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Abstract
While isosurfaces of anisotropy measures for data from diffusion tensor magnetic resonance imaging (DT-MRI) are
known to depict major anatomical structures, the anisotropy metric reduces the rich tensor data to a simple scalar
field. In this work, we suggest that the part of the data which has been ignored by the metric can be used to segment
anisotropy isosurfaces into anatomically meaningful regions. For the implementation, we propose an edge-based
watershed method that adapts and extends a method from curvature-based mesh segmentation [MW99]. Finally,
we use the segmentation results to enhance visualization of the data.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]: Re-
gion growing, partitioning

1. Introduction

Diffusion-tensor magnetic resonance imaging (DT-MRI) is
a medical imaging modality that measures the self-diffusion
of water molecules. This allows conclusions about the mi-
crostructure of the tissue that restricts molecular movement
[BP96]. In each voxel, the method determines a symmetric
3× 3 matrix (a diffusion tensor) that models the observed
distribution of apparent diffusivities.

Most frequently, DT-MRI is applied to the human brain.
The high complexity of such diffusion tensor fields has lead
to the development of a number of complementary visual-
ization techniques, each conveying some portion of the data
(cf. book chapters [VZKL06, ZKL05]).

One of these techniques are isosurfaces of scalar
anisotropy measures, which give a large-scale overview of
the data. It has been shown that these surfaces allow one
to identify important anatomic structures within the brain
[ZMB∗03] and they have subsequently been made available
in packages for DT-MRI visualization (e.g., [Sci06]). In the
present work, we suggest a method for automatic segmen-
tation of these isosurfaces into regions that correspond to
anatomic units revealed by the data. Subsequently, we use
the results to enhance visualization of the data.

Examining anisotropy isosurfaces is made difficult by the
fact that they are complex and convoluted, so structures deep
within the brain are occluded by structures further outside

from most viewpoints. User-defined clipping planes are suit-
able for cutting along any of the coordinate planes; however,
they do not offer a natural and convenient tool to eliminate
outer parts of the surface.

Reducing the visibility of outer structures by changing the
isovalue will not in general give acceptable results, as it can
also change the appearance of inner structures significantly.
Segmenting the surface easily allows the user to view only
the parts she is interested in.

Moreover, coloring the extracted isosurface mesh accord-
ing to the regions helps to visually identify anatomically re-
levant parts at first glance and chosing region colors based
on an average tensor representative reveals if a region is uni-
form in orientation and tensor shape.

In the following section, we will discuss existing meth-
ods for mesh segmentation and relate them to our own work.
Section 3 gives a review of the anisotropy measures from
which the isosurfaces are extracted. Section 4 formalizes our
segmentation criterion, which is then used by the algorithm
described in Section 5. Results are presented in Section 6
before the paper concludes in Section 7.

2. Related Work

One fundamental idea in our work is to use the magni-
tude of directional derivatives in the tensor field as a crite-
rion to segment anisotropy isosurfaces. While previous work
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has confirmed that the magnitude of the tensor field gradi-
ent indicates semantically significant boundaries in the data
[PAB02, OGW04, Kin06] and can be used to steer geodesic
active contours [FWB03], such differential information has
so far not been used to segment isosurface meshes. More-
over, we consider directional derivatives rather than the full
gradient magnitude, which is critical for our results.

Watershed-type segmentation methods are steered by a
scalar “height” field. Since the derivative magnitude can be
used to define such a scalar field on the isosurface, they offer
themselves as a natural candidate for the implementation of
our idea. The watershed principle has previously been used
for surface segmentation by Mangan and Whitaker [MW99]
and several authors after them (cf. [CG06] and references
therein). However, these works have a completely different
background: They aim at segmenting general surface meshes
according to their geometric properties, while our method
depends on the underlying tensor field and finds regions
which are not defined by surface geometry.

Both Rettmann et al. [RHHP02] and Vivodtzev et al.
[VLB∗03] have segmented isosurfaces from cranial MRI.
Their approaches are based on geodesic depth and curva-
ture, respectively, which are suitable to segment the gyri and
sulci of the cortical surface, but do not allow segmentation
of the major white matter structures depicted by anisotropy
isosurfaces. Our method draws on information about fiber
orientation, which is specific to DT-MRI and not present in
the conventional MRI data these two works deal with.

