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Abstract

Lagrangian coherent structures (LCS) is an important concept for the visualization of unsteady flows. They describe the bound-
aries of regions for which material transport stays mostly coherent over time which can help for a better understanding of
dynamical systems. One of the most common techniques for their computation is the extraction of ridges from the finite-time
Lyapunov exponent (FTLE) field. FTLE ridges are challenging to extract, both in terms of accuracy and performance, because
they expose strong gradients of the underlying field, tend to come close to each other and are dynamic with respect to different
time parameters. We present a new method for extracting FTLE ridges for series of integration times which is able to show how
coherent regions and their borders evolve over time. Our techniques mainly build on a particle system which is used for sam-
pling the ridges uniformly. This system is highly optimized for the challenges of FTLE ridge extraction. Further, it is able to take
advantage of the continuous evolvement of the ridges which makes their sampling for multiple integration times much faster. We
test our method on multiple 3D datasets and compare it to the standard Marching Ridges technique. For the extraction examples
our method is 13 to over 300 times faster, suggesting a significant advantage.

Keywords: visualization, flow visualization, scientific visualization
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1. Introduction

Flow visualization has established itself in different modern fields
as it can assist in understanding natural phenomena and optimizing
modern constructions. Examples are the investigation of air flow on
the Hong Kong International Airport [TCH10], the analysis of air
flow around revolving doors [SFB*12] or tracking the movement
of plastic pollution in coastal oceans [LDK*19]. One of the most
famous techniques for steady (i.e. time-independent) flows is the
vector field topology [HH91]. The output is structures which sepa-
rate regions of coherent flow behaviour. This means that integration
lines inside the flow on different sides of a separatrix repel from
each other. Finding and interpreting such separatrices and regions
with similar advection behaviour greatly assist in understanding a
flow and its dynamics.

This classical approach of vector field topology considers steady
flows. In most applications, however, flows are unsteady, i.e. time-
dependent. To deal with this, the concept of Lagrangian coherent
structures (LCS) was introduced [HYO0O0]. Its underlying idea is the

same as before: LCS are separating structures and thus define re-
gions for which material transport is coherent. They are connected
to the finite-time Lyapunov exponent (FTLE) which is a scalar field
measuring the stretching of local integration lines [HalO1]. Further,
LCS can be extracted as the ridges of FTLE fields [SLMOS5].

FTLE ridges are line structures in 2D and surface structures in
3D flows. While there is vast literature to compute FTLE fields in
an accurate, adaptive and fast way, only little work has been spent
on extracting the ridge geometry from FTLE fields. In 2D, this is not
a serious limitation, as the FTLE field can simply be visualized by
a height field or a colour coding, leaving the location of the ridges
to the human visual system. For 3D flows, however, this is hardly
possible due to the clutter present in 3D scalar fields. We argue that
especially for 3D flows, it is necessary to extract FTLE ridge ge-
ometry in addition to the FTLE scalar field to get a comprehensive
visual analysis of LCS.

Extracting ridges from a scalar field is a standard problem in im-
age processing, graphics and visualization. However, FTLE ridges
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Figure 1: Ridges extracted from the FTLE of the ABC flow at integration times (from left) T = 1, t = 3 and t = 5. The ridges are sampled by
a population of oriented particles. The underlying particle system allows for efficient sampling of ridges for a sequence of multiple integration
times. Visualizing how FTLE ridges emerge over time gives new insights into short- and long-term flow behaviour.

possess multiple properties which makes their extraction more com-
plicated. In particular, FTLE gradients increase and distances be-
tween ridges decrease exponentially with increasing integration
times [SJS20]. These problems hinder the efficient application of
standard approaches for FTLE ridges. This leads to the observation
that only few papers demonstrate the extraction of 3D FTLE ridge
geometry. To the best of our knowledge, all of them use or adapt a
standard technique called Marching Ridges [FPO1].

FTLE ridges evolve over time: they may move their locations,
become sharper and get closer to each other with increasing inte-
gration time. Doing so, moving FTLE ridges reveal temporal coher-
ence. The analysis of the evolvement of FTLE ridges is also part of
the visual LCS analysis, making it necessary to extract ridges not
only for a single FTLE field, but for a sequence of FTLE fields with
increasing integration times.

In this paper, we introduce a new particle-based approach to ex-
tract sequences of FTLE ridges for increasing integration times.
It is inspired by the work of Kindlmann et al. [KESW09] for 3D
ridge extraction in the context of medical imaging but has signif-
icant differences. First, Kindlmann er al. [KESWO09] use a scale
space approach, making a repeated smoothing of the input field nec-
essary. Due to the nature of the FTLE fields, this is replaced by
the consideration of FTLE fields with lower integration times. Sec-
ond, our approach uses temporal coherence to compute sequences
of FTLE ridges for increasing integration times. Third, we propose
a multitude of optimizations for decreasing the runtime and improv-
ing the accuracy for the specific properties of FTLE ridges. We
compare our approach with standard Marching Ridges for FTLE
ridge extraction and show a similar accuracy, but a significantly
improved performance for the computation of sequences of FTLE
ridges with speedup factors between 13 and more than 300, averag-
ing at over 100.

2. Related Work

This section explains relevant concepts and previous work about
LCS and their extraction as ridges of FTLE fields. In addition, we
briefly review particle systems for sampling implicit surfaces.

LCS: As mentioned, LCS are a famous concept for visualizing
dynamical systems. However, there is a variety of challenges, and

numerous publications focus on different aspects. Reviews on typ-
ical extraction techniques have been provided by Shadden [Shall]
and Haller [Hall5]. A well-established technique for the extrac-
tion of FTLE ridges in 2D and 3D is the application of March-
ing Ridges [FPO1] which adapts the well-known Marching Cubes
method [LC87]. The approach uses a rectilinear grid of a scalar
field (e.g. a FTLE field) and searches for positions on the edges
which intersect ridge structures. Sadlo and Peikert [SPO7] improved
this technique with an adaptive refinement of the FTLE sampling
grid. This makes the basic approach significantly more efficient.
Also, other methods for the adaptive sampling of FTLE fields have
been proposed [BT13, GGTHO07, HYX*20]. Another adaptation of
Marching Ridges by Schindler et al. [SFB*12] uses the Fast Fourier
Transformation for a scale-space approach. Sadlo et al. [SRP11]
consider the movement of FTLE ridges for increasing start times
in pre-defined boundary regions. They use grid advection to calcu-
late FTLE only in required regions. Lipinski and Mohseni [LM10]
take advantage of spatial and temporal coherence for tracing LCS,
but only treat 2D flows.

