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Multifield-Graphs: An Approach to Visualizing Correlations in
Multifield Scalar Data

Natascha Sauber, Holger Theisel, and Hans-Peter Seidel

Abstract—
We present an approach to visualizing correlations in 3D multifield scalar data. The core of our approach is the computation of
correlation fields, which are scalar fields containing the local correlations of subsets of the multiple fields. While the visualization of
the correlation fields can be done using standard 3D volume visualization techniques, their huge number makes selection and handling
a challenge. We introduce the Multifield-Graph to give an overview of which multiple fields correlate and to show the strength of their
correlation. This information guides the selection of informative correlation fields for visualization. We use our approach to visually
analyze a number of real and synthetic multifield datasets.

Index Terms—Visualization, multifield, correlation.
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1 INTRODUCTION

Most of the simulations in computer science and engineering create as
output not only one, but multiple fields describing different aspects of
the simulated topic. These fields, that can be scalar, vector or tensor
fields, are usually defined over the same 3D domain. There are cases
when it is insufficient or inconvenient to visualize the fields separately.
Some fields may be redundant, while others may have an important re-
lation to each other which is worth visualizing. This can be illustrated
at an example of several scalar fields which contain local changes.
Only by regarding the scalar fields separately, it is not obvious if there
are locations where some or even all the fields change similarly. A
method to detect these common local changes it to visualize them (see
Figure 1).

There are many established approaches for visualizing a single
scalar field, like slicing, isosurfacing [19] or direct volume render-
ing [18]. Comparisons of different fields visualized with these strate-
gies are possible by looking at them side by side, or sequentially in
time. Although this is commonly done in the visualization commu-
nity, the perception of correlation between the fields is rather limited.
In the first case subtle differences cannot be perceived while in the
second case only pairs of fields can be simultaneously compared. It
is hardly possible to obtain knowledge of how all of these fields are
related. For this it is necessary to have strategies to visualize multiple
fields simultaneously or to visualize the correlations between them.
There are some approaches to visualizing a small number of fields at
the same time, and some which can show the correlation of two fields.
However, the visualization of correlations between multiple fields is
still a challenge and is rarely addressed in the visualization commu-
nity [14].

Our method, the Multifield-Graph, is a step in this direction. We
consider a number of scalar fields defined over the same 3D domain
as input and aim for the visual analysis of the correlations between
these fields. This way, we are able to find features which are not con-
tained in one field, but which can be computed only when multiple
fields are taken into account. This information is stored in correlation
fields. With the Multifield-Graph it is possible to get an overview of
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the amount of correlation which is contained in the exponentially high
number of correlation fields. The Multifield-Graph can also guide the
selection of promising correlation fields which can be shown with one
of the standard volume visualization methods.

This paper is organized as follows: Section 2 gives an overview
of previous work done in multi volume rendering and multifield vi-
sualization. The computation of correlation fields is explained in Sec-
tion 3. The Multifield-Graph, our approach to deal with the huge num-
ber of correlation fields, is described in Section 4. Sections 5 shows
the application of our approach at some examples.

Fig. 1. This Figure shows three scalar fields Si (i ∈ {0,1,2}), and cor-
relation fields CN , which contain high values at locations, where the
corresponding scalar fields Si(i ∈ N) show similar changes.

2 PREVIOUS WORK

An overview of the work which has been done in multivariate multidi-
mensional visualization is given in [27].

A number of approaches for multifield visualization of 2D scalar
fields have been introduced, which use for example partial look-
through layers [15, 28] or combinations of texture elements [23, 26].
These techniques yield effective visual representations for a rather
small number of fields. They tend to deliver cluttered visualizations
if the number of fields is too high. Moreover, due to spatial occlusion,
these methods do not extend well to 3D multifields.

There are a couple of approaches available for the simultaneous vi-
sualization of several 3D volumes. In [3] a technique is presented for
combining intersecting volumetric objects. Another paper [8] intro-
duced v-objects, which allow to efficiently render an arbitrary number
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of possibly intersecting objects. [21] developed a hardware based vol-
ume rendering approach to display multiple volumes simultaneously
with correct overlaying. A similar approach was presented in [1]. Here
a scalar and a vector field are visualized simultaneously by creating a
3D texture out of the flow field and using it to color the volume render-
ing of scalar field. These approaches provide a technical solution for
the simultaneous visualization of multiple volumes. They deal with
the occurring cluttering and occlusion by the use of clipping planes
and transparency, which is effective if the number of fields is not too
huge.