All watershed-based mesh segmentation methods we are
aware of define a height field on the mesh vertices to steer
the segmentation process. For our application, we found it
more advantageous to define edge weights, as discussed in
Section 4. While the work by Page et al. [PKA03] belongs
to the group of geometry-based methods, it comes closest to
our approach in that it uses a directional height field to con-
trol the final step of the segmentation. However, at that stage,
all regions have already been found and 70–90% of the ver-
tices have been labeled based on vertex-specific information,
so beside its distinct segmentation criterion, our work can be
regarded as a contribution to mesh segmentation in general.

As an alternative to anisotropy isosurfaces, direct volume
rendering of DT-MRI data has been suggested [KWH00].
While that approach is not limited to depicting isosurfaces of
anisotropy metrics, it has been used to produce results that
are comparable to renderings of isosurfaces [VZKL06] and
share their problems regarding occlusions. In this work, we
concentrate on isosurfaces because our segmentation method
requires explicit geometry.

3. Measures of Anisotropy

Tensor fields on R3 in general do not have isosurfaces. In-
stead, the surfaces we consider in this paper are isosur-

faces of a scalar field that results from the application of an
anisotropy metric.

Anisotropy is a measure of the degree to which the appar-
ent diffusivity in a voxel is directionally dependent. Alterna-
tively, anisotropy can be thought of as the degree to which
the diffusion ellipsoid deviates from a sphere. In the human
brain, high anisotropy indicates coherently organized nerve
fibers, so anisotropy isosurfaces outline the contours of ma-
jor white matter tracts.

In the context of DT-MRI, fractional anisotropy (FA)
[BP96] is the most widely used measure of anisotropy. Let
D denote a diffusion tensor and D̄ := D − 1

3 tr(D)I be its
anisotropic part, where tr is the matrix trace. Then, the FA
is defined as the relative magnitude of D̄ with respect to the
Frobenius norm ‖D‖ :=

√

tr(DDT ), rescaled to lie in [0,1]:

FA :=

√

3
2
‖D̄‖

‖D‖
(1)

However, the FA ignores the mode of anisotropy, i.e., it
does not tell us whether the diffusion ellipsoid has a more
linear or a more planar shape. The geometrical measures
suggested by Westin et al. [WPG∗97] are a frequent choice
when this additional information is required. They are in-
terpreted as coordinates cl , cp and cs of the tensor relative
to the extremal cases of linear, planar, or spherical shape,
respectively. Their most common definition in terms of the
sorted eigenvalues λ1 ≥ λ2 ≥ λ3 and the eigenvalue sum
λ̄ := λ1 +λ2 +λ3 of D is:

cl :=
λ1 −λ2

λ̄
cp :=

2(λ2 −λ3)

λ̄
cs :=

3λ3

λ̄
(2)

The isosurfaces described in this paper are obtained by
evaluating FA or, respectively, cl for each tensor in the
dataset and running the standard Marching Cubes algorithm
[LC87] on the resulting scalar field.

4. Definition of Edge Weights

Our approach exploits the fact that high local contrast in the
data indicates an anatomical boundary [PAB02], where lo-
cal contrast is measured as the magnitude of a directional
derivative. In tensor fields, directional derivatives are again
tensors, and their magnitude is given by the Frobenius norm.

According to this, two nodes on the isosurface are likely
to belong to different regions if the integrated magnitude of
the directional derivative along their common edge is high.
We will refer to this value as the edge weight w

w :=
Z

edge

∥

∥

∥

∥

∂D(r(t))
∂e

∥

∥

∥

∥

ds (3)

where e is the direction of the edge, which is parametrized as
r(t). In practice, we approximate the integral by evaluating
the magnitude of the directional derivative at the center of
the edge, and multiplying the result with the edge length.
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Tensor field derivatives are obtained by convolution with the
derivative of a C2 piecewise-cubic reconstruction kernel.

Since Equation (3) takes the integral of the derivative
magnitude along the edge rather than its average, it induces a
bias towards clustering geometrically close vertices together.
This stabilizes the segmentation in cases where the March-
ing Cubes algorithm generated extremely short edges.