However, computational efficiency is not the only challenge.
Tang et al. [TCH10] tackled the problem of spatially limited do-
mains which can cause difficulties because of pathlines leaving the
domain over time. Wilde et al. [WRT18] focus on very long inte-
gration times with the challenges of extremely sharp and closely
located ridges in 2D. They also present the concept of ridge statis-
tics which can be interpreted to make quantified statements about
a dataset. Guo et al. [GHP*16] extend the idea of FTLE and LCS
to uncertain flows. Nguyen ez al. [NWMC21] provide a strategy to
find large-scale coherent structures in flows with turbulence, which
would normally lead to results that are hard to interpret or do not
provide useful information at all. With ongoing integration time,
FTLE ridges become sharp, their number increases and the distance
between two ridges decreases exponentially, as shown by Kuhn ez al.
[KRWT12] and Wilde et al. [WRT18]. Therefore, it is a challenging
task to extract the actual ridge geometry from FTLE fields. Nonethe-
less, they aim for an extraction of the complete ridge geometry. The
sharpness of ridges and their small distance is the limiting factor
in their approach. Furthermore, they stick to the 2D case and com-
pletely omit 3D flows. Sadlo and Peikert [SPO7] utilize the March-
ing Ridges algorithm in 3D to compute a set of triangles represent-
ing the ridges. In a post-processing step, a consistent orientation of
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these triangles should be established. This step failed in some cases
which led to non-orientable manifolds and therefore error-prone ge-
ometry. Schindler et al. [SFB*12] use different ridge concepts to
compute LCS surfaces in FTLE fields and especially take care of a
finite domain. They utilize the Marching Cubes algorithm to extract
the ridge surfaces and extend their approach to analyse the airflow in
revolving doors [SPFT12]. As with other approaches, they face the
problem of non-orientable surfaces and therefore have to cut back
their visualization techniques. Giinther et al. [GKT16] as well as
Rojo et al. [RGG20] use a Monte Carlo approach for the computa-
tion of ground truth FTLE ridges. Hofmann and Sadlo [HS21] apply
streak-based topology which can find FTLE ridges independent of
their distance to each other, with the drawback of false negatives.
Recently, Xi er al. [XLT23] incorporated a neural network to con-
trol the FTLE sampling and significantly reduce the computation
time. Monte Carlo approaches give impressive results for a quali-
tative visualization of FTLE ridges—unfortunately, the actual ridge
geometries are ignored.

Farticle systems: The usage of particle systems for surface rep-
resentation is a well-studied area of computer graphics. One of the
earliest contributions was made by Szeliski and Tonnesen [ST92],
who introduced a system of oriented and interacting particles to de-
fine new types of surfaces. This work laid the foundation for fur-
ther surface re-construction methods, such as those used for visu-
alizing implicit surfaces [WH94, Hec97]. Meyer et al. proposed
methods for sampling surfaces depending on the local curvature
[MGWOS5] and for sampling isosurfaces with high-order finite el-
ements [MNKWO7]. Another adaptation was made by Kindlmann
et al. [KESW09] for finding ridge and valley structures, also us-
ing a scale-space approach for finding structures of different scales.
This approach gained prominence in visualizing medical scan
data, leading to further adaptations and refinements [NJCBP*18,
LVHV*23].

3. Theoretical Background

In this section, we briefly review the relevant concepts which are
required for our methods. This covers the definition of FTLE and
ridges as well as particle systems for sampling and re-constructing
surfaces. For more detailed information, we refer to our references
in Section 2.

3.1. FTLE ridges

We will extract LCS as the ridges of the FTLE for which we pro-
pose a brief introduction. An unsteady n-dimensional flow is given
by a vector field v(x, t) which represents the velocity of a flow for
any position x € D C R” and time point7 € 7 C R. Using this, we
define the flow map ®; (x) which maps a position x, a start time 7,
and an integration time 7 to the resulting position of the integration
of v for a period t. In other words, it describes to which position a
massless particle seeded at (X, 7)) has been advected by the integra-
tion. Using the flow map, the scalar FTLE field E,g (x) can now be
defined as

s,;(x)=i|1n,/xmﬂx(vw) with V=Vl (x) (1)

|t

for v # 0. This definition uses the flow map gradient which is com-
puted numerically from finite differences of x. It calculates the max-
imum stretching of the gradient, i.e. the maximum separation of
the flow, which is scaled afterwards to counter exponential growth.
For positive integration times, large FTLE values indicate strong
repelling behaviour, for negative integration times, they indicate at-
traction.

One way to extract LCS from FTLE is to extract its ridges. There
exist different kinds of ridge definitions [Ebe96]. For this work, we
use the definition as generalizations of local maxima. Given a scalar
field s(x) with x € D C R", eigenvalues A; < --- < A, and corre-
sponding eigenvectors ¢y, ..., ¢, of the Hessian of s, then x is a
d-dimensional ridge point if

[er, . veid] Vsx) =0, Ay <0 )

holds, where 0 < d < n. In this work, we focus on the case d =
n — 1 which coincides to ridge lines for n = 2 and to surfaces for
n = 3. This reduces the conditions of Equation (2) to the dot product
(¢, Vs(x)) = 0 and A; < 0, which means that X is a maximum of
s in direction of the largest negative curvature. Beyond that, it is
possible to filter minor ridges by introducing a threshold A, < O.

3.2. Particle systems

Particle systems build on the idea of sampling surfaces by a set of
moving particles. We explain the concepts of constraining as well as
updating, creating and deleting them with the goal of an accurate and
uniform distribution. For this, we focus on sampling of ridge struc-
tures.

