Implicit Boundary Control of Vector Field Based
Shape Deformations

Wolfram von Funck!, Holger Theisel?, and Hans-Peter Seidel

! MPI Informatik, D-66123 Saarbriicken, Germany,
wfunck@mpi-inf.mpg.de,
WWW home page: http://www.mpi-inf.mpg.de/~wfunck
2 Bielefeld University, Computer Graphics Group, D-33501 Bielefeld, Germany

Abstract. We present a shape deformation approach which preserves
volume, prevents self-intersections and allows for exact control of the de-
formation impact. Volume preservation and prevention of self-intersections
are achieved by utilizing the method of Vector Field Based Shape De-
formations. This method produces physically plausible deformations effi-
ciently by integrating formally constructed divergence-free vector fields,
where the region of influence is described by implicitly defined shapes. We
introduce an implicit representation of deformation boundaries, which al-
lows for an exact control of the deformation: By placing the boundaries
directly on the shape surface, the user can specify precisely where the
shape should be deformed and where not. The simple polygonal repre-
sentation of the boundaries allows for a GPU implementation, which is
able to deform high-resolution meshes in real-time.

1 Introduction

Deforming shapes under a number of constraints is a standard problem in Com-
puter Graphics. For instance, animation of characters can be achieved by de-
forming the shape of the character according to its underlying skeleton, elastic
bodies are deformed by performing simulations based on physical laws, or in in-
dustrial design, fair surface deformations are obtained by minimizing curvature
energy.

When deforming solid objects, the constraint of volume preservation is an im-
portant and often-addressed issue: Under the assumption that the object consists
of an incompressible material, its volume remains constant under deformation.
While physical simulations or constrained optimization techniques can be used to
achieve this goal, they are usuallycomputationally expensive and require special
data structures like grids or embedding meshes. In contrast to this, the method
of Vector Field Based Shape Deformations (VFSD) [1] constructs and integrates
divergence-free vector fields on-the-fly without any simulation, optimization or
special data structures and produces realistic looking volume-preserving defor-
mations without self-intersections.

Boundary constraints, often used in the context of shape editing, are another
useful aspect of shape deformations. The user often wants to specify precisely



which parts of the shape should be deformed and which parts should not be
deformed at all. This is usually done by placing boundary constraints on the
surface, i.e. the user draws two curves on the surface. The region enclosed by the
first curve undergoes a full deformation, e.g. a translation or rotation. The region
enclosed by the second curve is not deformed at all. In the region between both
curves, the deformation is smoothly blended between full and zero deformation.

In this paper, we present a method which brings both approaches together.
The user can define the deformation impact by drawing two boundaries onto
the surface of the shape and can deform the shape in a volume-preserving and
foldover-free manner with respect to these boundaries. While in most existing
approaches boundaries are constraints of an optimization, we introduce implicit
boundaries, which are defined by closed polygons and give a direct mathematical
solution of a smooth blending function which defines the amount of deformation
for every point in space.

The paper is organized as follows: Section 2 reviews relevant shape defor-
mation approaches. Section 3 describes how implicit boundaries are defined and
how they can be used together with Vector Field Based Shape Deformations
to deform triangle meshes. Section 4 demonstrates several application scenarios,
while Section 5 goes into the details of the implementation and analyzes the per-
formance. Finally, Section 6 discusses the presented method and possible future
research.

2 Related Work

We would like to give the reader an overview of related work. We review both
surface-based approaches and space deformations, since our approach is a space
deformation which is constructed by defining boundaries and the surface of the
shape.

Surface based methods define the deformation on the surface of the shape. A
common approach, based on triangle meshes, is to specify a number of original
and target vertices and compute the remaining vertex positions by a variational
approach [2,3]. Boundary constraint-modeling has established itself as a stan-
dard method for deforming surfaces represented by triangle meshes. The main
idea is that the user specifies boundary constraints as displacements of a number
of vertices. Usually this means that two bands of vertices, the boundaries, are
marked on the surface, where on one band the displacements are zero and on
the other band the displacements describe a simple deformation like translation,
rotation or scaling. Using variational calculus, a deformation field which is op-
timal with respect to curvature energy is found for the free vertices [4-10]. This
involves solving a sparse linear Laplacian system during each modification by
the user.

