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Abstract. In this paper we show that some important geometric
modelling and geometric optimization problems related to implicitly
defined algebraic plane curves, such as locating the singular points,
the points of characteristic curvature, as well as computing the Eu-
clidean distance from a point to a curve and computing the maxi-
mal/minimal distance between two curves, may be efficiently solved
using subdivision schemes and range analysis. The proposed algo-
rithms are efficient and robust using a finite arithmetic, even in the
case that the curves considered have singular points of high multi-
plicity and/or very close branches.

§1. Introduction

Implicit curves are very useful in trimming operations on parametrically
described shapes such as the representation of the intersection of two para-
metric surfaces or the representation of the silhouette edges of a paramet-
ric surface with respect to a given view (see [23]). There are also several
CAD, CAGD and computer graphics problems where tracing an implicitly
defined algebraic curve on a plane region is of great importance (see [1],
[13], [14]).

During the nineties, several authors (see [4], [6], [23], [24]) introduced
range analysis criteria to test if an implicitly defined algebraic curve does
not pass through a rectangular plane region, and applied it to render
implicitly defined algebraic curves.

In this paper we present efficient solutions to several interesting prob-
lems using these tests. First we consider the problem of locating the inter-
section points of implicitly defined algebraic curves. Later we show how
this result may be used to solve other important geometric problems such
as locating singular points and points of characteristic curvature, as well as
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computing the Euclidean distance from a point to an algebraic curve and
computing the maximal/minimal distance between two algebraic curves.

The algorithms presented use a finite arithmetic and are simple, effi-
cient and robust even in the case that the curves considered have singular
points of high multiplicity and/or very close branches.

§2. Preliminaries

A plane algebraic curve is the set Z(f) of points satisfying the polynomial
equation

f(x, y) =
d

∑

i=0

d−i
∑

j=0

fijx
iyj = 0, (1)

where d is the degree and fij the coefficients.
Rendering an implicit algebraic curve in a grid of pixels is of great

interest in CAD, CAGD and computer graphics. A general subdivision
procedure that provides a method for drawing an implicitly defined alge-
braic curve on a grid of pixels (or even higher resolution) may be described
as follows.

Given any test to check if a curve does not pass through a square region
(see [18] and the references therein), apply this test to the plot area as an
initial cell, if it is not rejected, then subdivide the cell into smaller squares
and apply recursively the test, until the lengths of the sides of the squares
become smaller than any prescribed magnitude ε > 0 (for instance the
length of a pixel side, in the computer graphics case).

Range analysis provides a general test for rejecting cells at each sub-
division step: interval arithmetic, affine arithmetic, Berstein coefficient
method, Taubin’s method, Rivlin’s method are some of the most common
sources for range analysis. A comparison of the efficiency and performance
of different function range interval methods for plotting implicitly defined
algebraic curves is presented in [18].

§3. Intersection Points of Algebraic Curves

The problem of computing intersection points of algebraic curves has been
previously considered in the more general setting of finding the solutions
of a system of n polynomial equations (2).



















f1(x, y) = 0
f2(x, y) = 0
...
fn(x, y) = 0.

(2)
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One approach, for instance, uses multivariate Stürm sequences (see
[19], [21]). Another approach is based on U-Resultant schemes (see [15],
[16]), but they are very expensive to compute for a set of equations of
arbitrary high degree.

In this section we describe a procedure for computing the intersection
points of n algebraic curves in a square region R, using subdivision schemes
and range analysis.

The algorithm begins by applying a recursive subdivision method based
on range analysis (see Section 2) simultaneously to the curves {f1, f2, . . . ,

fn} in the square region R. In each step, only those square regions satis-
fying the test for all curves are considered for the next subdivision step.
The output is a set of small square regions with side length smaller than
a previously prescribed accuracy ε > 0 (pixels, in the computer graphic
case). These small squares contain all the intersection points and their
centers provide us approximations to the exact intersection points of the