There are also some approaches for visualizing multiple volume
data which focus more on correlations between them. A recent
work [25] introduced the concepts of object and dimension correlation
during projection from multidimensional-space to three-dimensional
space. An approach for using multi-dimensional transfer functions for
direct volume rendering was introduced in [17, 16]. In this work, the
opacity of a voxel depends not only on the scalar value of one field, but
on the scalar values of two fields, and optionally on the first derivative.
A method similar to this but more flexible and able to handle a larger
number of fields was presented in [6, 5]. Here scatterplots of every
field pair can be analyzed to gain insight into global correlations of
the fields. Looking at the scatterplots it is possible to specify features,
like focus ranges, for every field and visualize only data points whose
field values lie within these ranges. Data points within focus ranges
can also be seen as correlating data. Another tool [12] was designed
to explore correlations between two scalar fields. By observing one of
the fields with direct volume visualization, a region of interest can be
defined. There a 2D plane can show the correlations of the two fields
with a colored heightfield, while the color depends on one field and
the height on the other. Along a curve on this plane the correlations
can be shown additionally as line plots of the two functions.

3 CORRELATION FIELDS

The goal of our method is to visualize the amount and the spatial struc-
ture of local correlations in multifield scalar data. We use the term
local correlation between fields for regions where these fields contain
similar changes in scalar value. Both the occurrence and the absence
of correlations between fields may be important information.

The input data for our approach are n scalar fields S1, . . . ,Sn over
the same 3D domain D. We propose to use correlation fields to make
correlations visible which occur between a number of fields. A corre-
lation field CN with N ⊆ {1, . . . ,n}, |N| ≥ 2, is a scalar field over D
which describes the strength of the local correlation between the |N|
scalar fields Si(i ∈ N) at each location of D. The visualization of cor-
relation fields is done with standard scalar 3D visualization methods.

To make the approach applicable, two problems have to be solved.
Firstly a measure c for local correlation has to be chosen that is able
to compute a correlation field CN out of the |N| scalar fields Si(i ∈ N),
such that CN = c({Si : i ∈ N}). Section 3.1 gives an overview of com-
mon correlation measures and describes in detail those which we have
used. Secondly, it has to be decided which correlation field should
be computed and visualized, because the total number of correlation
fields grows exponentially with n, and is therefore too large for exhaus-
tive computation of all correlation fields. We introduce the Multifield-
Graph, described in Section 4, to direct this decision by giving infor-
mation about the amount of correlation which is present in the corre-
lation fields.

3.1 Correlation Measure
There are several correlation measures available which are defined for
two variables [11]. A very common measure, the sum of squared dif-
ferences, cannot be used in our case, because the data has to have the
same unit (e.g. temperature in ◦C). Another measure, called correla-
tion coefficient can detect linear dependencies under the assumption of
normally distributed data. The correlation ratio can detect functional
dependency. Mutual information, which is based on entropy, is able
to find more general dependencies. It is possible to define all of these

measures locally [2, 11]. Methods which are able to detect more gen-
eral correlations have the drawback that they need a larger region of
input values to produce meaningful results.

It is also possible to define a correlation criteria which is based on
gradient similarity [4], and which is thus inherently local. Because of
the use of gradients this method also implies the spatial location of the
intensity value pairs. In contrast to this, all methods mentioned in the
last paragraph use only pairs of scalar values.

Since we want to compute correlation fields for n input fields,
the correlation measure has to be extendable to n dimensions. The
Multifield-Graph can be used with an arbitrary n-dimensional local
correlation measure. We choose to use two measures: one based on
gradient similarity, described in Section 3.1.1, and another one based
on local correlation coefficients, described in Section 3.1.2. The dif-
ferences between them are explained in Section 3.1.3. These two mea-
sures are appropriate for optimizations during the Multifield-Graph
computation, described in Section 4.3.

3.1.1 Gradient Similarity
The first measure we use is a gradients similarity measure (GSIM). A
gradient field Gi of a field Si is defined at every position x as Gi = ∇Si,
with gi = Gi(x) denoting one gradient of Si at a position x. The com-
putation of the correlation field based on gradients, requires a similar-
ity measure s(gi,g j) for the comparison of two gradients.