In cerebrospinal fluid (CSF), the apparent diffusion coef-
ficients are much higher than within tissue, leading to large
diffusion tensor traces. Varying amounts of partial volum-
ing with CSF at ventricle boundaries lead to spurious deriva-
tive magnitudes that dominate those found in the white mat-
ter structures we are primarily interested in, which renders
Equation (3) unusable in such locations. However, tensor
trace has been reported to be approximately constant over
functional tissue [PJB∗96], so it is safe to filter out this
disturbance, without running the risk of losing relevant in-
formation elsewhere. Like previous authors [PAB02], we
achieve this by considering the derivative of the trace-free
deviatoric D̄ := D− 1

3 tr(D)I. By linearity of matrix trace, it
can be obtained by subtracting from the derivative tensor D′

its isotropic part D̄′ = D′− 1
3 tr(D′)I.

Taking directional derivatives along FA or cl isosurfaces
implicitly excludes variations in these measures, so our seg-
mentation exploits the part of the DT-MRI data which has
been ignored by the anisotropy metric. Since we explicitly
eliminate the influence of tensor trace, the only remaining
degrees of freedom are those anisotropy changes which are
not captured by our metric (i.e., changes in anisotropy mode
for FA or, respectively, in planar anisotropy for cl) and, most
of all, changes in orientation. This observation makes it plau-
sible that the segmentation criterion presented here will yield
anatomically meaningful results, since sharp changes in fiber
orientation are likely to indicate an anatomical boundary.

As in scalar fields, directional derivatives in tensor fields
can be determined from the gradient via the chain rule. The
gradient ∇D of a tensor field is a third-order tensor, which
can be thought of as a three-vector of its partial derivatives
D(x), D(y), and D(z). A directional derivative is obtained by
taking the inner vector-tensor product with a unit-length vec-
tor e = (ex,ey,ez)

T that defines the desired direction. Com-
bined with the filtering of tensor trace, the formula for the
traceless directional derivative magnitude M reads

M =

∥

∥

∥

∥

∥

∑
i∈{x,y,z}

ei

[

D(i) −
1
3

tr
(

D(i)
)

I
]

∥

∥

∥

∥

∥

(4)

We first tried to apply a variant of the algorithm in
[MW99] to our problem, which requires the definition of a
height field on the mesh vertices. According to the same ba-
sic segmentation criterion, such a field can be defined from
the derivatives in any two orthogonal directions perpendic-
ular to the surface normal. However, there are vertices at
which the derivative magnitude varies considerably for dif-

ferent directions within the tangent plane, so we may want
such vertices to be included in the same region as specific
neighbors. For this reason, the novel segmentation algorithm
described in the following section performs better than ex-
isting watershed-based methods that rely on vertex heights.

5. Performing the Segmentation

Like most watershed-based algorithms, our segmentation
method finds initial regions based on local minima, followed
by a merging process to reduce the oversegmentation which
typically occurs in the first stage. Additionally, our algorithm
requires a third stage in which it removes undesired “noise”
regions that have not been matched by the merging criterion.

5.1. Finding Initial Regions

The idea behind the initial step is that each vertex most likely
lies in the same region as the vertex to which it is connected
by the edge of least weight w. From that neighbor, we re-
cursively traverse the mesh until we either meet a vertex that
already has a label, which can then be copied to all vertices
on our path, or until we enter a vertex through its minimal
edge, in which case a new region is formed.

For clarity, the explanation above adopts the top-down for-
mulation which is frequently met in the watershed litera-
ture [MW99, PKA03]. Our actual implementation uses the
bottom-up equivalent, starting at edges that are minimal for
both their vertices and recursively labeling all nodes that are
reached via their minimal edge. This choice is a mere matter
of taste, as the results of both formulations will be the same.

This step of our algorithm is very similar to the original
method by Mangan and Whitaker [MW99], except that it
uses edge weights to decide on the transitions. On a typical
isosurface mesh with 44k vertices (half of which is shown in
Figure 3), this step produces almost 13k regions.