The first requirement is that particles can be constrained to cor-
rectly sample the surface. For the sake of determining the direction
to a closely located ridge, Kindlmann et al. [KESW09] use the gra-
dient g and Hessian H of the scalar field s at position X. A spectral
decomposition of H yields its eigenvalues A; < --- < A, and cor-
responding orthogonal eigenvectors ¢y, . . ., ¢, with unit length. For
finding d-dimensional ridges, the approximate ridge tangent T is
obtained as the sum of the projection matrices of the d largest eigen-
vectors. These matrices are computed using the outer product ®:

T:Zc,-@c,- with iefn—d+1,...,n}. 3)

i

The direction d, which points towards the ridge, is calculated as the
projection of the gradient:

d=d-T)g. (€]

A typical way to use this for constraining a particle to the surface is
to iteratively update its position using an adaptive step size until the
magnitude of d falls below a threshold.

Constraining a set of densely seeded particles is already able to lo-
cate ridge structures inside the domain. However, it is desirable that
surfaces are uniformly sampled to accurately represent the struc-
tures. This is typically accomplished by formulating the particle sys-
tem as a minimization task of a system energy E:

N

N
E=)E with E= Y E; 5)
i=1

Jj=Li#]
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The global energy E is the sum of the energies E; of all single parti-
cles. Further, E; is the sum of all inter-particle energies E;; between
the particle itself and all other particles in the system. Defining the
inter-particle energy is crucial for the desired behaviour of the sys-
tem, and thus, has to be designed carefully. We will use the tunable
smooth energy profile of Kindlmann et al. [KESW09] which has
multiple desirable properties for our use case. It is defined as

3d—1 3d—1)|r2 d—1)|r]?
1+ ( w)\rl _ X Z)M +( m})\f\ 0< Ir] < w,

w

¢(r) =d4d- 21[(\/‘\—11;)3 _ 3d(\r\—ur)2

(w—1)3 (w—1)2 w<|rl<1, (6)

0 1<|r

with standard parameters w = 0.6 and d = —0.002. The function
goes through the point (w, d) which defines its minimum. As par-
ticles seek to decrease their energy, this position significantly influ-
ences the most desirable distance between two particles. This energy
potential function can be used to define E;;, e.g. as

E;=¢(r;) = ¢<M>, )

o

which uses the scaled Euclidean distance between two particles.
This leads to positive energy for particles that are near each other,
negative energy when a neighbour is located a little further away,
and no energy at all if the distance exceeds the scaling parameter
o. As particles seek the position of most negative energy, this leads
to attracting and repelling forces towards the optimal position. An
exception is particles with a distance larger than ¢ which do neither
impact each other nor the global energy at all. Therefore, we will
refer to o as the local support range. Its application strongly sim-
plifies the computation of the global energy as particles outside this
range do not have to be considered.

Given that a set of particles is already located on a surface, the
next step is to improve their distribution. As mentioned before, this
is done in terms of minimizing the system energy E. A particle is
updated by advecting it in a direction which reduces its energy while
keeping it on the surface. Thus, its negative energy gradient —VE;
is calculated and projected onto the ridge tangent T with

N N

dE; dE:. x —x 1
VEi: ‘ZE: l_/: 47/1”. g
dx; = dx; -Z.||Xi—Xj||a¢(r/) &)

j=1i#j j=lli#j

The particle is updated to a position along the direction —TVE;
which has a lower energy. Iteratively updating all particles finally
results in a uniform distribution.

Above that, population control, which consists of creating and
removing particles, is also able decrease the system energy. Since
the energy profile ¢ also maps to negative values, adding more par-
ticles can trivially lower the system energy—under the restriction
of staying on the surface. Oversampled areas, on the other hand,
partially contain redundant particles which creates computational
overhead. The energy profile addresses this by positive values for
nearby particles. Therefore, deleting particles is also capable of de-
creasing the energy. Iteratively applying particle updates and pop-
ulation control increases the sampling step by step and results in a
well-distributed sampling.

4. Methods

We start with an overview of our method in order to give an outline
of the algorithm. Its main steps are then discussed in detail in the
subsequent parts of this section.

4.1. Overview

We construct a particle system for efficient sampling of FTLE ridges
for sequences of integration times. There are two main challenges:
First, the extraction takes more time as we extract results for se-
quences of multiple integration times. Second, accurately sampling
all ridges requires a large number of particles. In some cases, the
resulting population consists of several hundred thousand particles
(see Section 5.2). We use two strategies for increasing the efficiency:
First, we reduce the typical steps of a particle system by taking ad-
vantage of reusing results from previous integration times. Second,
we introduce an adapted distance measure for the energy definition
to significantly reduce the amount of required particles (see Sec-
tion 4.3).

Our particle system uses a uniform grid of FTLE values as input.
We apply multi-linear interpolation for re-constructing a continuous
FTLE field. This way, the FTLE values need to be calculated only
once as a pre-process, avoiding expensive calculations of the flow
map during the execution of our ridge re-construction algorithm. We
remark that using discrete FTLE fields is a common practice, and
we refer to other approaches listed in Section 2. In the following,
we will note this as the FTLE grid.

Besides the FTLE grid, we additionally introduce the popula-
tion grid and the initialization grid. Both may have a smaller res-
olution than the FTLE grid. The initialization grid is described
in Section 4.4. The population grid is utilized for efficiently sav-
ing and accessing nearby particles in a specific location. We use
a technique similar to Kindlmann et al. [KESW09]. Each parti-
cle is associated with exactly one (voxel) cell of the grid. Due
to the local support range o of the energy profile from Equa-
tion (6), all potential neighbouring particles can be found in vox-
els with a maximum distance of the requested radius. This pre-
vents redundant comparisons of particles in different parts of the
domain.