In recent work [7] a local comparison measure based on gradients
was proposed. This measure assigns high values to strong orthogonal
gradients. Therefore the number of input fields n is limited to the
number of spatial dimensions of D, and therefore not usable for our
purpose.

We decided to use a similarity measure, that assigns high values
to equally strong and similarly directed gradients. This measure is
extendable to an arbitrary number of fields n. The measure should
be orientation independent, such that two gradients result in the same
measurement in both orientation cases, s(gi,g j) = s(gi,−g j). This
property is useful for the Multifield-Graph computation. There, the
local correlation measure is summed over the whole domain to indicate
the global amount of correlation. If there existed both, positive and
negative correlation, they might cancel out each other.

To make the gradient magnitudes comparable, the fields have to be
normalized before the computation. We decided to scale the range of
all scalar fields to [0,1]. Then our measure returns 0 if both gradients
have a zero magnitude, the measure is 1 if both gradients have the same
magnitude, and it has a small value if they have a different magnitude.

There are some vector similarity measures in literature [4, 24], but
they are not independent from the orientation of the vectors. Hence we
define the following similarity measure for two gradients gi and g j:

s(gi,g j) = (sd(gi,g j) · sm(gi,g j))
r, (1)

sd(gi,g j) =

(

gi
T g j

||gi|| · ||g j||

)2

,

sm(gi,g j) = 4
||gi|| · ||g j||

(||gi||+ ||g j||)2 ,

with sd depicting the direction similarity and sm depicting the magni-
tude similarity. The exponent r regulates the sensitivity of the measure.
Its usage will be explained below. This measure compares only two
gradients. It is extended to n gradient vectors by taking the minimum
gradient pairs similarity:

CN(x) = min{s(gi,g j) : i 6= j; i, j ∈ N}. (2)

The resulting value means that there is no gradient pair whose gradi-
ents are less similar than this value. This serves for detecting regions
in the correlation field that contain high correlations.

It should be noted that this measure does not scale linearly by the
number of input fields especially between 2 and 3 fields. The measure
should be minimal if the gradient directions are equally distributed in
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Fig. 2. Examples for couples of gradient vectors with low directional
similarity. All pairs of gradients have a high αmin (denoted with red arcs).
The angle αmin is the angle between the two straight lines of two gradi-
ents.

the plane or in the volume. For two gradients gi,g j, the correlation
is minimal if the angle αmin = min(^(gi,g j),^(gi,−g j)) approaches
90◦ (see Figure 2 (1)). In the case of more than two gradients, there
are two possible arrangements which should be the least similar. In
the first case is, their directions are equally distributed in the plane
(see Figure 2 (2)), in the second case their directions are equally dis-
tributed in 3D space (see Figure 2 (3)), especially if they all have a
similar αmin with respect to each other. In a 2D domain this is the case
for three gradients each with an αmin of 60◦ (see Figure 2 (2)). In a
3D domain the same situation exists for example with four gradients
having an αmin of about 73.2◦ (see Figure 2 (4)). As a consequence,
the measure should be already close to zero at an enclosing angle of
60◦. This is reached with equation 1 if the exponent r is sufficiently
high. Throughout this paper we have chosen r = 4.

We illustrate our approach to creating gradient correlation fields
with an example. Figure 3 (first row) shows slices through four simple
3D scalar fields, where the scalar value is coded in the gray value. The
colored arrows show the gradients of the scalar fields. The second row
shows slices of our computed correlation fields. In regions with high
correlation the gradients have similar direction and magnitude. The
third row shows slices of the same correlation fields, but computed
with local correlation coefficient (Section 3.1.2).

S0 S1 S2 S3

C{0,1} C{0,2} C{0,2,3} C{1,2,3}

Fig. 3. First row: slices through 4 scalar fields and their gradients. Cor-
relation fields for different combinations of the 4 scalar fields as slices
computed with GSIM (second row) and computed with LCC (third row).
The visible differences between the two measures result from two rea-
sons. Firstly, GSIM drops faster to zero than LCC, which results from
exponent r of Equation 1, and secondly GSIM is sensitive to differences
in gradient magnitude in contrast to LCC which is not.