curves, since with an error no greater than
√

2ε
2

, these centers are on all the
curves {f1, f2, . . . , fn}. Hence, an approximate solution to the problem
of computing the intersection points in a square R of a set of n algebraic
curves may be the following: given a prescribed accuracy ε > 0 (ε equal to
the length of a pixel side, in the computer graphics case), apply a recursive
subdivision method based on range analysis simultaneously to the curves
{f1, f2, . . . , fn} in the square region R, obtaining a set of small square
regions with side length no greater than ε containing all their intersection
points in R, and propose the centers of these small squares as approxima-
tions to the exact intersection points. In the generic case, the number of
subdivisions k required to obtain approximations to the exact intersection
points with an error smaller than ε is

k = [log2(l) + 1 − log2(ε)]

if the length of the side of the square R is equal to l.
Unfortunately, applying this simple method does not always lead to

good approximations to the exact solution. When the curves do not inter-
sect transversely, or if they have very close branches, more that one small
square is found representing each intersection point hence, the solution
must be refined (see Figure 1).

Clusters of small squares may appear around intersection points, and
since the intersections points of a generic set of algebraic curves are iso-
lated, we propose a simple strategy to select good approximations to the
exact intersection points contained in each cluster.

Considering the centers of the small squares obtained as result of the
subdivision process, we construct a set of clusters {CCi} as follows: One
center of the small squares will belong to one cluster CCj if its distance
to at least one of the other points in CCj is less or equal to 2ε, where ε is
the previously prescribed accuracy.
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Fig. 1. Curve intersection (a), zooms in the neighborhood of P1 with k = 8, 9
and 10 (b). As k increases, the size of the clusters diminishes.

Then, the sum of the Euclidean distances Sdik from the centers of the
small squares pik contained in each cluster CCi to each of the involved
curves {f1, . . . , fn} is computed. Finally, the center of the small squares
pik̂ which minimizes Sdik is selected as the best approximation to the
solution. Assuming that the set of curves {f1, f2, . . . , fn} does not have
a common component, after Bezout’s Theorem for ε → 0 the obtained
approximations to the intersection points converge to the exact solutions.

It is clear that if ε is sufficiently small, then even using approximations
to the Euclidean distance to compute Sdik, the points pik̂ that minimize
Sdik are good approximations to the exact solution.

There exist in the literature some approximations to the Euclidean
distance (see Section 5). As the points pik are very close to the curves, we
may use the one proposed by G. Taubin [24] given by the expression

d =
|f(x, y)|

||∇f(x, y)||
·

Our numerical experiments show that this is a good choice in most cases.

Of course, the more precision is required, the greater number of sub-
divisions are needed and the amount of points in each cluster grows. In
all numerical examples we found that, within the usual precision required
for CAD and CAGD problems, the computational cost is reasonable (see
Sect. 6). Alternatively, we may use the approximations obtained in this
way as a good initial approximations for any robust method to solve the
nonlinear system (2).
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§4. Locating Characteristic Points

Each curve has a set of characteristic points where it has a distinguished
geometric behavior. Among these points are the singular points, the points
with curvature 0 and the points attaining extreme values of the curvature.
In this section we show how the problem of finding these points may be
presented as a curve intersection problem, and thereby solved using the
algorithm described in Section 3.

4.1. Locating Singular Points

A point p on an algebraic curve f(x, y) = 0 is called singular if both partial
derivatives fx(x, y) and fy(x, y) vanish at p. To find the singular points
of an algebraic curve f(x, y) = 0 we must be able solve efficiently the
nonlinear system of equations







f(x, y) = 0
fx(x, y) = 0
fy(x, y) = 0.

(3)

We propose to find the solutions of system (3) locating the intersection
points among the algebraic curves {f = 0, fx = 0, fy = 0} (see Section 3).
Observe that in the case of singular points with high multiplicity, these
three curves may not intersect transversely, nevertheless, the proposed
method shows a good performance (see Figure 2).