Algorithm 1 describes our particle system. The main steps are
illustrated in Figure 2. For each integration time step, we require
the corresponding FTLE grid. Every initPeriod steps we execute
a dense initialization of new particles and add them to the cur-
rent population (Section 4.4). Then, the whole population is con-
strained to the FTLE ridge surfaces. We present our constraining
method in Section 4.2, its concrete application is explained in Sec-
tion 4.4. After that, undersampled regions are extended by creat-
ing new neighbouring particles, and the population is updated using
the system energy (Section 4.3). Finally, the particles can be visu-
alized, which also requires the normal of the ridge surfaces at the
particle position. The normals are used to render oriented splats.
For a sufficiently large radius of these splats, they overlap which
visually ‘closes gaps’ in the point sets that represents the surfaces.
We visualize the strength of the separation using a colour coding
of the FTLE values for each individual splat. We emphasize that
in all of these steps, particles act autonomously. This enables a
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(a) Constraining

(b) Creating neighbors

NNV NIN

(c) Updating

Figure 2: Sampling a ridge surface (blue) in 3D space using particles (light blue). First, particles are constrained to the ridge (a). Then the
constrained particles create neighbours (green) in slices of their support range, which do not contain any particles (b). Last, particles update
their position based on attraction and repulsion forces of neighbouring particles (c).

Algorithm 1. Particle system for FTLE ridge extraction.

Input:

itSteps: Number of integration time steps

init Period: Periodicity of dense initialization of new particles
Prerequisites:

FTLE grids for all integration time steps

P <0
for step € {1, ..., itSteps} do
loadFTLE(step)
if step = 1 mod initPeriod v |P| = 0 then
7 <« initialize()
P« PUZL
end if
P < constrain(P)
P <« createNeighbors(P)
P < updateByEnergy(P)
N < normals(P)
F <« ftle(P)
visualize(P, N, F)
end for

> Section 4.4

> Sections 4.2 and 4.4
> Section 4.3
> Section 4.3

straightforward parallel implementation which significantly accel-
erates computation.

4.2. Constraining particles to FTLE ridges

Section 3.2 explains how Kindlmann et al. [KESWO09] use a parti-
cle system for sampling d-dimensional ridge structures. Some parts
of these methods are not practical for the search of FTLE ridges.
The main problem is their constraining approach. In Equation (4),
the approximate ridge tangent T is used, which is created by the
eigenvectors of the d largest eigenvalues. In case of ridge surfaces
in three-dimensional space, this means that a particle always moves
in the direction of the smallest curvature. This works fine for ridges
with a limited curvature when particles are already located nearby to
the ridge. In general, however, the same direction exhibits a positive
curvature further from the actual ridge, thus it might move in par-
allel to the ridge. For very sharp ridges—as in the case of FTLE—
the region for selecting the ‘correct’ eigenvectors is extremely thin.
Figure 3(a) illustrates this problem. In addition, their constraining
uses an adaptive step size which showed to be inappropriate for the
extreme gradients of FTLE fields (see Section 5.1).

For these reasons, we introduce a different approximation for the
ridge tangent. We order the eigenvalues |A;| < --- < |A,| with cor-

RN
AW
A
AR

>
Y

(2) Eq. (4) (b) Eq. (10)

Figure 3: Comparison of constraining methods in a 2D scenario.
(a) depicts the approach of Kindlmann et al. [KESWO09] and (b) our
own method. Red lines indicate ridge lines of the scalar field. Black
dots represent particles and black lines their trajectory by iterating
application of the respective direction. In (a), most particles move
parallel to the stronger ridge. This is prevented in (b).

responding eigenvectors ¢, . . ., ¢, of Hby their absolute instead of
their fotal value. Then the new approximated tangent T is calculated
using the d eigenvectors of smallest absolute curvature:

T:Zéi@;éi with ief{l,...,d} 9)
d=a1-Tg. (10)

This changes particles to move along eigenvectors of curvature with
largest magnitudes, oriented to increasing direction of the FTLE
field. The new behaviour is depicted in Figure 3(b).

To actually locate the ridges, we take advantage of the discretiza-
tion and interpolation of the FTLE field. The distance 6; between
two samples of the FTLE grid also limits the minimum distance
of ridges that can be distinguished and represented. Therefore, our
method sets the length of dto d;. Particles are moved step by step
until their direction flips. This can be checked by saving the last two
directions d. If their dot product is negative, then a ridge must ex-
ist between the last two positions of the particle. A bisection in this
segment is used to constrain the ridge location. The search can be
done by iteratively determining the gradient g,, at the centre point
m of the current segment and checking the sign of the dot prod-
uct (d, g,). This refines the segment up to an arbitrary precision.
Because of the multi-linear FTLE interpolation, this method safely
and accurately locates the nearest ridge.
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Figure 4: 2D example of inter-particle energy E;; from Equa-
tion (14) for s =2, 0 = 1 and x; = (0, 0) with ridge normal ¢, =
(0, 1). Particle position X; is represented by the x and y axes.

4.3. Energy definition and population mechanics

As explained in Section 4.1, our system produces a large number
of particles. The main reason for this is that the local support range
o has to be chosen such that particles of neighbouring ridges do
not interact with each other. FTLE ridges can be—and are also ex-
pected to be—located very close to each other, thus ¢ must not be
selected larger than the cell size §; of the FTLE grid. For this, we
adapt the definition of the inter-particle energy E;;. Our idea is to
stretch the Euclidean distance in direction of the ridge tangent by
a factor s > 1 which results in a modified metric with elliptic unit
balls. Its definition depends on the dimension d of the ridge struc-
ture. For d = (n — 1), i.e. a 2D ridge surface in 3D or a 1D ridge in
2D, let x; and x; be the particle positions on a ridge, r;; = X; — X;
their difference and H the Hessian of the FTLE field at x;. Further,
¢, is the unit length eigenvector of largest negative curvature of H.
This eigenvector corresponds to the normal of the ridge structure at
x;. Let a denote the angle in Euclidean space enclosed by ¢; and r;;.
We define our adapted distance y;; and its gradient as

sinzoz an
K

(e, 1;)? (ci, 15)?
=yl [+ (1= =5 ) 572 (12)
! ||l‘ij||2 ||1'ij||2

_ (s> —1)- (€, rij) - ¢+ 1y
s+ /Il + 67 = 1) (e, 1)

¥ij = Il -y cos? e +

We use this modified local distance measurement for a new inter-
particle energy E;; and the particle energy gradient VE;:

£;=¢(2) (14)
VE, = i % V¢ (2L). (15)

Figure 4 shows a plot of the inter-particle energy E;;. For our ex-
periments, we used the stretching factor s = 4. This change reduces
the number of particles drastically as larger neighbourhoods can be
achieved while still keeping the minimum distance §; to possible
neighbouring ridges.

