data dimensions such that the covariance matrix becomes
approximately the identity matrix. This, however, obstructs dimen-
sionality reduction as, e.g., for the PCA the different magnitudes of
covariance provide a measure for information content and define the
projection. Min-max scaling applies an affine transformation to each
dimension such that all data values are in the interval [0, 1]. Z-score
normalization, also known as standardization, scales variances of
all features to 1.

Dimensionality reduction depends on the notion of distance in
the high-dimensional space. Another option is to change the metric
which can be interpreted as a generalized scaling. For example, the
Mabhalanobis distance [Mah36] adapts locally to the data distribu-
tion and is scaling invariant. Finally, there exist sophisticated meth-
ods in statistics for selected projections like PCA, e.g.the Copula
Component Analysis (COCA) [HL14]. Purely statistical methods,
however, do not take into account data visualization as an ultimate
goal, whereas our approach evaluates the visual effect of scaling.

Besides these standard approaches, there are multiple "non-
trivial" solutions for the scaling problem. Lehmann and Theisel
[LT18] present a solution of the scaling problem to linear projec-
tion induced by star coordinates. They apply constrained Lloyd
relaxation [L1082] to the projected points, aiming to find the best
scaling such that the structures in the projected points are as regu-
lar as possible. This way, it is assumed that the perceived structure
is in the data and not due to unfavorable scaling. Another idea to
achieve scaling invariance is to exclusively consider ordinal data:
Only the order relation for each dimension is preserved, rather than
to retain the position or distances in Euclidean space. Examples
are [Kru64, DLH80]. While these techniques are trivially scaling in-
variant, the limitation to order relations also limits the applicability.

3.4. Further 2D Scaling Optimizations

Besides projections of data, there are further approaches concerned
with scalings of 2D data. In this case, the scaling problem is equiv-
alent to finding an optimal aspect ratio in scatter plots. Fink et
al. [FHSW13] propose to optimize the aspect ratio towards getting
properties of the Delaunay triangulation of the projected points, e.g.,
to maximize the minimum angle of the triangles, or to minimize the
square sum of the angles of the triangles. Talbot et al. [TGHI11]
minimize the arc-length of a certain representation in the plot.

4. Quality measures

We aim to find an optimal scaling by maximizing the quality of
scatter plots of the 2D projection. Sedlmair et al. [SA15] compare
multiple quality measures based on their respective predictive per-
formance on labeled data. While all of them are principally suitable
for our method, we select the three measures which achieve high
ranking scores. We also formalize a trivial fourth measure. This
section briefly introduces and reviews the four quality measures.

For each algorithm, the input is a set of 2D points that are par-
titioned into classes, i.e., each is associated with a label, such
that equally labeled points are assumed to be part of the same
cluster. In the following, xi...x, € R? denote the p 2D input
points. Furthermore, there are M distinct labels, i.e., a set of classes
€ ={cy,...,cm}. For each class ¢;, let C; denote the set of indices

of all points in ¢;, and |C;| is the number of points in ¢;. Let class(x;)
denote the class of point x;.

4.1. Distance Consistency (DSC)

The distance consistency (DSC), introduced by [MSHO09], computes
the score of separation of different clusters based on the class mem-
bership and distance to the nearest class center. For each point x;
where the closest cluster centroid differs from its assigned one, the
DSC value gets a penalty.

B Y? , CD(x;,class(x;))
p

DSC

with the centroid distance

0, d(x,centr(cj)) < d(x,centr(cy))

CD(x,c¢j) = Vk:1<k<M;k+#j

1, otherwise,

where d denotes a distance metric and centr(c) is the centroid of a
cluster c. A lower score represents a better separation of the classes.
The computational cost of the DSC is O(pM).