3.1.2 Local Correlation Coefficient
The second correlation measure called LCC is based on a local cor-
relation coefficient, as proposed in [2]. It detects linear dependencies
between the values of two fields within a local region. A similar ap-
proach was also used in pattern recognition [20]. There, a volume
correlation filter is used to find a certain pattern within a volume.

The correlation coefficient is 1 in the case of an increasing linear
relationship and −1 in the case of a decreasing linear relationship.
It is 0 if there is no linear dependency. It is computed using a win-
dow function Gx, which is centered around x and normalized such that
∫

p∈D Gx(p)dp = 1. We define the mean S̄i, the covariance covi j , the
standard deviation σi, and the correlation coefficient corri j , locally at
a location x in the following way:

S̄i(x) =
∫

p∈D
Gx(p) ·Si(p)dp,

covi j(x) =
∫

p∈D
Gx(p) · (Si(p)− S̄i(x)) · (S j(p)− S̄ j(x))dp,

σi(x) =
√

covii(x),

corri j(x) =
covi j(x)

σi(x) ·σ j(x)
. (3)

Throughout this paper we will use a box filter as window function Gx.
To extend this measure for a comparison of n fields, the minimum of
the absolute correlation value of pair fields is used:

CN(x) = min{|corri j(x)| : i 6= j; i, j ∈ N}. (4)

We use the absolute value of the correlation coefficient, for the same
reasons that we use an orientation independent gradient similarity
measure, namely to avoid a canceling out effect between positive and
negative correlation during Multifield-Graph computation. We illus-
trate this measure in the same example as the GSIM measure (see Fig-
ure 3 third row)

3.1.3 Comparison of measures
The measures described in the last two sections produce similar cor-
relations in most cases. The measures differ in three aspects: in the
dependence on scaling of value ranges, how fast the correlation mea-
sure drops to zero, and in the size of the area of influence.

One aspect where the measures differ is the sensitivity to the scaling
of the data value range. The LCC is independent of scaling. GSIM
assigns high values only if the gradient magnitude of the fields are
equally strong. This can be seen while comparing the correlation field
C{0,1} in Figure 3 at the horizontal line in the center of the field where
all gradients are parallel. Another difference between this measures is,
that GSIM drops faster to zero than LCC. This difference depends on
the coefficient r of Equation 1 and can also be seen in the correlation
fields of Figure 3.

The other main difference is the size of the area of influence. The
gradient is defined at a point, contrary to the local correlation coeffi-
cient which is defined over a region. The size of the region of influence
leads to a blurring effect. The LCC measure assigns high values also
to the neighborhood of strong single gradients (see Figure 4 (1)). For
the same reasons LCC can detect similarities between slightly shifted
gradients, between a smooth gradient and a smooth gradient overlayed
with a higher frequency and between a smooth and a single strong
gradient (see Figure 4 (2), (3), (4)).

For detecting extensive changes LCC is more suited while for subtle
local changes GSIM is to prefer.

4 THE MULTIFIELD-GRAPH

Let C := {CN : N ⊆ {1, . . . ,n}} be the set of all possible correlation
fields. Since the number of all fields |C | grows exponentially with
n, it is not practical to compute and examine each of these fields,
and it is not known in advance which correlation fields will contain
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Fig. 4. Four pairs of functions (left column) are compared with GSIM
(middle column) and LCC (right column).

meaningful information. To deal with this problem we introduce the
Multifield-Graph. The Multifield-Graph has two functions. Firstly, it
gains information about the amount of correlation contained in each
correlation field. We call this information in the following correla-
tion overview information. The nodes of the graph are displayed as
icons with correlation overview information graphically encoded. Sec-
ondly, the Multifield-Graph allows the focusing on the display of cer-
tain nodes. This is useful, because it is not possible to perceive the in-
formation of all of them at once, because of their exponential number.
The different focus strategies that can be used to reduce the displayed
nodes are described in Section 4.2. The optimized computation of the
Multifield-Graph are described in Section 4.3.

4.1 Definition and construction
Let G := (V ,E ) be the Multifield-Graph where V denotes the set of
all nodes and E the set of all edges. Every node VNi ∈ V of the graph
corresponds to a correlation field CNi . Two nodes VNi and VN j are con-
nected with an edge Ei j ∈ E if |Ni| = |N j|−1 and Ni ⊂ N j . The nodes
are displayed as squares, the edges as lines connecting the nodes. All
nodes with the same |N| are displayed in the same row.