Besides updating particles by their energy, a dense sampling re-
quires creating new particles for undersampled regions in the neigh-
bourhood of existing ones. For a good, uniform isotropic sampling,
we assume that a particle ideally has up to six neighbours. Thus, the
support region y;; < o of a particle i is partitioned into six equally
sized slices. Each of these slices can be checked for already existing
particles. In case of an empty slice, a new particle can be added tem-
porarily to the population. First, it has to be constrained to the ridge
structure. If this step already fails, the particle can immediately be
dropped. Otherwise, it is updated several times using its energy gra-
dient so that it adapts its position to the surrounding neighbours. The
particle is permanently added to the population only if £; < 0 holds,
which indicates an improved sampling quality. After that, the newly
created particle can check for new neighbours itself. The procedure
stops as soon as each particle was handled once, meaning that no
more new particles are added. Figure 2(b) illustrates this step. We
use the same energy check for the population constraining. As parti-
cles are never inserted if they would decrease the system energy, this
already prevents oversampling. Therefore, we can avoid a deletion
procedure for removing particles in oversampled regions, further re-
ducing the computational effort.

4.4. Initialization and iteration

The overall goal is to sample all FTLE ridges for a sequence of inte-
gration times. We start with the smallest integration time 7; and it-
erate over all remaining ones. The rationale for initializing particles
across the domain is to place at least one particle on every structure
which is not sampled already. For this, we use a regular initialization
grid. For each cell, a new particle is seeded in its centre, which can
be constrained using the steps from Section 4.2. Adding a small ran-
dom offset to the initial position has shown to contribute to a better
sampling distribution on the ridge structures.

This initialization must be performed for the first iteration. Addi-
tionally, new ridges emerge for increasing integration times, which
means that we also need to repeat this process in subsequent steps.
However, we can take advantage of several properties of how FTLE
ridges change for increasing integration time. First, they move con-
tinuously and slowly. Given that the difference between the cur-
rent and last integration times |t; — 7;_;| is sufficiently small, the
sampling for 7;,_; can already deliver many well-distributed parti-
cles in vicinity of the ridges for 7;. Thus, constraining the previ-
ous population can already provide a good sampling which pre-
vents extensive creation of new neighbours. Second, ridges become
sharper and move closer to other ridges with increasing integra-
tion time. This also means that they are weak and have a com-
parably large distance to other ridges when they evolve, which
makes them easier to find. As sharp ridges can easily be sam-
pled using the previous population, initialization is only required
to find these new emerging ridges. Therefore, the resolution of
the initialization grid can be coarser than for an extensive search
for all ridges so that less particles have to be constrained. Addi-
tionally, for most values t;, no new ridges develop. When a ridge
emerges, on the other hand, it is weak and small in size, i.e. less
relevant. Depending on |t; — 7;_|, it is reasonable to apply the ini-
tialization procedure only every few steps which again saves ex-
ecution time. In Algorithm 1, this is depicted by the parameter
initPeriod.
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When constraining the population (including particles from the
last iteration and initialization) to the ridges for 7;, they are inserted
into a new population to prevent interference of constrained and un-
constrained particles. For newly initialized particles, we track their
trajectory. If a particle moves more than two cells apart of its ori-
gin cell, the constraining is aborted. This prevents particles from
searching far-off ridges which will be found by closer particles. Af-
ter successful constraining, we apply the same steps as for temporar-
ily created neighbours (Section 4.3), which means that we update its
position by its energy multiple times and only insert it to the popu-
lation if E; < 0 holds. We have found empirically that tuning the en-
ergy profile (see Equation 6) with the energy minimum d = —0.02
is beneficial. This increases the influence of negative energies which
prevents overly strict denials of new particles.

5. Results

In this section, we compare our method to the standard Marching
Ridges [FP0O1] technique. Additionally, Section 5.1 features a com-
parison to the particle system of Kindlmann ez al. [KESW09] with-
out a scale space. Ridges are extracted from FTLE fields that have
been sampled on a regular grid as a pre-process. We remark that
Sadlo and Peikert [SPO7] present an application of Adaptive Mesh
Refinement (AMR) to Marching Ridges. It locates ridges for a com-
mon maximum cell resolution at a higher efficiency. We acknowl-
edge and discuss potential advantages of their adaptive method in
Section 5.6. However, such an extension with similar benefits may
be possible in the future (see Section 5.7). Therefore, we defer
the comparison of respective adaptive methods to future work and
instead focus our analysis on the underlying extraction methods,
specifically using regular FTLE grids.

We implemented all methods in C++ which are executed on a
system with 32 GB memory and an Intel Core 17-7700K CPU with
four physical cores (4.2 GHz each). The code used in this work
is available on GitHub at https://github.com/Daniel-Stelter/FTLE-
Ridge-Extraction. All methods take advantage of parallel process-
ing: For Marching Ridges, each cell can autonomously search for in-
tersections with the surface and create the corresponding triangles.
For the particle systems, each particle can operate autonomously.
We test the techniques on multiple datasets and compare their re-
sults with respect to runtimes, accuracy, visual quality and extrac-
tion for different sampling densities. For our method, we choose the
local support range as the distance between two FTLE samples, i.e.
o = &, and the stretching factor s = 4 (see Section 4.2). In all ex-
periments, the initialization and population grid resolutions both are
set to 1/8 of the FTLE grid resolution, and we use initPerid = 5.

5.1. Accuracy

For testing the accuracy of the ridge extraction methods, we con-
structed a ground truth dataset with concentric ridges (see Figure 5).
We applied Marching Ridges as well as Kindlmann’s and our parti-
cle systems to the dataset with 100 time steps and a spatial resolution
of 200°. For the 3D application, we added a third dimension with
constant values. Table 1 presents runtimes and error measures over
all time steps, and Figure 6 shows the extraction of the three methods
for the last step. Both Marching Ridges and our particle system reli-

sz y 2 1)
sz 9,2 1)

t=25

Figure 5: Plots of the synthetic time-dependent 2D scalar field
which is used for testing the accuracy of the extraction methods.
The scalar field shows ridges with exponentially decreasing dis-
tance and exponentially increasing sharpness over time.