4.2. Class Density Measure (CDM)

The class density measure (CDM) was proposed by Tatu et al.
[TAE*09]. It evaluates the separation of different clusters for the
given input point set. For this, it sums the distances between all
pairs of points that belong to different clusters:

M

coM = ) Y, X [lpi—pill

k=1ieCy j¢C;

A higher output score indicates better separation of clusters, and
thus, a better configuration. The CMD score is invariant to rigid
transformation, i.e., rotation and translation, of the input p;. The
computational cost of CDM is O(p?). In contrast to [TAE*09], we
do not employ an additional discretization by rendering a density
image, i.e., p; are sample coordinates, not pixels.

4.3. Distribution Consistency (DC)

The distribution consistency (DC), introduced by [MSHO09], evalu-
ates the distribution of data points using gridded histograms. The
separation properties of the input points w.r.t. their labels are mea-
sured by binning the points and computing the entropy per bin. The
1D version creates bins over the x-axis, the 2D version additionally
over the y-axis.

The x and y-axes are partitioned into equally sized intervals of
size (h,0) € Rt x R*. These are the histogram bins. For the sake
of simplicity, we choose a number % and o such that the number
of partitions of the x and y-axis is equal. Let p? denote the number
of points of class ¢ inbin j, and p; =}, p;3 is the total number of
points in this bin. Then

HG) = — X Ziog,
ce?
is the entropy, which measures the average information content of
the bin i. H(j) = 0 holds if bin j has only points of one class, and
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H(j) =log, M if it contains equally many points of all classes. DC
sums the entropy over all bins and applies normalization such that
the output is within 0 and 100, which are worst and best results,
respectively:

— 1 : : 1 _ 100
J

DC is invariant to rigit transformations of the input points p;.

4.4. Data Space Ratio (DSR)

The data space ratio (DSR) captures the essence that points in a
scatter plot should use the available space and not be concentrated
in one region. The measure creates a grid over the plot with cell size
(h,0) € RT x R™ and counts the number of grid cells that are non-
empty. The value is normalized afterwards onto a range of [0, 100].
p;j denotes the number of points in bin j, n the total number of bins.
The measure is determined by:

DSR — 100% 22%8"Ps).
n

Since the DSR does not rely on labels it is also suitable for unsu-
pervised data. For fixed values of /& and o the runtime is O(p).

5. Problem statement

As shown before, the result of a projection method depends on
the scaling of the n dimensions. We consider the p data points as
a matrix X € R"*”, The scaling of the dimensions is given by a
vector kK = (ki,...,k,) € R" of scales k; # 0. Scaling the rows of
X is achieved by left-multiplication with the diagonal matrix K :=
diag(k) € R"*" to obtain

X = KX.

Assume that each dimension (or each row, likewise) represents
a physical quantity such as length or weight in a certain physical
unit. The quantities and their units are independent of each other
and possibly different. As mentioned in the examples, there may
be no canonical and/or semantically meaningful way to compare
values in different dimensions. Thus, the scales of the dimensions is
arbitrary. We interpret this scaling as a degree freedom that should
be eliminated.

Finding a scaling invariant projection requires to show that the
projection of X’ is independent of the choice of k. This means that
for any k the projected data differ only by an isometric transforma-
tion (rotation, translation) and possibly uniform scaling. We propose
to find an optimal scaling function of the initial data. This means
that, independently of the initial scaling, the exact same transformed
data are generated. Thus, the result of a projection method becomes
independent of the initial data scaling, too.

Definition 1 (Scaling Invariance) A projection is scale invariant
if there exists an “optimal” scaling function K(X) := diag(k(X)) of
the input data such that

KX)X = K(X)X
holds true for any data X and any scaling K with X’ = KX.
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Thus, our approach eliminates the scaling of the input data as
a degree of freedom. However, k is not uniquely determined — we
require additional constraints to effectively fix the scaling. This is
achieved by selecting and maximizing an objective function that
measures the quality of the scaling. For our purpose, this quality is
assessed from visual appearance of the projected data.

6. Method

In this section, we construct the following algorithm to find an
optimal scaling that determines our scaling invariant projection:

Objective. The input consists in a data matrix X € R"*” with data
points in columns, and each data point is labeled to belong to one
of the classes cy,...,cy represented as a vector ¢ € {1,...,M}?.
The output is an optimal scaling kK which determines the scaling
invariant projection.