Space deformations are defined for all points in space, i.e. a shape is de-
formed by deforming the space where it is placed in. The first space deformation
methods appeared in the form of free-form deformations (FFD) [11]. The idea
of FFD is to define deformations by modifying coarse control structures like lat-



tices [11-13], curves [14, 15], or points [16, 17]. Using radial basis functions, it is
possible to extend the boundary constraint modeling method from the surface
setting to the space setting [18]. In order to give the user the impression of real
incompressible material, many space deformation approaches have been devel-
oped which preserve the volume of the shape under deformation. [16,19-22,1].
Since self-intersections are irreversible using space deformations, a number of
approaches have been developed to address this problem [23-25].

Another representative of space deformations, addressing the issues of volume-
preservation and prevention of self-intersections, is the method of Vector Field
Based Shape Deformations[1]. This method relies on a formal construction of
time-dependent divergence-free vector fields on which path line integrations are
carried out to deform the vertices of a triangle mesh. Due to the C! continuity
of the vector fields, the resulting deformation is smooth. Due to the path line in-
tegration, self-intersections are prevented. Since the vector fields are divergence-
free, the volume of the shape remains constant under deformation. Thanks to
the direct mathematical formulation of the vector fields, the deformation if inde-
pend of the shape representation, requires neither special control structures nor
precomputations. In the following, we review the method. To simplify matters,
we formulate the construction in a time-independent context — the extension to
the time-dependent case is straightforward.

Given two C? continuous scalar fields p,q : R®> — IR, a C'! continuous
divergence-free vector field v can be constructed from the gradients of p and
q as

V(xvyvz) = Vp(m,y,z) X VQ('T7y7Z)' (1)

Simple deformations can be constructed with this method using linear or
quadratic scalar fields. In particular, a translation can be achieved by using two
linear fields

e(x) =u(x ), f(x) = w(x— )", (2)

where u and w are orthogonal normalized vectors and c is an arbitrary center
point. Since u and w are the gradients of e and f, respectively, u X w defines the
translation direction. A rotational vector field can be constructed from a linear
and a quadratic field:

e(x) =a(x—¢)", f(x) = (ax (x —¢)")? ()

The rotation axis is defined by the normalized vector a, while ¢ describes the
rotation center.

By performing a stream line integration (or path line integration for the time-
dependent case) of each mesh vertex in the resulting vector fields, it is possible
to rotate and translate a mesh arbitrarily. Obviously, such transformations can
be achieved more easily and efficiently by other means. However, we can create
more complex and local deformations by blending the scalar functions e, f using a
third function b, the blending function. In [1], the blending is done in a piecewise
manner, where b is the function of a distance field. Here, we define b more



generally as a C? continuous field b : IR* — [0,1]. Given b, we can define the
blended fields

p(x) = b(x) - e(x) (4)
q(x) = b(x) - f(%). ()

Using (2) for translations or (3) for rotations, we can insert (4) and (5) into (1)
to obtain a divergence-free vector field, which describes

— a full translation/rotation at points where b(x) = 1,
— a zero-deformation where b(x) = 0,
— a smoothly blended deformation for points where 0 < b(x) < 1.

By defining an appropriate blending function b, it is possible to specify which
points in space should be deformed by what amount. Figure 1 demonstrates this
in the 2D setting. Since the blending is done before the cross product of the
gradients is computed (Equation 1), the resulting vector field is still divergence-
free. Since p and q are C? continuous, the resulting vector field v is C'! continuous

[1].

Fig. 1. Blending the deformation. A linear field (left), describing a translation along its
isolines, is multiplied with a blending function (center left). The result is a blended field
(center right) from which a divergence-free deformation field (right) can be computed.

3 Deformation Blending

In the following sections, we will show a method to construct a blending function
which can be used for boundary constraint modeling based on VFSD.