To provide insight into the correlation contained in one correlation
field, some correlation overview information is computed. For this, an
arbitrary characteristic of the correlation field can be used, depending
on the interpretation aim of the application. Possible characteristics
usable as correlation overview information could be the distribution of
the correlation values, the size of connected correlating areas, certain
spatial structures of correlating areas or frequency of changes in the
correlation field.

We choose to employ two other characteristics which are intuitive
and straightforward. They are both based on DN,θ = {x∈D : CN(x)≥
θ} denoting the subset of D in which CN exceeds a certain threshold
θ . One characteristic is the ratio between the volumes of DN,θ and D:

rcN =
vol(DN,θ )

vol(D)
. (5)

The other characteristic is the average of the values in DN,θ

acN =

∫

x∈DN,θ
CN(x)dx

vol(DN,θ )
. (6)

These characteristics provide useful information if θ is sufficiently
high. Then rcN indicates the volume of highly correlating areas,
namely areas with correlation above θ . acN suggests whether the field
contains a reasonable amount of correlation even higher than θ .

The value of the two characteristics is displayed as a colored disc,
where the size of the disc depends on rcN and the color on acN . Red

depicts high correlation and green depicts low correlation. A large disc
means many correlating values, a small disc the opposite.

To illustrate this explanation, two example Multifield-Graphs are
shown in Figure 5. The graphs show the correlation between the four
correlation fields of Figure 3, whereas the left one is computed with
the GSIM measure, the right one with the LCC measure. To ease
the interpretation of the colors, a bar that displays the color coding
of the acN value is displayed next to each graph. A large amount of
correlation between field S0 and S2 can be observed as well as a rather
small amount of correlation between the fields S0 and S1. Furthermore
a reasonable amount of correlation can be detected between the scalar
fields (S0, S2, S3). In order to see where these correlations occur, the
correlation field C{0,2,3} can be visualized (see Figure 3). The two
graphs look similar, but differ in scaling of acN and rcN , because the
GSIM measure assigns lower values than the LCC measure. To see
the differences between the two measures in detail, one must analyze
the correlation fields.

Fig. 5. The Figure shows Multifield-Graphs of the synthetic scalar fields
of Figure 3. The left one is computed with GSIM, the right one is com-
puted with LCC, both with threshold θ = 0.2.

4.2 Graph focus
For a small number of scalar fields, for instance n = 6, the whole graph
can be displayed, giving an overview of all existing correlations and
relations between the fields (see Figure 6 (top)). As n gets larger, it
is no longer possible to display all nodes at once because of their ex-
ponential number. We use different focus strategies for reducing the
number of displayed nodes to ease the detection of meaningful corre-
lation fields: firstly to show only nodes whose contained correlation
overview information fulfills some constraints, secondly to show only
nodes whose set of identities of original fields N fulfills some con-
straints. One possibility of following the first strategy is to display
only nodes with rcN > η and with acN > ξ , where η and ξ are cer-
tain thresholds (see Figure 6 (bottom)). This is useful for detecting
high correlations. One application of the second strategy is to show
only nodes VN j with N j ⊆ Ni. This is useful for showing relations in
one subset Ni of the fields. In Figure 6 such relations are made visible
by darkening the node icons and edges of all subset fields of C{1,3,4,5}.
This strategy can also be used to display only nodes with k1 > |N|> k2,
where k1,k2 ∈ {2 . . .n}.

Another focus strategy, spatial focusing, acts on the domain D in-
stead of the graph display. Hereby the Multifield-Graph is computed
only for a subdomain Ds ⊆ D of the domain D. These spatially re-
stricted Multifield-Graphs are also called local Multifield-Graphs. Lo-
cal Multifield-Graphs may differ from each other as well as from the
Multifield-Graph of the whole domain. For small subdomains Ds the
computation of local Multifield-Graphs is fast enough to allow an in-
teractive browsing through the domain D, to explore local changes of
the correlations between all fields at once.

4.3 Optimization
The Multifield-Graph is designed to allow the exploration of the space
of correlation fields. The time critical aspects are the construction
of the Multifield-Graph, primarily the computation of the correlation
overview information, and the computation of the correlation fields
which should be visualized.
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Fig. 6. First row: the whole Multifield-Graph built out of 6 scalar fields.
Second row: same Multifield-Graph focused on nodes with rcN > 0.18.
In both graphs C{1,3,4,5} and all corresponding subset fields are empha-
sized.