In order to find R, we construct the following objective function,
which is then maximized: Let U = p(X) denote the projection to 2D
points represented as columns of U. Furthermore, let quality (P, c)
denote the evaluation of a scalar quality measure ¢ on 2D points P.
We define the objective function f(X,¢) = quality(nrm(p(X)),¢),
where P = nrm(U) scales the projected 2D coordinates to the unit
square such that the values in each dimension span the maximum
range of [0, 1]. The rationale of this 2D scaling is first to mimic the
appearance of typical scatter plots without scale information, and
second to effectively constrain the range of quality scores, and this
way, bound the objective. Note that nrm is applied after the PCA
projection: The PCA is affected by the data scaling k but not by the
normalization for quality assessment.

We maximize the objective to obtain the optimal scaling k as

k = argmax f(diag(k) X, ¢) ,
k

where the matrix product diag(k) X scales the rows of X, i.e. the
input points (see Section 5).

Numerical optimization. For the numerical optimization, we
apply the derivative-free, deterministic Nelder-Mead algorithm
[NM65] with efficiency improvements [GH12]. This standard al-
gorithm worked well for our examples. We use the implementation
in the Julia package Optim [MR18].

The multivariate search space is huge, and the objective func-
tion is non-convex and expected to have local maxima while the
true global maximum is unknown. Therefore, the numerical opti-
mization is likely to find only a local maximum. This is true for
any numerical optimization algorithm, and in particular for the lim-
ited budget of optimization steps or function evaluations, which is
limited in practice.

While the Nelder-Mead consistently yielded “good” (i.e., proba-
bly close to optimal) results in our experiments, the returned scaling
k often depends on the initial guess. Even for similar quality values,
the scalings that determine these values can differ significantly. To
avoid this kind of “noise”, we could either run the algorithm for a
large number of random initial configurations, or define a canonical
initial guess that determines the result. As the first option doesn’t
provide a guarantee, we favor the second one. More specifically, we
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Figure 4: DC for a varying number of histogram bins.

use the unique z-Score (see Section 3.3) as an initial guess for the
Nelder-Mead algorithm. Since the initial guess and Nelder-Mead
both are deterministic, our optimization always results in the same
scaling. Thus, our method fulfills Definition 1.

Parameters. The Nelder-Mead algorithm uses few parameters for
which standard choices apply. The DSC and CDM quality measures
are free of any further parameters. The DSR measure yielded good
results with the number of bins being 10, 000, with 100 intervalls per
axis. The DC measure requires a histogram bin size or the number
of bins, respectively (Section 4.3). It is certainly an option to find
the optimal number of bins when evaluating DC, however, this is
rather costly — and empirically, without significant benefit. In our
experiments, histograms with 100 bins showed good results.

We visualize the effect of varying the DC parameter in a parame-
ter study: Figure 4 varies the histogram bin size. It becomes evident
that the result of the DC significantly depends on the number of
bins as this also influences the average number of points per bin.
When increasing the number of bins, DC increases and approaches
its maximum value 100 in the limit. This indicates that the number
of bins shouldn’t be too large.

Runtime improvement. Our method is generally efficient and ap-
plicable for a large number of points p, given a decent performant
projection like PCA and performant quality measures like DC and
DSR. Other projections like t-SNE and quality measures like CDM
become a bottleneck. The worst case for the CDM is an approxi-
mately equal ratio of points per cluster, which results in a runtime
of O( pz). Therefore, its direct usage is not an option for large data.
We easily remedy this by approximating the resulting scaling from
a random subset of points per cluster. In this case, we prescribe a
constant total number of points and draw random samples per class
in a way that the ratios of class sizes are preserved. This results in
a runtime cost that depends only on the number of classes rather
than on the number of points. Our experiments show that a total
number of points in the order of 1000 already yields good results
(see Section 8).