4.2. Locating Points of Characteristic Curvature

A regular point p on an algebraic curve f(x, y) = 0 is considered as a
point with characteristic curvature if the curvature k(x, y) given by the
expression

k(x, y) =
fxxf2

y − 2fxfyfxy + f2
xfyy

(f2
x + f2

y )3/2

is 0 or attains a relative extreme value in this point.
The points on a curve f(x, y) = 0 where the curvature k(x, y) is 0 may

be computed as the solutions of the nonlinear system of equations

{

f(x, y) = 0,
kn(x, y) = 0,

(4)

where kn(x, y) is the numerator of k(x, y).
On the other hand, the points attaining extreme values of the curvature

are the solutions of the nonlinear system

{

f(x, y) = 0,
dkn(x, y) = 0,

(5)
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where dkn(x, y) is the numerator of the differential of the curvature k(x, y)
given by

dk(x, y) = fxky − fykx,

where fx, fy denote the partial derivatives of f(x, y) and kx, ky the partial
derivatives of the curvature k(x, y).

The curves kn(x, y) = 0 and dkn(x, y) = 0 are also algebraic curves of
degree O(3d) and O(6d), where d is the degree of f . Though, to compute
the points with curvature 0 and the points attaining extreme values of
the curvature in a region R is equivalent to locate the intersection points
between the algebraic curves {f = 0, kn = 0} and {f = 0, dkn = 0}
respectively, in that region (see Section 3). In both cases, as a result
we will obtain all the points on f = 0 contained in R with characteristic
curvature, as well as the singular points (see Figure 2). Observe that some
of the curves involved do not intersect transversely or possess very close
branches. Nevertheless, the proposed method performs well (see Figure 2).

§5. Euclidean Distance

There are several practical problems arising from computer graphics, com-
puter vision, pattern recognition and computational mechanics, where it is
necessary to compute the Euclidean distance from a point to an arbitrary
algebraic plane curve, as well as the coordinates of the footpoints.

Another interesting problem is to compute the maximal/minimal dis-
tance between two algebraic curves and the coordinates of the points where
it is attained.

5.1. Computing the Euclidean Distance from a Point to an
Algebraic Curve

The problem of computing the Euclidean distance from a point q to a curve
C may be stated as the following constrained nonlinear global minimization
problem:

d(q, C) = min{‖p − q‖ : f(p) = 0} (6)

More geometrically, the Euclidean distance from q to C is attained at
a point p on C, such that the normal of C at p passes through q (see
Figure 3).

This problem is, in general, very difficult to solve. The already known
works on this subject can be classified into two groups, those which offer
a closed formula to compute approximations to the Euclidean distance
([24]) and those which provide an algorithm to compute the footpoints
([8],[9],[10],[12]).

Some of this methods have the disadvantage that they do not give good
results if the external point is not close to the curve, or if it has more than
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(1a) f = 0, fx = 0, fy = 0 (1b) f = 0, kn = 0 (1c) f = 0, dkn = 0
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(2a) f = 0, fx = 0, fy = 0 (2b) f = 0, kn = 0 (2c) f = 0, dkn = 0

S - Singular points of f = 0.
I - Points on f = 0 where the curvature is 0.

K - Points on f = 0 attaining extreme values of the curvature.

Fig. 2. Locating Characteristic Points.

one footpoint. Also some of them just compute an approximation of the
distance without giving us the coordinates of the footpoints, which may
be also useful in many situations.

Now we describe a simple procedure to compute the footpoints that
applies to any algebraic curve, and does not requires initial conditions
related to the location of the external point.

If we have the curve represented by its implicit equation f(x, y) =
0, then the coordinates (x, y) of the points on f attaining the relative
extremes values of the distance from an external point q(x0, y0) to the
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q

p

C

Fig. 3. The orthogonal projection of q.

curve as well as the singular points, may be computed as the solution of
the following nonlinear system of polynomial equations

{

f(x, y) = 0
fN (x, y) = fy(x, y)(x − x0) − fx(x, y)(y − y0) = 0.

(7)

Then it is easy to select among these points those that give us the global
minimum (6) of the distance from each point to the external point q.

In order to compute the solutions of system (7) we propose to locate
the intersection points between the algebraic curves f and fN (see Section
3) in a square region R(q, 2D) centered in the external point q with side
length twice any upper bound of the Euclidean distance from q to f (see
Figure 4). This upper bound D may be easily obtained, for example,
computing the distance from q to any point on f .

5.2. Computing the Extremal Distance Between Two Curves.

In this section an algorithm for detecting pairs of points attaining the
maximal/minimal distance between two algebraic curves non intersecting
each other in a square region R is described.