Table 1: Runtimes and distance errors to closest ridge for Kindlmann et al.,
Marching Ridges and our system for the test dataset with 100 time steps (see
Figure 5).

Runtime [min] Max error Mean error
Kindlmann et al. 2873 1.62e-2 8.77e-4
Marching Ridges 565 1.25e-2 6.92e-4
Ours 7 3.93e-3 6.82e-4

1 1 ]
0 error 0.014 0 error 0.0043 0 error 0.0029

(a) (®) (©

Figure 6: Ridge extractions for Kindlmann et al. (a), Marching
Ridges (b) and our method (c). The colour mapping represents the
distance error to the closest ridge. Largest errors for Kindlmann
et al. come due to false-positives. For Marching Ridges and our
method the largest errors are few outliers on the boundary edges
of the domain.

ably find all ridges, with a bit smaller errors for our system. Besides
outliers, larger errors appear for the smaller rings with larger curva-
ture and smaller ridge strength. Our method is much faster, which
we trace back to the fact that our particle system takes advantage of
temporal coherence, as well as a sparser sampling. In fact, for the
last step, our method extracts 48, 142 particles, Marching Ridges
on the other hand creates 571, 728 triangles with 288, 308 vertices.
Kindlmann et al. produce very large errors and runtimes. Reasons
for the long runtimes have been discussed in Section 4 where we
explained our design decisions. This shows that their system is not
designed for such large population sizes (811, 098 particles for the
last iteration). The large errors come due to bad constraining, even
leading to false-positives for sharp ridges.

In Figure 7, we further investigate the constraining steps of both
particle systems on the 2D dataset. Kindlmann’s method suffers
from multiple drawbacks. First, particles in vicinity of sharp ridges
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Figure 7: Comparison of constrainings of Kindlmann’s (b) and
our (c) methods. Black points represent start positions of par-
ticles, grey lines are their trajectories through constraining and
green/orange points are their destinations (accepted/rejected).

move in parallel to the ridges, and thus, fail to find the ridge in
most cases. Second, we were unable to find a configuration for the
adaptive step size control described by Kindlmann et al. [KESW09]
which delivers reliable results for sharp ridges due to extreme
changes of the gradient. At the same time, many particles further
away do not even move towards the ridges as the gradient is too
weak. Third, the usage of the adaptive step size also results in a large
number of steps, increasing the computational effort. Our system, on
the other hand, reliably finds all ridges. Particles move towards the
ridges even if located further away. The only drawback is that our
particles also might move in parallel for less sharp ridges. However,
these ridges are still found by particles which are initialized closer
to these ridges.

5.2. Datasets

In the following, we applied our particle system and Marching
Ridges to FTLE field series of several flow datasets. Table 2 sum-
marizes setups and runtimes for all datasets.

ABC flow: The ABC flow [HalO1] is an analytical three-
dimensional flow with turbulent behaviour. For our experiments,
we used parameters A = 3, B =2 and C = 1. Figure 1 shows re-
sults of our particle system for three values of t. For a compre-
hensive visualization of all time steps, please see the accompany-
ing video. Figure 8 compares the results of the extraction of the
approaches for T,.. In Table 2, one can see that the runtime of
Marching Ridges was approximately 30 times longer than for our

(@

Figure 8: FTLE ridges for t = 5 for the ABC flow extracted by our
particle system (a) and Marching Ridges (b). The extractions for
both approaches produce similar results in terms of number and lo-
cations of the sampled ridges. Visualizing the extracted particle pop-
ulation with small splats (c) reveals a uniform distribution across
the sampled structures. Increasing the size of the splats leads to the
effect of smooth, visually continuous surfaces (d). Marching Ridges
extracts the same ridge surfaces with a triangulation (e), however,
in some locations, one can see step-like artifacts.

method. For Marching Ridges, we additionally observed that each
iteration approximately had the same execution time, i.e. its perfor-
mance is nearly independent of the integration time. Therefore and
due to time limitations, for the following experiments, we applied
Marching Ridges only for 7y, This single iteration can give an es-
timate for the total execution time for all integration times. At the
same time, we can still compare the final results of both approaches
qualitatively.

Double Gyre: The Double Gyre [SLMOS5] is one of the most
prominent benchmarks for testing FTLE 2D ridge extraction. It is
an analytical dataset describing two gyres with an unsteady, periodic
flow behaviour in the domain [0, 2] x [0, 1]. For our experiments,
we extend the dataset with a third dimension that contains different

Table 2: Setups for all flow datasets, together with runtimes for the pre-computation of the FTLE grid as well as for the ridge extraction using our particle
system (PS) and the Marching Ridges (MR) approach. Timings marked with a star (*) have been approximated (see Section 5.2).

Setup Runtimes (min)
1o Tmax itSteps FTLE resolution Domain FTLE PS MR Speedup
ABC 0 5 250 256 x 256 x 256 [0, 2] x [0, 27] x [0, 27] 9 58 1741 30
Double Gyre [0,10] 5 100 256 x 128 x 1280 [0, 2] x [0, 1] x [0, 10] 8 17 1692* 99.5
Half Cylinder 13 2 100 1152 x 384 x 192 [—0.4, 5] x [—1.4, 1.4] x [-0.45, 0.45] 77 11 3622% 329.3
CTBL 0 0.5 50 256 x 256 x 768 [4.5, 5.5] x [4.5, 5.5] x [0, 3.2] 7 101 1318* 13
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(W)

Figure 9: Ridge extraction for the 2D Double Gyre dataset. The
additional third dimension represents the start time ty. This enables
the user to interpret results for a varying start and integration time
simultaneously. For the animation of the integration time, we refer to
the accompanying video. Both our particle system (a) and Marching
Ridges (b) show results of similar quality.

start times #; in the interval [0, 10]:

—m Asin(w f(x, 2 + 7)) cos(w y)
v((x,y, 1), ) = | m Acos(m f(x, t) + 7)) sin(w y);l—ﬁ(x, to+1)|,
0

f@x, 1) = at)x* + b(t)x,

a(t) =¢ sin(wt), b(t)=1—2¢ sin(wt).