5.2. Merging Close Regions

Watershed methods frequently use closely related criteria for
the initial oversegmentation and the merging. For example,
previous authors [MW99,RHHP02] have simply merged re-
gions based on the lowest point on their common boundary.
In our context, high edge weights along a large part of a
boundary are a good indicator that the adjacent regions are
distinct, even if they share one or two cheaper edges. Con-
sequently, we decide to integrate the directional derivative
magnitudes over the full boundary.

Figure 1 clarifies the terminology of the following sec-
tion: On a triangular mesh, a boundary line is formed by the
edges that connect the nodes at the boundary of a region. The
triangle strip between the boundary lines of any two adja-
cent regions is what we call their boundary. Any triangle for
which exactly two of its vertices belong to the same region is
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Figure 1: In our terminology, the area between any two
adjacent regions (shades of gray) is called their bound-
ary (white). Boundary lines are shown dashed, the mid-
boundary line is strong black. A single boundary triangle
has been hatched.

called a boundary triangle. The line segment that connects
the midpoints of its two edges within the boundary is part of
the mid-boundary line.

The integrated weight W along a boundary is given by

W :=
ZZ

boundary

[

2

∑
i=1

∥

∥

∥

∥

∂D(b(s, t))
∂vi

∥

∥

∥

∥

2
]

1
2

dA (5)

where b(s, t) parametrizes the surface between the boundary
lines and the vi are any two unit vectors that span the surface
element dA. In practice, we again filter the derivatives, as
described by Equation (4).

We approximate the integral in (5) for each boundary tri-
angle by evaluating the directional derivative magnitudes at
the midpoint of each of its edges, averaging the results and
multiplying them with the area of the triangle. Among the
sampling schemes we have tried, this one was the most reli-
able, presumably because it places sampling points along the
mid-boundary line, at the center of the boundary. Also, it can
be efficiently implemented by storing the tensor field gradi-
ents which have been calculated in the first stage as edge at-
tributes and only re-evaluating the inner vector-tensor prod-
ucts, as well as the Frobenius norm of the result.

The length of boundary lines is not an indicator of region
saliency: In particular, distinct regions can meet along short
boundary lines. Consequently, we define the effective weight
W ′ := W/l, where l is the length of the mid-boundary line.

Junctions are triangles for which each vertex belongs to
a different region, so they are places in which three bound-
aries meet. We distribute the information from junctions to
the three adjacent boundaries by adding one third of the tri-
angle’s weight, area and mid-boundary length to each of
them. While the integral in (5) can be evaluated as before,
the length of the mid-boundary line is now estimated by av-
eraging over both possible configurations (cf. Figure 2).

Since the boundaries we integrate over are changed by
merges, the order of merge operations plays a significant role

Figure 2: In a junction, all three vertices belong to different
regions (central triangle). Thus, there are two possible con-
tinuations of each mid-boundary line, shown here dotted for
the one coming from below.

for the final result. We keep all boundaries in a priority queue
and iteratively merge the lightest one, until a user-defined
threshold on W ′ is reached.

The merging step is the core of our method, reducing the
13k initial regions in the above example to 623 more mean-
ingful ones. In terms of mesh segmentation in general, it is
also the main novelty of our approach. We expect that it can
be transferred to other segmentation goals, as long as a rea-
sonable definition of edge weights can be given.

5.3. Cleaning up

While watershed approaches that are based on a height field
have an inherent notion of a basin depth, which relates
boundary height to the minimal height within the region and
is frequently used as a merging criterion [MW99,RHHP02],
our described algorithm exclusively considers absolute edge
weights along the boundary of a region. Consequently, for
regions that are fully contained in areas of high gradient
magnitude, none of the boundaries are ever selected in the
merging step, and are left as noise at the end of that stage.

We eliminate this remaining oversegmentation in a final
step, by forcing a merge of all regions for which the number
of internal edges is lower than the number of edges that form
the boundary. This condition successfully treats both cases
of noise regions encountered in practice, i.e., very small re-
gions and thin and elongated regions along the boundary of
two larger ones, without introducing any new parameters. In
all cases, large and legitimate regions were preserved.