7. Results

Scaling invariant projections. We applied our method to several
datasets. Table 1 gives an overview of the runtimes, Table 2 of the
quality measures. More datasets are visualized in the additional
matrials. Figures 6 to 9 show scatter plots of four datasets for differ-
ent projections (in rows) and scalings (columns): The first row use
the PCA, the second t-SNE with the perplexity = 50 and the third

z-Score DSR optimized

; 2 s . g 2 s 7

Figure 5: The Penguins dataset projected via a PCA onto 2D with
class labels obtained from a K-Means clustering with k = 3. The
data was z-scaled and optimized via our method using the unsuper-
vised DSR metric. The corresponding scaligns are shown below.

metric MDS. On each column — from left to right — the original un-
scaled data, standardized data (Z-score), and our scaling invariant
projections with optimized DSC, CDM and DC and DSR. The three
selected projections are common scaling invariant ones and are thus
a good fit for our application. The scatter plots are color-coded to
distinguish different labels.

The Palmers Penguins dataset [HHG20], visualized in Figure 6,
is a high quality alternative to the popular Iris dataset. It measures
different attributes of three penguin species from three islands in the
Palmer Archipelago, Antarctica, with the species being the classifi-
cation target. Utilizing the PCA, the three classes form clusters that
are coherent in the unscaled plot. However, they overlap severely.
One cluster in the standardized version is clearly separated, the other
two however are still overlapping. Our DSC, DC and DSR versions
solve this issue by separating these two clusters more clearly.

Figure 5 displays the z-Score and DSR optimized scaled PCA
of the Penguins dataset where the class labels were obtained via
the popular K-Means cluster algorithm and k = 3. Applying the
adjusted rand index (ARI) score, which measures the similarity be-
tween two data clusterings by correcting for the chance grouping
of elements, providing a value between -0.5 (no agreement) and 1
(perfect agreement), for each clustering and the ground truth yields
a value of 0.729 for the z-Scored scaling and 0.850 for the DSR op-
timized one. Our optimized scaling thus yields a significant better
result over the common practice, without even utilizing the under-
lying class labels.

Comparing the z-Scored scaling with our DSR optimized one
for the Penguins dataset in Figure 5 yields an interpretable result:
it tells us that the first two dimensions, culmen length and culmen
depth in mm, should be emphasized and the last two, flipper length
in mm and mass in g, should have less influence to optimize the
visual structures of the dataset.

The Galaxy dataset [Cle93] visualized in Figure 7, comprises
323 observations of radial velocity from a spiral galaxy. The mea-
surements contain information about the east-west and north-south
coordinates of these points, as well as angles in degrees and radial
position. The target value represents the velocity w.r.t. being above
or below a threshold (1593.62 km/s). For this dataset, the DSC opti-
mized scalings separate both clusters more clearly than the Z-score
scaled one in all projections. Furthermore, a new star-shaped struc-
ture is revealed (in the PCA as well as the MDS version), where

© 2025 The Author(s).
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Table 1: Datasets used in our experiments with their runtimes.

Dataset #instances  #dimensions  #classes  Projection DSC|[s] CDM|[s] DC][s] DSR[s]

Gala PCA 1.004 0.095 0.051 0.027
[ c1e);§] 323 4 2 TSNE 49001  49.4890  51.027  54.600
MDS 8.510 24.817 46.370  24.248

Palmers Penetins PCA 0.004 0.063 0.034 0.010
[HHG20] & 342 4 3 TSNE 73.240 56.130 53.999  60.109
MDS 13.900 24.052 26.160  29.450

Qualitative Bankruptc PCA 0.004 0.041 0.003 0.002
[KHO3] ptey 250 6 2 TSNE 35.481 26.322 28.034  32.690
MDS 11.743 15.509 4.661 4.271

Covertype PCA 1247.570 7.963 1327.69 1.318
(sampled to p = 1185) 581012 54 7 TSNE 2714.324 3195.874 2105.342 1003.827
[BD99] MDS 1608.229  739.392 1160.887 1389.492

Unscaled z-Score

PCA

TSNE

AN T

€(‘¥‘;.;