3.1 Implicit Boundaries

From a technical point of view, we don’t use the term boundary constraints in the
sense of an optimization problem, but use boundary constraints as user defined
positions in space where the surface should be deformed in a prescribed manner.
From the user’s point of view, our approach resembles other boundary constraint
modeling approaches: the user draws two boundaries on the surface, where the



Fig. 3. Left: an implicit boundary defined
Fig. 2. By drawing boundaries onto the by a few points. Right: the corresponding
surface, the user can define a support re- vertices marked.
gion (here the body) and a handle region
(head).

outer boundary defines the support of the deformation, while the inner boundary
defines the control handle of the deformation. Figure 2 illustrates this.

Since VFSD is not a surface-based technique but describes space deforma-
tions, the boundaries have to be defined in space and not only on the surface.
Therefore, we formulate them implicitly. We do so by constructing a smooth
implicit function for both the inner and the outer boundary. More precisely, we
define for each boundary a closed piecewise linear curve, i.e. a ring of connected
line segments. Then we use an approximate smooth distance field to each curve
as implicit function. Given n points b;, 1 <= j <= n with b,,41 := by, defining
such a polygonal curve, we can compute an approximate distance field using the
technique from [26] as follows: given the Euclidian distance fields [;(x) of each
line segment defined by the endpoints b;, b;11, we get

d(x) = — (6)

This corresponds to the R-equivalence 11(x) ~ ... ~ I,(x) described in [26],
which joins the distance fields /;(x) to a smooth approximate one. k is a positive
integer, which basically controls the “exactness” of the distance field: the greater
k, the more the approximation approaches the real distance field of the polygonal
curve, which, in general, contains discontinuities. The smaller we choose k, the
smoother the approximation becomes. In our implementation, we use k = 2 in
order to obtain smooth deformations even for coarse polygons.

Given such a scalar field for both the inner and the outer boundary, i.e. d;(x)
and d,(x), we want to constrain the deformation as follows:

— if d;(x) = t;, we want full deformation,



— if d,(x) = t,, we want no deformation,
— else, we want a smooth blending between full and zero deformation.

t; and t, are user-adjustable thresholds which define the thickness of the innner
and outer boundary, respectively. Visually, an implicit boundary can be seen as
a closed tube with adjustable thickness running over the surface, as depicted in
Figure 3. Besides the necessary implicit formulation, this has the advantage that
the number of polygon vertices is independent of the mesh resolution, and the
user can define smooth boundaries with only a few points, which is especially
useful for parallel computation on the GPU. In order to avoid discontinuities
in the deformation, the user has to avoid intersections between inner and outer
boundary. For instance, when deforming the Dragon’s mouth as in Figure 4, the
boundary thickness has to be chosen such that the boundaries don’t touch each
other between upper and lower jaw. The points b; and ¢;, ¢, have to be chosen
such that the boundary area on the surface is connected, i.e., it divides the shape
into two parts. For given ¢;, t,, this can always be achieved by increasing the
density of the control points b; and by placing them close to sharp features.

3.2 Smooth Blending

Having the implicit boundaries defined, we need to construct a function that can
be used to blend smoothly from full deformation to zero deformation between
inner and outer boundary. This can be accomplished in a straightforward way
by interpolation with inverse distance weighting [27]. We define the blending
function as

1 1
o= - 1+ ooy - 0
b(x) = ~HLI=)) (@09 —Fo))?

(7)
@@-F T @

In the limit, the following holds: b(x) = 1 for d;(x) = t; and b(x) = 0 for
do(x) = t,. Because of the cubic weights, b(x) has two vanishing derivatives at
points with d;(x) = t; or d,(x) = t,. As we will see later, this is an important
property which is needed to perform the deformation of the mesh in a piecewise
manner. A further degree of freedom can be achieved by multiplying the weights
with user-defined factors. This is especially useful to control bend deformations.

So far, we have a C? continuous blending function b which can be used to-
gether with Equations (4), (5) to construct blended scalar fields with (2) for
translations or with (3) for rotations. Using (1), we can construct a divergence-
free vector field, which deforms the mesh (nearly) according to the boundary
constraints. Vertices on the inner boundary, i.e. with d;(x) = ¢;, are fully de-
formed because for them b(x) = 1 holds. Vertices on the outer boundary, i.e.
with d,(x) = t,, are not deformed because for them b(x) = 0 holds. For all other
vertices, the deformation is smoothly blended between full and zero deformation.