The merging partner for the noise regions was again se-
lected using the lowest effective weight W ′. However, this
choice is not critical, since it only affects minor regions. In
our example, the final step removed 536 out of the 623 re-
gions left after merging.

5.4. Notes on the Implementation

To implement the described segmentation method in an effi-
cient manner, we traverse the mesh only once, for the initial
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labeling. The subsequent merging and cleaning stages are
performed by keeping a simple data structure for each region
and boundary, respectively. For each region, we store the
number of internal and boundary edges, a list of all bound-
ary indices, and a list of all regions that have been merged
into this region. For each boundary, we store the associated
region and edge indices, as well as the accumulated weights
W , and mid-boundary line length l.

Merging itself is performed using a priority queue that
holds all boundary indices and their effective weights W ′.
We maintain an array that tells us for each region of the ini-
tial oversegmentation, to which of the remaining regions it
is merged. If a third region is adjacent to both regions we
are about to merge, we also need to merge the correspond-
ing boundaries, which requires the priority queue to allow
efficient updates of non-top elements. In addition, some care
has to be taken as a merge may turn a former junction into a
boundary triangle and the boundary information has to be
updated accordingly. This case can be checked using the
edge list of the boundary that caused the merge.

Our prototype implementation uses the C++ standard tem-
plate library (STL) for most required data structures, and
the teem library for taking derivatives in the tensor field.
For typical datasets, it goes through the whole segmentation
pipeline, from computation of the derivatives to output of the
final segmented mesh, in less than three seconds on a 2 GHz
Athlon 64 processor. This timing holds both for the exam-
ple discussed above (44k vertices), and for all other results
presented in the following section.

6. Results

Anisotropy isosurfaces typically consist of one large, central
surface and several smaller ones around it. To avoid visual
clutter, we have performed a connected component analysis
and only retained the main component in all our examples.
Thus, the presented regions have all been found by our seg-
mentation method.

Like previous authors [ZMB∗03, VZKL06], we have ex-
perimented with different values to find an isolevel which
clearly depicts the structures of interest. However, since both
FA and cl are normalized to the range [0,1], similar isovalues
give comparable results on different datasets.

6.1. Segmentation Results and Region-based Clipping

Figure 3 presents a sample result from running our algorithm
on an isosurface at FA=0.5. In Subfigure (b), we assign a
random pseudocolor to each region in order to emphasize
the boundaries found by our method. A comparison to im-
ages in a brain atlas [SSS06] suggests that our segmentation
correctly captures a number of anatomic structures. For ex-
ample, the cingulum bundle (Cing) is clearly separated from
the corpus callosum (CC), and the internal capsule (IC) is
recognized as a region of its own.

Note that the corpus callosum has not been separated from
the corona radiata (CR), reflecting the fact that there is a
smooth transition between both structures: In fact, the fibers
from the internal capsule which fan out in the corona radiata
are intermingled with fibers that pass the corpus callosum.
Thus, a purely boundary-based segmentation method cannot
distinguish them.

In Figure 4, we demonstrate how the segmentation results
can be used to clip parts of the surface that may occlude parts
we are more interested in. Subfigure (a) displays the largest
connected component of an FA isosurface, while the user has
selected the region that corresponds to the corpus callosum
and the corona radiata with the mouse and clipped all other
regions to get a better view on the ventral part of the CC,
which is mostly hidden in (a).

6.2. Coloring Regions by Representative

Once we have obtained a segmentation, it is possible to
compute one tensor per region that represents its average
diffusion behaviour. We determine this representative as a
weighted average of the data within the region, where the
tensor at each vertex is weighted by the sum of areas of all
adjacent triangles that belong to the same region.

Consequently, the region color can be chosen based on its
representative. We apply the standard XYZ-RGB scheme in
which the absolute values of the x, y, and z components from
the principal eigenvector are mapped to the red, green and
blue color channels, respectively. Since the principal eigen-
vector is only well-defined if the largest eigenvalue is suf-
ficiently distinct from the second largest one, the resulting
color must be modulated with a measure of linear anisotropy.