Given two algebraic curves f(x, y) = 0, g(x, y) = 0 and a square region
R, detect the pairs of points Pf , Pg ∈ R, where Pf is a point on f(x, y) = 0
and Pg is a point on g(x, y) = 0, such that the normal line of f(x, y) = 0
at Pf coincides with the normal line of g(x, y) = 0 at Pg.

Algorithm. We subdivide R in 4 square cells Rk, k = 1, .., 4. Given two
square cells Ri = Ii

x × Ii
y and Rj = Ij

x × Ij
y :

1. Test if f(x, y) = 0 crosses Ri and if g(x, y) = 0 crosses Rj

2. Compute the range intervals I i
fx

(respectively I i
fy

) for the function

fx(x, y) (resp. fy(x, y)) on Ri.
3. Compute the range intervals Ij

gx
(respectively Ij

gy
) for the function

gx(x, y) = 0 (resp. gy(x, y) = 0) on Rj .
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F - Footpoints of the point q on f = 0.
O - Orthogonal projections of the point q on f = 0

and singular points.

Fig. 4. Locating Footpoints.

4. Using interval arithmetic, test if 0 is contained in all the following
intervals

(a) Ii
fx

∗ (Ii
y − Ij

y) − Ii
fy

∗ (Ii
x − Ij

x)

(b) Ij
gx

∗ (Ij
y − Ii

y) − Ij
gy

∗ (Ij
x − Ii

x)

(c) I
j
fy

∗ Ii
gx

− I
j
fx

∗ Ii
gy

.

Remark. Note that the first two conditions (a) and (b) correspond to
the requirement that the interval of normal lines to f(x, y) = 0 at points
in Ri intersects Rj and the same permuting f with g and i with j. The
third condition corresponds with the requirement that in both intervals
of normal lines exist pairs of parallel lines. Observe that the first two
conditions may hold if Ri and Rj are very small and also very close, while
(c) may not necessarily hold.

If all answers from 1 to 4 were “yes” then subdivide both Ri and Rj

into four square cells and apply the same tests to all possible pairs of
square cells (16 cases), until the size of the sides of a square cells is not
greater than a previously prescribed accuracy ε > 0.

The output are the pairs of the centers of the small squares associated
to each curve, whose corresponding intervals of normal lines approximately
coincide. Since this output is a dense sample and many pairs of centers
of the small squares are very near to each other, we apply the following
method for selecting representative pairs of points from the clusters of
pairs of centers of small squares. First, we consider that two pairs of
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centers of the small squares (P i
f , P i

g) and (P j
f , P j

g ) are near each other if

||P i
f − P

j
f || ≤ 2 ∗ ε and ||P i

g − P j
g || ≤ 2 ∗ ε. Second, we construct a graph

where there is an edge between two pairs of centers of the small squares
(P i

f , P i
g) and (P j

f , P j
g ) if they are near each other. Then, the connected

components of the graph are computed and a representative pair for each
connected component is selected as follows.

Given a cluster of pairs of centers of small squares C = {(P i
f , P i

g)} we
compute:

1. ri as the line that joins P i
f and P i

g

2. ni
f the normal line of f = 0 at P i

f and the angle θi
f between ri and ni

f

3. ni
g the normal line of g = 0 at P i

g and the angle θi
g between ri and ni

g

The pair of points minimizing the the deviation among the normal
line of each curve at each point and the line joining the pair of points
(cos θi

f )2 + (cos θi
g)

2 is selected as the representative of the cluster.
As a result of this algorithm, we obtain good approximations for the

pairs of points attaining the relative extreme values of the distance between
the algebraic curves f and g in a region R. Finally, we must select among
them those that minimize/maximize the distance. It is guaranteed that if
both curves are completely contained inside the region R then the global
maximum and minimum are obtained (see Figure 5).

A faster alternative procedure (suggested by the anonymous referee)
could be simply to compute all distances in the cluster of pairs of points,
and then select the smallest/largest. For very small values of the accuracy
ε, both algorithms provide very similar results, but for intermediate ε, the
pairs of centers of small squares attaining a minimum/maximum distance
may correspond to points which are relatively far away from the corre-

sponding curves (for instance, to a distance approximately equal to
√

2ε
2

)
and in this situation, selecting the pair of points minimizing the deviation
among the normal line of each curve at each point and the line joining the
pair of points gives better results.