For the computation of a correlation field CN the correlation mea-
sure c is evaluated at every point x ∈ D. For computing the correlation
overview information of the Multifield-Graph, all fields CN at every
point x have to be computed every time the threshold θ changes. Since
it is not possible to store all correlation fields, they must be computed
on the fly.

There are some strategies to shorten the computation time. The sim-
plest strategy is to reduce the number of points used for the computa-
tion of the correlation overview information. The reduction is done
by subsampling. This is maintainable because the Multi-Graph only
gives an overview anyway.

Another optimization is possible because of the decomposability
property of the correlation measures we use. Each correlation field CN
can be constructed out of the contained pair correlation fields CNk with
|Nk| = 2 and Nk ⊆ N (see Equations 2 and 4). If the pair correlation
fields fit into main memory, they can be precomputed and stored. And
they can be reused for the computation of fields with |N| > 2. Then
the computation time of the Multifield-Graph is independent from the
computation time of a correlation field. This is especially advanta-
geous if the LCC measure with a big window size is used.

5 APPLICATION

We used our Multifield-Graph approach for analyzing an analytic and
a simulation dataset (Section 5.1 and 5.2).

5.1 ABC-flow features
The first multifield dataset we analyzed is a collection of 8 scalar fields
describing characteristic properties of a 3D time-dependent flow. In
fact, we consider the so-called ABC (Arnold-Beltrami-Childress) flow
field

v(x, t) =





(A+(1− e−t/10)sin(2πt))sinz+C cosy
Bsinx+(A+(1− e−t/10)sin(2πt))cosz
C siny+Bcosx



 (7)

which has recently attracted attention in the fluid dynamics community
because it describes an unsteady solution of Euler’s equation [10]. We
consider the following scalar fields with resolution of 643. They are
derived from v for A =

√
3,B =

√
2,C = 1 at the time t = 0 within the

domain [0,2π]3:

• S0: λ2 - a measure for vortical structures in the flow [13].

• S1: ‖v‖: the velocity magnitude of the flow

• S2: the Lyapunov exponent, a measure of the stableness of a flow
[9]

• S3, S4, S5: x-, y-, z-component of the average flow direction of a
path line over a integration time of 2π .

• S6: average particle velocity magnitude of the path line inte-
grated over a 2π time.

• S7: distance between start and end point of a path line integration
over a 2π time.

Fig. 7. Some scalar feature fields of the ABC-flow, S0 (top left), S1 (top
right), S2 (bottom left) and S7 (bottom right).

The spatial structure of some of the ABC-flow-feature fields is il-
lustrated in Figure 7. Figure 8 shows the Multifield-Graph of the data
set. It is computed with a threshold θ = 0.8 and focused on nodes
with an average correlation acN > 0.87 and ratio of correlating values
rcN > 0.11, which means that 11 per cent of the volume have a correla-
tion value higher than 0.8. We used the local correlation coefficient as
correlation measure (see Section 3.1.2), with a window size of 7x7x7
samples.

Fig. 8. Multifield-Graph of the ABC-flow-feature multifield computed with
LCC and θ = 0.8, focused on nodes with acN > 0.87 and rcN > 0.11

Figure 8 shows that there are rather strong correlations between S0
and S1. This is clearly a characteristic of the ABC flow since in gen-
eral λ2 and the magnitude of a vector field are uncorrelated because
λ2 is Galilean invariant. The visualization of C{0,1} (Figure 9) shows
dented-sphere-shaped areas of weaker correlation between S0 and S1.
Figure 8 also shows a rather low correlation between S1 and S6. How-
ever, an analysis of C{1,6} (Figure 9) reveals a clear structure in the
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domain. There is even a relevant correlation between the 4 fields S1,
S2, S6, S7 (see Figure 9). The strongest correlation was detected be-
tween S6 and S7: all sample points reported a correlation above the
threshold. All correlation fields of Figure 9 were visualized with Iso-
surfaces using an isovalue of 0.8.

Fig. 9. Correlation fields C{0,1}, C{1,6}, C{2,7}, C{1,2,6,7} computed with
local correlation coefficient, showing correlations between scalar feature
fields of the ABC-flow.