We decide to scale saturation with the square root of cl .
While using cl itself is more common, averaging typically
leads to more-or-less isotropic tensors, which result in undis-
tinguishable region colors when using standard schemes.
Even with this modification, our colors appear fainter than
what the viewer may be used to from looking at DT-MRI
data, but we chose to preserve this effect as a visual reminder
of the fact that we are dealing with average tensors, whose
direction is inherently less clearly defined than the direction
of a single data point may be.

In order to ensure expressive region representatives which
are well-suited for coloring, we modify the termination crite-
rion for the segmentation: In addition to providing a thresh-
old on the effective boundary weight W ′, we now specify a
lower threshold for the linear anisotropy cl of the region rep-
resentative that would result from a merge. If it is too low,
we are no longer able to assign a clear color to the result-
ing region. Consequently, the selected boundary is removed
from the queue without causing a merge. Otherwise, our al-
gorithm is carried out as described in Section 5.

Since changes in tensor orientation dominate our segmen-
tation criterion (cf. Section 4), it is unlikely that two adjacent
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(a) (b)

Figure 3: A part of an FA=0.5 isosurface, viewed from the midsagittal plane. (a) shows the standard XYZ-RGB color scheme,
(b) presents an annotated segmentation result in random pseudocolors.

(a) (b)

Figure 4: Segmentation results can be used to reveal parts of the surface which are otherwise occluded. While (a) shows the
largest connected component of an FA isosurface, parts of it have been clipped in (b) to give a better view on the corpus
callosum.
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(a) (b)

Figure 5: An isosurface at cl = 0.26, seen from the front/top/right. (a) shows the standard XYZ-RGB color scheme, while (b)
presents the abstraction provided by a segmentation with region representative coloring. The annotations illustrate that our
method has identified anatomically relevant regions.

regions will have representatives which are so similar that
the resulting region colors cannot be distinguished visually.

In Figure 5 (b), we use a combination of stopping region
merging with the cl criterion and coloring regions by their
representative to abstract from variations within anatomic re-
gions, allowing to tell apart the significant units at first sight
and still indicating their overall orientation.

The result clearly reflects a number of anatomic struc-
tures: Again, a region has been identified that corresponds
to the internal capsule (IC). The cerebellar peduncle (CP)
and the inferior fronto-occipital fasciculus (IF) have also
been segmented, but are mostly occluded in Figure 3. The
corpus callosum (CC) is separated from the cingulum bun-
dle (Cing), and the region-based cl criterion even allowed to
distinguish it from the corona radiata (CR).

7. Conclusion and Future Work

In this work, we have suggested that the part of diffusion
tensor data which is ignored by the anisotropy measure can
be used to segment anisotropy isosurfaces in an anatomically
meaningful manner, effectively adding information to the vi-
sualization and allowing the user to concentrate on parts of
the surface that may be of particular interest.

We have demonstrated practical segmentation results us-
ing an efficient edge-based watershed approach, which ex-
tends methods that have previously been described in the

context of geometry-based mesh segmentation. The segmen-
tated regions have been shown to reflect a number of anatom-
ically distinct structures and we have used the results to pro-
vide an abstracted view on the data that only shows relevant
structures and their overall properties.

Even though anisotropy isosurfaces have been introduced
for the visualization of DT-MRI data early on, they have so
far not received much scientific attention, presumably be-
cause applying an anisotropy metric reduces the tensor data
to a simple scalar field that can be processed using any of
the well-known methods for isosurface extraction. However,
note that both the FA and cl measures are nonlinear in the
tensor values, so we introduce an error by assuming lin-
ear interpolation when extracting the isosurface. In high-
curvature regions of the mesh, we have observed artifacts
that stem from this fact. Upsampling the tensor field before
applying the metric helps, but its advantages are minor on
large parts of the mesh and it makes isosurface extraction too
slow to be practicable. Thus, the development of an adaptive
method for anisotropy isosurface extraction may be an inter-
esting goal of future research.

Also, it may be interesting to see where the results of
our method differ when applied to high angular resolution
diffusion (HARD) MRI measurements, which do not em-
ploy the standard second-order diffusion tensor model. Dif-
ferent anisotropy metrics for such data have been proposed
[Fra01, ÖVM05], so we expect that it would not be difficult
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to extract isosurfaces from them and segment those by ap-
propriately modifying our definition of edge weights.
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