We use the parameters A = 0.1, @ = 0.27 and ¢ = 0.25. Due to
this adapted definition, we can visualize the dynamics of both the
start and the integration time. Figure 9 shows the results of the
particle-based ridge extraction (left) and Marching Ridges (right).
Please note that the third dimension depicts the varying start time for
the original 2D dataset. Both results are similar in quality—neither
method shows any significant advantage over the other one. How-
ever, we estimate that our method is approximately 100 times faster
than Marching Ridges.

Half Cylinder: This dataset stems from a numerical simulation
of an incompressible 3D flow around a half cylinder. The simula-
tion was executed with the Gerris Flow Solver [Pop04, BRG19].
As shown in the accompanying video, ridge surfaces evolve early
around the half cylinder itself. The larger ridge surfaces only evolve
after some time, which is one motivation for inspecting sequences
of integration times: We can observe after which time regions of
particles separate. Figure 10 presents the visual extractions, which
partly shows artifacts due to insufficient FTLE resolution for both
approaches. The typical solution for this would be to increase the
resolution of the FTLE grid.

Simulated Cloud-Topped Boundary Layer (CTBL): The CTBL
dataset is the result of a cloud-resolving boundary layer simulation.
It is courtesy of the German Climate Computing Center (DKRZ)
and the Max Planck Institute for Meteorology (MPI-M). The version
we use in this paper is provided by Giinther [GKT16] and contains
the simulation result re-sampled on a regular grid. The dataset de-
scribes a cumulus cloud convection simulation that used the UCLA-
Large-Eddy Simulation (UCLA-LES) [Ste13]. UCLA-LES model
solves specific equations for the prognostic variables of wind, lig-

(b)

©

Figure 10: FTLE ridges for the Half Cylinder extracted by our par-
ticle system (a) and Marching Ridges (b). In (b), large ridge struc-
tures in the centre show similar step-like artifacts as for the ABC
flow in Figure 8(e). We compare closeups for the region around the
half cylinder. (c) and (d) refer to our particle system with small and
large splats, respectively. (e) shows the result of Marching Ridges.
In the front region, both approaches produce surfaces without gaps.
However, the ridge structure is not entirely flat, which disturbs the
visualization for both methods. Directly above the half cylinder,
multiple ridges are close to each other, resulting in artifacts of flip-
ping particles and triangles.

uid water potential temperature, total water mixing ratio, rain mass
mixing ratio and rain number mixing ratio. The model focuses on
the study of detailed cloud dynamics on high spatial and temporal
resolutions. It is used for climate simulations, among other things.
The simulation domain is [0, 10] x [0, 10] x [0, 3.2]. The dataset
is challenging because it contains strong turbulence and chaotic be-
haviour, especially in the centre of the domain. We use a cutout and
restrict the xy-domain to [4.5, 5.5]> which enables an analysis of
this interesting part. The result of the last iteration for our particle
system is shown in Figure 11.

5.3. Sampling densities

For the ridge extractions, we rely on the following two samplings:
a spatial sampling for the FTLE grids and a temporal sampling
for the integration time series. We analyse the extractions for both
Marching Ridges [FP01] and our method with different resolutions,
based on the ABC dataset. Especially, the spatial tests enable to esti-
mate potential behaviours of respective adaptive versions (see Sec-
tion 5.6).
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Figure 11: Result of our particle system for the CTBL dataset. A
comparison to Marching Ridges can be found in the accompany-
ing video. We achieve a well-distributed sampling for the densely
distributed ridges, even in locations of strong ridges. Although the
domain contains a dense set of ridges, which counteracts meaning-
ful definitions of coherent regions, one can still interpret the flow
behaviour. For example, in the top regions, there are fewer and flat-
ter ridges, i.e. weaker separation. Additionally, most separations in
this section are horizontal. At the bottom, one can identify locations
of the largest FTLE values, and thus, the strongest separation, as
well as multiple vertical ridges.

Table 3: Runtimes for the ABC flow with different FTLE field sampling res-
olutions. Last runtime of Marching Ridges is approximated (see Section 5.2).

Runtimes (min)

Resolution Ours Marching Ridges Speedup
643 3 32 10.7
1283 14 242 17.3
256° 58 1741 30
5123 294 14 527%* 49.4

Table 3 and Figure 12 compare the runtimes and visualizations of
both methods for different spatial resolutions. For increasing reso-
Iutions, the runtime of Marching Ridges grows at a faster rate. This
might indicate that the particle system can take even more advantage
when implementing an adaptive version, with the ultimate goal of
extracting ridges with larger grid resolutions. As already observed in
Section 5.2, the extraction qualities of both methods are very similar,
even for varying spatial resolutions. Thus, we conclude that the par-
ticle system shows the potential for applying adaptive FTLE grids
in a manner similar to AMR Marching Ridges [SPO7].

For analysing the temporal resolution, we applied our method to
the ABC flow with five resolutions: 10, 20, 50, 100 and 250 (with

D. Stelter et al. / A Particle-Based Approach to Extract Dynamic 3D FTLE Ridge Geometry
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Figure 12: Extractions of our method (top) and Marching Ridges
(bottom) for different resolutions of the FTLE grid.

accordingly adapted values for initPeriod). Visual extractions and
numbers can be found in the accompanying video. The population
size for the final integration time stayed stable for all extractions,
actually with the most particles for the lowest resolution. Thus, we
conclude that our system reliably extracts all ridges, even when us-
ing lower resolutions for the integration time. However, this has the
following two drawbacks: First, low resolutions trivially provide
fewer information and less fluid animations; second, the quality of
the particle distribution is more uniform for larger resolutions as
particles attract and repel each other more often.