3.3 Piecewise Deformation

By simply applying such a deformation to the whole mesh, vertices outside of the
support region will be deformed as well and vertices in the handle region won’t



undergo a constant deformation, in general. We therefore need to perform the
deformation in a piecewise fashion, which is quite simple. Vertices belonging to
the handle region and the inner boundary are deformed in full, i.e. they undergo
a constant translation or rotation (e.g. the head and the boundary on the neck
in Figure 2). Vertices in the support region (body between the boundaries in
Figure 2), not belonging to any boundary, are deformed using the blended fields
(4), (5). All other vertices are not deformed at all. Thanks to the two vanishing
derives of the blending function at the boundaries, this piecewise deformation is
C' continuous. Furthermore, the property of volume preservation still holds as
long as no self-intersections occur. Self-intersections can only occur between the
deforming parts of the mesh and the non-deforming parts.

Mathematically, we also could instead define the blending function in a piece-
wise fashion, such that the resulting deformation would be exactly the same.
Technically, deforming the mesh in the piecewise manner described above is
more efficent because the handle region can be deformed directly using a rigid
transformation and the zero-deformation vertices are not considered at all.

3.4 Integration in Space Time

The description of the blending function is based on a time-independent context.
However, since the inner boundary is actually moving over time, the blending
function has to be updated within each integration step. This is straightforward:
at the beginning of the integration, the inner boundary polygon is at its original
position. Then, with each integration step, the position is updated by the amount
corresponding to the step size. For instance, for a rotation, the polygon points
are rotated step by step until the full rotation is reached. In [1], a more detailed
description of the integration process can be found.

4 Applications

In principle, every deformation that is constructable as the cross product of two
gradients can be used with the described approach. However, we confine ourselves
to two simple, yet effective transformations: rotation and translation. Obviously,
a scaling transformation wouldn’t make sense, since we want to preserve the
shape volume. As we will see in this section, this toolset allows for a variety of
useful deformations.

In order to control translation and rotation, the user can place a knob some-
where on the mesh surface, and a joint somewhere in space. In most of the figures
in this paper, the knob is depicted as a yellow stick, e.g. on top of the bust in
Figure 2. The joint is a small white sphere, usually placed somewhere in the
support region. The knob resembles typical Gizmo objects found in many shape
modeling systems, which can be used to control transformations by grabbing
and dragging it at different points. The knob is a simplified version because only
translation and rotation are supported.



4.1 Rotation

In order to rotate the handle region, the user drags the knob, where the knob
movement is constrained to a fixed radius about the joint position. From the dis-
placement of the knob position, the rotation axis and angle can be determined
with respect to the joint position. Using the joint position as rotation center c
in (3), a deformation that bends the shape can be accomplished by integrating
the mesh vertices until the rotation angle is reached. In contrast to [1], where
the shape is continually updated, the integration restarts from the original mesh
every time the knob position changes. Figure 4, as well as Figure 2, shows this

Fig. 4. Popular application scenarios for boundary constraint modeling.

approach applied in various scenarios known from the Literature. The deforma-
tion looks rather realistic thanks to the volume-preservation and avoidance of
self-intersections and even high resolution models can be deformed interactively.

Figure 5 demonstrates how local details are deformed: the “teeth” of the
comb-like shape don’t touch each other during deformation and their distortion
seems appropriate with respect to the global deformation.

Fig. 5. Local details are slightly distorted
in strongly deformed areas (left) and never Fig. 6. By translating the horse head, the

intersect with each other (right). neck deforms in a natural manner.

Also twisting is possible by simply using the vector between joint and knob
as rotation axis. A more uniform twisting deformation can be achieved with two
quadratic scalar fields [1].



4.2 Translation

When the user wants to translate the handle region, he or she can drag the knob
freely in space. The joint is ignored for this deformation type. However, also the
translation (2) requires a center point c. In this case we use the barycenter of
the control points of the inner boundary.

In Figure 6, the user drags the head of a horse model. The shape of the neck
automatically adapts to the new position. Due to the constant volume, the neck
becomes thinner when the head is pulled.