MDS
/
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Figure 6: Scatter plots of three different projections to 2D (rows) with six different initial scalings (columns) of the Penguins dataset. The
corresponding scaling of the initial data is displayed beneth them. The first two columns are common best practices for choosing a scaling

(none and Z-score), the other four are optimized for the given measure.

the data points seem to be located on lines through the origin. The
CDM separates both clusters almost linearly in the PCA and MDS
version. The other scalings do not seem to improve or worsen the
visualization. The DSR MDS one seem to suggest that the linear
structure present in the other scalings like the unscaled one is not
intrinsic to all dimensions.

The Qualitative Bankruptcy dataset [KHO3] in Figure 8 expresses
the bankruptcy status based on expert knowledge with 6 categorical
features, which we mapped to integers. PCA with the trivial scalings
in the first two columns cannot separate the two classes. In contrast,
our approach finds three more optimal scalings (for DSC, CDM and
DC) that provide a better distinction between the two classes. The
CDM t-SNE version suggests that the fifth dimension should be
emphasized, since the visual structures seem to better separate both

© 2025 The Author(s).
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clusters. The DSR and DC MDS version both seem to better distinct
both clusters emphasizing the third, fourth and fifth dimension.

Figure 9 shows the Covertype dataset [BD99], which classi-
fies forest cover types from cartographic variables. The Covertype
dataset itself is considerably larger than the other examples in this
work: There are 581012 observations with 54 different features (di-
mensions). The size of this dataset limits the performance of our
proposed algorithm. We address this by using a random subsam-
pling for the optimization (see Section 6), which yields good results
for the full dataset but in less than five minutes for the PCA and con-
sistently under one hour for the other projections. The seven classes
overlap significantly for the trivial scalings, whereas the visual sepa-
ration is improved by our method for the PCA DC and DSR version.
This is also reflected in the scores, the DC measure scored 65 for the
z-Scored and 71 for the DC optimized one. The DSR t-SNE version
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Table 2: Values of the Quality Measures.

DSC CDM DC DSR
(lower is better) (higher is better) (higher is better) (higher is better)
Dataset Projection  Initial Optimized  Initial Optimized  Initial Optimized  Initial Optimized
Gala PCA 0.567 0.548 23620 25510 63.4  70.5 0.027 0.030
[Cle);)é] TSNE 0.560 0.526 27157 36108 57.5 66.8 0.028 0.032
MDS 0.563 0.526 22640 24367 66.0 68.7 0.028 0.031
Palmers Peneuins PCA 0.362 0.029 15598 21027 740 950 0.033 0.034
[HHG20] & TSNE 0.348 0.020 22732 31656 51.7  98.6 0.015 0.033
MDS 0.363  0.053 16164 19384 51.7 957 0.014 0.034
Qualitative Bankruptc PCA 0.02 0.0 9589 14387 98.9 100 0.010 0.010
[EH03]V uptey TSNE  0.004 0.1 11558 16835 982 100 0012 0013
MDS 0.02 0.0 10114 12683 97.6 100 0.015 0.023
Covertype PCA 0.730 0.552 131610 210738 50.0 66.3 0.090 0.106
(sampled to p = 1185) TSNE 0.900 0.614 214930 225922 56.0 66.3 0.115 0.118
[BD99] MDS 0.790 0.513 143073 143194 50.3 61.9 0.098 0.102
Unscaled z-Score DSC DC DSR

PCA
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Figure 7: Scatter plots of three different projections to 2D (rows) with six different initial scalings (columns) of the Galaxy dataset. The
corresponding scaling of the initial data is displayed beneth them. The first two columns are common best practices for choosing a scaling

(none and Z-score), the other four are optimized for the given measure.

suggest another possile view on the data, avoiding the formation of
small blobs. The MDS one does not significantly improve. Since
t-SNE as well as metric MDS can not be efficiently computed for
the size of this dataset only the subset of 1185 points are plotted.