§6. Additional Figure Information

In this section we provide some additional information on the figures. All
timings reported in the present paper are in CPU seconds on a 700 MHz
Pentium III processor running Windows.

Figure 1. This figure shows the intersection points between the curves
x−y4 = 0 and x+y4−0.01 = 0 inside the square centered in the origin with
side length 2.0, for k = 8, 9 and 10 subdivision steps. The exact intersec-
tion point P1 has coordinates (0.005,−0.2659147948), For k = 8, the ap-
proximate solution P1 = (0.00390625,−0.277344) was computed in 1 ms
running time and the cluster diameter is approximately 2·10−2. For k = 9,
the approximate solution P1 = (0.00585938,−0.275391) was computed in
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(j)

(Pf , Pg) - Pairs of points on the curves f = 0 and g = 0 where the global
minimum value (Figs. (g), (i)) and the global maximum value (Figs. (h), (j))

of the distance between both curves is attained.

Fig. 5. Pairs of points attaining relative extreme values of the distance between
two algebraic curves.
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15 ms running time and the cluster diameter is approximately 7 · 10−3.
For k = 10, the approximate solution P1 = (0.00488281,−0.266602) was
computed in 16 ms running time and the cluster diameter is approximately
2 · 10−3.

Figure 2. This figure shows two examples of computation of characteristic
points.

Example (1): For the curve f(x, y) = y3 − x4 + x2 = 0 we com-
puted the singular point S = (0.005,−0.005), the zero curvature points
I1 = (−0.526, 1.339) and I2 = (0.526, 1.339), and the extreme of curvature
points K1 = (−1.024, 0.375), K2 = (1.024, 0.375), K3 = (−0.819,−0.604)
and K4 = (0.819,−0.604), in the square region of center (0.0, 0.0), and side
2.5. Run times were 1ms for singular points, 40ms for inflexion points and
50ms for computing the points attaining extreme values of the curvature.

Example (2): For the curve Curve f(x, y) = x4 + y4 − 4x2y − y2 = 0
we computed the singular point S = (0.010, 0.007), the zero curvature
points I1 = (−0.100,−0.001) and I2 = (0.100, 0.001), and the extreme
of curvature points K1 = (−2.379, 2.138), K2 = (2.379, 2.138), K3 =
(−0.003, 1.000), K4 = (−1.658, 0.665) and K5 = (1.658, 0.665), for the
square region of center (0.0, 0.5), and side 5.2. Run times were 1ms for
singular points, 100ms for inflexion points and 140ms for computing the
points attaining extreme values of the curvature.

Figure 4. This figure shows some results of the Euclidean distance com-
putation.

Example (1): The distance from the point q = (0.0, 0.5) to the curve
f(x, y) = y3 − x2y − x4 − y4 = 0 is attained at the footpoints F1 =
(−0.267, 0.367), and F2 = (0.267, 0.367). Computations were performed
for the square region of center (0.0, 0.4) and side 1.5.

Example (2): The distance from the point q = (0.0, 0.5) to the curve
f(x, y) = y2 − x3 − x2 = 0 is attained at footpoint F = (0.259, 0.291).
Computations were performed for the square region of center (0.0, 0.0) and
side 2.2.

Figure 5. Pairs of points attaining relative extreme values of the distance
between two algebraic curves. For the curves f(x, y) = 4x4 + 8x2y2 −
12x3 +4y4−12xy2 +8x2−y2 = 0 and g(x, y) = 4x2−12x+8.64+4y2 = 0
were computed the Global Maxima (h){ Pf = (−0.011,−0.483); Pg =
(1.786, 0.093) } and (j) {Pf = (−0.011, 0.483); Pg = (1.786,−0.093)}.
Also the Global Minima (g) {Pf = (1.005,−0.005); Pg = (1.20,−0.005)}
and (i) {Pf = (2.001,−0.005); Pg = (1.796,−0.005)}.
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