Interesting effects can be achieved by carefully selecting boundaries and mov-
ing the handle parallel to the surface: as shown in Figure 7, the deformation au-
tomatically produces “wrinkles” on the cheek of the face, which is a result of the
volume preservation and the prevention of foldovers. Although the “wrinkles”
appear to be rather strong, no self-intersections of the surface occur.

| i iy

o o

Fig.7. “Wrinkles” can be produced by

translating the handle accross the surface. Fig.8. When the boundaries move close
Although they appear to be rather strong, to each other, the shape is distorted.

no self-intersections of the surface occur.

5 Implementation and Performance

As shown in [1], the performance of the integration can be increased by a large
amount by shifting the computation to the GPU, where multiple path lines
can be integrated in parallel. This is also possible with our approach: since the
number of boundary control points is usually low, these points can be passed
to the shader as a simple array. We implemented two vertex programs, one for
translation and one for rotation, which can be controlled by passing translation
vector, rotation axis, angle etc. to them. During the integration, the polygon
points of the inner boundary are updated internally with respect to the transla-
tion/rotation, as described in section 3.4. Except for the extraction of the handle
and support region (Section 3.3), no further preprocessing is required. After inte-
gration, vertex positions are read back from video memory and the mesh normals
are computed. An alternative approach would be to compute normals directly
on the GPU using the Jacobian of the vector field, similar to [18]. This would
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decrease the integration performance because of the necassary computation of
Jacobians in each integration step, but would clear the CPU from doing this
task and redundatize the readback of vertex positions. However, we have not
tested this alternative yet. As we will see in the following performance analysis,
the normal computation on the CPU makes only a small fraction of the total
deformation time.

The performance of the approach strongly depends on the “amount” of de-
formation, i.e. how far the handle is translated or rotated. This is because the
numerical path line integration adapts its step size according to the complexity
of the vector field and the duration of the integration. In order to present a
meaningful statement about performance, we measured the times of usual “real-
world” deformations, namely the ones depicted in Figure 4. Table 1 lists the
deformed shapes (from left to right in Figure 4) and the benchmark results. v/s

shape|vertices|boundary points|v/s (integration)|v/s (integration + normals)
box| 47,296 8 788,267 647,890
dragon| 86,814 23 413,400 369,421
leg 1| 31,014 17 449,478 382,889
leg 2| 31,014 17 443,057 364,871
finger 2725 14 454,167 454,167

Table 1. Performance benchmark: complex meshes can be deformed interactively.

(integration) is the number of vertices per second for integration only and v/s
(integration + normals) the number of vertices per second for integration plus
normal computation. The measurements were made on a 2.6 GHz Opteron CPU
and a GeForce 6800 GT graphics card. They show that complex meshes can be
deformed interactively.

6 Conclusion

We presented a shape deformation technique based on vector field integration
which incorporates implicit boundaries to steer the impact of the deformation.

By using the VFSD technique [1], our deformations are volume-preserving
and foldover-free, giving the user the impression of working with real, incom-
pressible material. While the original VFSD approach defined the regions of
influence by simple implicit objects, our method constructs a smooth blending
function based on implicit boundaries. That way, the user can specifiy the impact
of the deformation directly on the surface of the shape.

Thanks to the polygonal representation of the implicit boundaries, they are
independent of the resolution of the deformed mesh. In most cases, a small
number of control points suffices to define the boundaries.

Since the description of boundaries is simple (a small set of points), the
numerical path line integration can be computed on the GPU and even complex
models can be deformed interactively.
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There are some restrictions of our approach which should be addressed in
future research.

Self-intersections. Self-intersections are only avoided for the deforming re-
gions of the shape surface because the deformation is carried out in a piecewise
fashion. It is e.g. possible to bend the finger in Figure 4 such that the finger tip
intersects the thumb or other parts of the hand. An additional collision detection
would solve the problem, but would also drop performance.

Close boundaries. When inner and outer boundary are close to each other,
the gradient of the resulting blending function is high in these regions. This can
result in unpleasing deformations. E.g., when an extreme bending is performed
(Figure 8), the boundaries approach each other, and the box is distorted more
and more at its center (but nervertheless preserves its volume). A possible solu-
tion would be to perform such deformations (even more) piecewise, by using for
example a third boundary between inner and outer boundary and constructing
two blending functions: the first blends between inner and central boundary, the
other between central and outer boundary.
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