Since the GSIM measure is more sensitive to subtle differences than
the LCC measure, we used GSIM to analyze correlations between S6
and S7. This gives tube-like structures of areas of less similarity of the
gradients, as shown in Figure 10 (left). In contrast the GSIM measure,
the LCC indicates all values to be above the threshold. The closeup
shown in Figure 10 (right) shows that outside the tube the gradients of
S6 and S7 are rather parallel, while their direction differs inside.

Fig. 10. Correlation field C{6,7} computed with GSIM (left) and a closeup
of this field (right) with gradients of S6 shown blue and gradients of S7
shown red. The similarity of gradients within the surface and the dissim-
ilarity outside the surface, within the tube structure, are visible.

5.2 Hurricane
The second multifield dataset we analyzed is a simulation of the hur-
ricane Isabel which took place in September of 2003 in the west At-
lantic region. The simulation was done by the National Center for

Atmospheric Research in the United States. The data consists of sev-
eral time-varying scalar and vector fields. For our analysis we used the
first time step of the following scalar fields:

• S0: cloud: total cloud moisture mixing ratio

• S1: wind velocity

• S2: precipitation: total precipitation mixing ratio

• S3: pressure

• S4: vapour

• S5: temperature

The data is defined over a 500x500x100 grid, which is equivalent
to the physical scale of 2139km (east-west) x 2004km (north-south)
x 19.8km. For our analysis we subsampled the data to 100x100x25
for the LCC analysis and 250x250x50 for the GSIM analysis. The
visualizations of this section are all done with direct volume rendering,
because these technique is suited for showing smoothly varying fields.
The used transfer function assigns opacity to values with a correlation
higher than 0.9.

To get an overview of the spatial structure of the analyzed fields,
they are shown in Figure 11 using a direct volume rendering approach.

S0 (cloud) S1 (velocity) S2 (precipation)

S3 (pressure) S4 (vapour) S5 (temperature)

Fig. 11. Multiple Hurricane scalar fields.

We computed the Multifield-Graph of these fields using the LCC
measure with a box filter of size of 5x5x5 and a threshold θ = 0.8.
The view on the graph is focused at nodes with rcN > 0.1 and can be
seen in Figure 12. It depicts strong correlation between S3 and S5,
which can be seen in detail in the visualization of the corresponding
correlation field C{3,5} in Figure 13 (top left). These two scalar fields,
containing pressure and temperature data, are highly correlated in the
area not directly affected by the hurricane and in the eye of the storm
itself, whereas low correlation can be detected in the highly swirling
area around the center of the storm. The correlation fields of the field
triples {3,4,5} and {0,2,5} contain also a reasonable amount of cor-
relation, as visible in Figures 13 (top right and bottom left). Relevant
correlations occur between a quadruple of scalar fields {1,3,4,5} (see
Figure 13 bottom right). Remarkably, the highest correlation in this
set of fields is not found within the hurricane, but over the continent.

An application of spatial focusing is shown in Figure 14. Some cor-
relation fields, like C{4,5}, contain several layers of highly correlat-
ing values. We compute the local Multifield-Graphs for each of these
layers with a threshold θ = 0.95 to see if the field correlations differ
between these layers. Figure 14 (top) shows the three different layers
and their corresponding local multifield graphs all focused at nodes
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Fig. 12. Multifield-Graph computed with LCC and θ = 0.8 from 6 scalar
fields from the hurricane dataset. The graph is focused on nodes with
rcN > 0.11.

Fig. 13. Correlation fields of the hurricane multifield computed with LCC:
C{3,5} (top left), C{3,4,5} (top right), C{0,2,4} (bottom left) and C{1,3,4,5}
(bottom right).

with rcN > 0.11 (Figure 14 second and third row). It is visible that
in layer 0 and 1 only some fields correlate and in layer 2 correlations
occur between several field tuples. The correlation fields of these lay-
ers can be visualized separately, see in Figure 14 (bottom). Here we
can see that in the lower layers there is a stronger correlation between
vapour and temperature around the center of the hurricane, whereas
only low correlation is present in the upper layers.

The computation time for the LCC measure with a window of
7x7x7 is rather high. The preprocessing step, the computation of the
pair correlation fields, took around 20 minutes. The Multifield-Graph
computation out of the pair correlation fields takes only about 3 sec-
onds and is thus interactive. The computation was performed at a cur-
rent PC with an AMD Athlon 3500 processor.