Performance. All examples were processed using a machine
equipped with an 8C/16T AMD Ryzen 7 5700G @ 4.673GHz
32GB RAM. We implemented our method in Julia and user par-
ticularly the Opt im. j1 [MR18] package, which provides the nu-
merical optimization algorithm (Section 6). For the optimization,
we set a tolerance of 108 indicating convergence and a limit of
100 iterations. Table 1 summarizes timings.

8. Discussion and limitations

Our results show that, given labeled input data with arbitrarily
scaled dimensions, our method computes unique and determinis-
tic —i.e., scaling invariant — projections. The visualized scatter plots
show that our projections often provide a better view and commu-
nicate more information than using simple ad-hoc scaling, e.g., by
data normalization. Three of the four measures were explicitly pro-
posed and recommended for the automatic analysis of visualiza-
tions [SA15], i.e., to visually reveal features like clusters in 2D
plots. Therefore, our method computes scaling invariant projections
that should be “optimal” for visualization: the goal is to provide
an expressive visualization as a single one-shot image. Our results
show that our method seems to reach this goal for the majority of ex-
ample datasets. However, for some datasets, there is no or no good

© 2025 The Author(s).
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Figure 8: Scatter plots of three different projections to 2D (rows) with six different initial scalings (columns) of the Qualitative Bankruptcy
dataset. The corresponding scaling of the initial data is displayed beneth them. The first two columns are common best practices for choosing
a scaling (none and Z-score), the other four are optimized for the given measure.
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Figure 9: Scatter plots of three different projections to 2D (rows) with six different initial scalings (columns) of the Covertype dataset. PCA
plots all points, t-SNE and MDS the random subset of 1185 points. The corresponding scaling of the initial data is displayed beneth them. The
first two columns are common best practices for choosing a scaling (none and Z-score), the other four are optimized for the given measure.

expressive separation of classes through 2D projection possible (see
the MDS projection of the Covertype dataset in Figure 9). This is
certainly a limitation of our method, which is probably inherent to
any method that uses projections to 2D. Finally, we think that using
our method is always beneficial: First, there is a fair chance that our
optimal scaling gives significantly better visualization than trivial
preprocessing like normalization at reasonable computational costs
(see the PCA projection of the Penguins dataset in Figure 6). Sec-

© 2025 The Author(s).
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ond, our method doesn’t give degenerate results, in particular, the
visualizations are always en par with trivial methods. Our method
can also only find structures that are intrinsic to the dataset, pro-
jection and scaling, we can not generate new structures (i.e., false
positives). Note that we do not make a claim that the method does
not introduce additional distortions. In fact, if the chosen quality
measure does not contain a part dealing with distortions, our algo-
rithm may minimize this at the cost of having more distortions than
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e.g. the original (unscaled or normalized) data set. We consider this
a desired behavior if the dimensions are unrelated, because the orig-
inal data and its scaling is an arbitrary choice. If the quality criterion
considers distortions, our approach will result in lower (or equal)
distortions than the original projection.

For the majority of our experiments, using DSC and DC as qual-
ity measures resulted in similar visualizations. For Covertype, the
use of CDM and DC yields significantly different results: the vi-
sualization using DC shows less structure in the shapes of clus-
ters. But also for few lower-dimensional datasets, the visual qual-
ity depends on the quality measure. Consider, e.g., Qualitative
Bankruptcy dataset: Maximizing DC for the PCA yields a perfect
score of 100 as all buckets contain only one class of points, i.e., the
histogram bins separate clusters perfectly. In comparison, although
the DSC score is not perfect, the result seems slightly better: classes
are effectively separated, and there is less spread than for DC. In
this case, DC seems limited as reducing the number of histogram
bins does not improve the results.

The generated scalings do not change singnificantly for some
datasets (e.g. the Covertype dataset), the resulting output of the
projections however do. This implies a certain sensitivity for each
projection and might be studied further in the future.