5.4. Visualization and sampling quality

Our particle system and Marching Ridges differ in various aspects
including their visualization techniques. Marching Ridges extracts
a set of triangles which can be visualized directly. Our method gen-
erates a set of particles, which we currently render as surface splats.
In regions of low surface curvature, this gives good visual results.
In some cases, this can even lead to a smoother surface visualiza-
tion than for Marching Ridges, e.g. for the large surfaces in the cen-
tre of Figures 10(a) and 10(b). Our system successfully achieves a
dense and uniform sampling of the surfaces, see Figures 8(c), 10(c)
and 11. However, in regions of high curvature or ridges that are lo-
cated close to each other, the visualized surface may appear discon-
tinuous, i.e. individual particles can be identified due to ‘gaps’ in-
between. Marching Ridges similarly suffers from artifacts of nearby
ridges, which can cause jittering triangles. Figures 10(d) and 10(e)
show these problems. These artifacts are due to undersampling and
a general problem of FTLE ridge extraction as the extraction signif-
icantly depends on the resolution of the FTLE field. For a fixed grid
resolution, ridges eventually come so close that they cannot be dis-
tinguished anymore. Additionally, the particle system requires a few
time steps to achieve a uniform distribution. Thus, lower temporal
resolutions lead to a little worse results.

5.5. Performance

One key advantage of our approach is its efficiency. In all of our
experiments, we clearly outperform Marching Ridges (see Sec-
tion 5.2). Table 2 shows runtimes and speedups for the flow datasets.
We gained the largest performance advantage for the Half Cylinder
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Figure 13: Relative runtimes for the stages of our particle system
for the Half Cylinder (HC), Double Gyre (DG), ABC and CTBL
flows. Datasets are ordered from small (left) to large (right) final
population size, which correlates to the runtime (see Section 5.2).

flow with a speedup factor of over 300. The smallest advantage was
obtained for the CTBL dataset, with a factor of 13. Note that these
are also the datasets with smallest and largest densities of ridges,
respectively. Figure 13 gives evidence that with increasing density
of ridges in the domain, the runtime proportions of population con-
straining shrink and of neighbour creation grow. In comparison to
Marching Ridges, we observed a mean speedup factor of over 110.
As shown in Section 5.3, increasing the resolution of the FTLE grid
increases our runtime advantage even further.

5.6. Comparison to AMR Marching Ridges

As mentioned before, Sadlo and Peikert [SPO7] extend standard
Marching Ridges with AMR. Albeit not comparing to their method
in detail in this work, we propose a theoretical comparison. AMR
Marching Ridges applies standard Marching Ridges iteratively to a
fixed integration time. In each iteration, the resolution of the FTLE
grid is locally increased in regions where ridges were found. The
procedure stops as soon as a pre-defined maximum resolution is
achieved. This prevents expensive FTLE computations in regions
where probably no ridges exist while achieving similar results to
standard Marching Ridges (with same maximum resolution). Thus,
in terms of visual quality and accuracy, our prior findings do also
apply to AMR Marching Ridges.

The runtime of AMR Marching Ridges can differ significantly
to standard Marching Ridges which mainly scales with the selected
grid resolutions. The AMR method, on the other hand, highly de-
pends on the existing FTLE ridges inside the domain. It can take
most advantage in cases with many empty regions as large parts
of the domain will only be sampled sparsely. Contrary, standard
Marching Ridges and our method always pre-compute dense FTLE
grids for all time steps. This advantage of the AMR method can
certainly achieve comparable or even better runtimes than our par-
ticle system, e.g. for the Half Cylinder dataset. However, the usage
of AMR also creates an overhead as it uses multiple iterations, each
testing for ridges and controlling further sub-divisions. Beyond that,
AMR also computes samples of the FTLE field on runtime. Since
their method has to extract ridges for each integration time step in-
dependently, common parts of pathlines may be computed several

times. This is computationally expensive and further increases the
total runtime. Thus, AMR shows conceptual disadvantages for an
application to series of integration times. For flows with many FTLE
ridges (e.g. the CTBL dataset), AMR might even be a disadvantage.

As described, the AMR application in Sadlo and Peikert [SP07]
is not ideal for iterating over multiple time steps. A meaningful ap-
plication requires additional mechanics for dynamically increasing
or decreasing grid resolutions depending on ridge movements over
multiple iterations. The general idea of adaptive FTLE sampling in
regions where ridges exist can also be transferred to our particles.
We see such advancements as a challenging, but solvable problem
for future work.

5.7. Limitations and future work

The main limitation for our approach is the same as for many ap-
proaches to the extraction of FTLE ridges: It strongly depends on
the discretization of the FTLE grid. In Section 5.4, we discuss the
existence of artifacts for regions with closely located ridges. Previ-
ous work has shown that implementing adaptive ridge extraction can
greatly improve accuracy and decrease runtimes [SPO7, BT13]. As
discussed in Sections 5.3 and 5.6, we are convinced that our method
can also be extended to incorporate AMR. However, this extension
is not trivial as our constraining method not only depends on the
FTLE grid resolution but also on the temporal one: Adaptation re-
quires a strategy for refining the FTLE grid over increasing integra-
tion time. This poses a reasonable challenge.

Other possible areas of improvement include visualization and
ridge filtering. We see potential to improve the sampling quality
for newly emerging ridges. However, one has to find a balance be-
tween quality and performance. Another idea is to apply clustering
for extracting not only a population of particles, but a set of distinct
ridges. This offers multiple chances, e.g. filtering and outlier detec-
tion, which can improve the results by removing less relevant ridges
or artifacts. Another idea is replacing direct particle visualization
with splats by surface re-construction that generates a triangulation.
This may help to prevent problems as shown in Figure 10(d).

6. Conclusions

We presented a new method for the extraction of FTLE ridge ge-
ometry in three-dimensional space, i.e. we generally re-construct
two-manifolds in 3D. Our approach utilizes a particle system and
allows for efficient re-construction of ridge surfaces at sequences
of multiple integration times. Visualizing the evolution of ridges
over time reveals more of the flow dynamics and gives a better in-
sight into the data and their interpretation and understanding. As our
method ‘reuses’ information collected at earlier integration times,
it is efficient for generating time series of ridges. This is the main
advantage over the standard Marching Ridges [FPO1] techniques:
Our experiments show that our method performed significantly and
consistently faster. We see various directions for future work like
improving the visual representation, e.g. by using appropriate clus-
tering methods, or increasing accuracy as well as performance by
extending the particle system towards an adaptive sampling that is,
e.g. guided by local curvature or distance to other ridges.
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