We also performed an analysis with the GSIM measure. Here the
preprocessing step is much faster. It takes about one minute to do
the preprocessing for the six fields with a resolution of 250x250x50.
Two of the resulting correlation fields C{2,4} and C{4,5} are shown in
Figure 15.

6 CONCLUSION

As described in this paper we made the following contributions:

• We presented a new approach to visualizing the correlations be-
tween different scalar fields in a multifield dataset. The approach
is based on the calculation and visualization of correlation fields,

Fig. 14. In the visualization of the correlation field C{4,5} (top) several
layers of high correlation are visible. For three of these regions (0,1,2),
a local Multifield-Graph is computed, using LCC and θ = 0.95 (second
and third row). The color coding of the Multifield-Graph is shown in third
row right. All graphs are focused on nodes with rcN = 0.11. In the bottom
row, the regions (0,1,2) of C{4,5} are visualized separately.

which encode the correlation of certain subsets of the original
scalar fields.

• We introduced the Multifield-Graph to deal with the huge num-
ber and complexity of correlation fields. It can be used for getting
an overview of the amount of correlations in all possible corre-
lation fields as well as to interactively focus at different interpre-
tation aims like showing only information of highly correlating
fields.

We used our approach on real and synthetic data sets. Our approach
is flexible in the sense that it can be used with arbitrary correlation
measures and interpretation goals.

In the future, we intend to test our approach with other correlation
measures like mutual information, which are able to indicate more
general dependencies. We are looking for optimization strategies to
enable the analysis of a larger number of fields. We also aim to de-
velop methods for comparing vector fields with scalar fields and for
the comparison of vector fields with each other.
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Fig. 15. Correlation fields of the hurricane multifield computed with
GSIM: C{2,4} (left), C{4,5} (right).
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volume rendering in interactive scenes. In Vision, Modeling, and Visual-
ization (VMV ’04), pages 386–379, 2004.

[9] G. Haller. Distinguished material surfaces and coherent structures
in three-dimensional fluid flows. Physica D Nonlinear Phenomena,
149:248–277, 2001.

[10] G. Haller. An objective definition of a vortex. Journal of Fluid Mechan-
ics, 525:1–26, 2005.

[11] G. Hermosillo, C. Chefd’hotel, and O. Faugeras. Variational methods for
multimodal image matching. International Journal of Computer Vision,
50(3):329–343, 2002.

[12] D. Jen, P. Parente, J. Robbins, C. Weigle, R. M. T. II, A. Burette, and
R. Weinberg. Imagesurfer: A tool for visualizing correlations between
two volume scalar fields. In Proceedings on the conference on Visualiza-
tion ’04 (VIS ’04), pages 529–536, 2004.

[13] J. Jeong and F. Hussain. On the identification of a vortex. Journal of
Fluid Mechanics, 285:69–94, 1995.

[14] C. Johnson. Top scientific visualization research problems. IEEE Com-
puter Graphics and Applications, 24(4):13–17, 2004.

[15] R. M. Kirby, H. Marmanis, and D. H. Laidlaw. Visualizing multival-
ued data from 2d incompressible flows using concepts from painting. In
Proceedings of the 10th IEEE Visualization 1999 Conference (VIS ’99),
pages 333–340, 1999.

[16] J. Kniss, C. Hansen, M. Grenier, and T. Robinson. Volume rendering
multivariate data to visualize meteorological simulations: a case study.
In Proceedings of the symposium on Data Visualisation 2002 (VISSYM
’02), pages 189–194, 2002.

[17] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer func-
tions for interactive volume rendering. IEEE Transactions in Visualiza-
tion and Computer Graphics, 8(3):270–285, 2002.

[18] M. Levoy. Display of surfaces from volume data. IEEE Computer Graph-
ics and Application, 8(3):29–37, 1988.

[19] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. In Proceedings of the 14th annual confer-
ence on Computer graphics and interactive techniques (SIGGRAPH ’87),
pages 163–169, 1987.

[20] A. Mahalanobis, B. V. Kumar, and A. J. V. Nevel. Volume correlation
filters for recognizing patterns in 3d data. In Proceedings of SPIE, volume
4471, pages 51–58, 2001.
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