Our method is bound by the performance of the projection rather
than the quality measure. This can be remedied by random sub-
sampling (see Section 6). The CDM and DSR results for the PCA
shown in Figure 9 were generated this way in under 10 seconds with
only 0.2 % (i.e., 1185 points) of the data used and all 54 dimensions.
There was hardly any visual difference compared processing the
full dataset, for which the optimization took more than a day.

In some sense, the interactive iPCA [JZF*09] is similar to our
method: instead of defining an objective function and automatically
finding optimum by numerical methods, the user varies the scaling
of dimensions interactively and is provided with instant visual feed-
back from the PCA. This means, the user takes the perspective of
the multivariate optimization algorithm, where the objective func-
tion is “replaced” by visual perception, and the steps towards an
“optimum” (i.e.varying scale) is purely guided by intuition and/or
trial and error. Certainly, it is very unlikely that a user performs
similarly to a numerical multivariate optimization method. Even as-
suming perfect intuition, there is hardly any chance that the search
space can be sampled sufficiently even if there are only few dimen-
sions. However, finding an optimum is not the goal of iPCA: instead
of one single visualization, this method focuses on the process of
interactively and visually exploring the search space, i.e., the vi-
sual transitions that are implied by scale variation. In this sense,
our method could be used to provide a start configuration for iPCA
or possibly multiple start configurations from varying quality mea-
sures and their parameters.

Our approach certainly has limitations. We already mentioned
that not all datasets can be well-separated using only the scaling
as degree of freedom. There is another important limitation that is
inherent to the visual quality measures. First, DSC, CDM and DC
expect classified input data, i.e., there exists a class label for each
data point such that the optimal scaling is computed in a supervised
manner. This is a significant restriction on the input to our method.

J. Dierkes et al. / Towards Scaling-Invariant Projections for Data Visualization

Second, there are datasets, for which some or all quality measures
are not meaningful or there may be better quality measures.

Here is an example: In Section 2 we introduced the doublesine
dataset (see Figure 1, right). The 2D data points are not labeled.
Depending on the scaling of the axes, there is either no cluster or
one single 1-manifold cluster that appears either as a horizontal or
as a vertical sine wave. So all points are in one single class, and
we cannot apply CDM or DC. At the same time, there is no unique
ground truth for scaling as we cannot discriminate between the
horizontal and the vertical wave structure. This simple benchmark
dataset is challenging as we need to construct an appropriate quality
measure, and we need to deal with ambiguity. We leave this as an
open problem for future work.

9. Conclusions

We presented an approach to general scaling invariant projections
that is based on numerically maximizing the visual quality of a 2D
projection. For this, we build upon and adapt existing quality mea-
sures that are maximized by varying the scaling of dimensions. The
result is an optimal scaling and the resulting projection. We demon-
strate the utility of our method for various supervised datasets, and
show that first, we effectively achieve scaling invariance, second the
resulting projections show good visual separation of classes, and
third the method is efficient enough to process large datasets.

Our method is a first step towards scaling invariant projections
for data visualization. We see significant potential for future work:

A promising future research is to study the interdependence of
dimensions: In this work, we assume that all dimensions of the input
data are independent. This is often not true, but instead, dimensions
may be partially dependent such that scaling one dimension implies
scaling others. An example is a location tag with x and y coordinates:
We would expect that it makes no sense to scale or change the unit
of only one coordinate.

Finally, the scaling itself can be generalized: Instead of linear
scaling, i.e., by a constant factor per dimension, one could think
of selecting other scaling functions such as an exponential map or
a logarithm. One could compare the effect to visualizations using,
e.g., logarithmic axes such as a semi-log plot or log-log plot, to
cope with exponential behavior of the input data.
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Supplemental Materials

A file with four more visualizations of datasets is submitted in the
supplemental materials. They were omitted due to the space restric-
tions.

Except for the doublesine dataset (Figure 1, right), all datasets
considered in this paper are from publicly available data repositories
or papers. The creation of the doublesine dataset to explain scaling
dependence of 2D scatter plots is a contribution of this paper. The
doublesine dataset is part of the additional materials and will be
published with the paper.
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