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Abstract

This paper gives (necessary and sufficient) geometric conditions for G* continuity of surfaces.
These conditions are based on the G” continuity of characteristic surface curves, namely lines of
curvature. Furthermore, the curvature of the lines of curvature is used for visualizing continuity
properties of surfaces. © 1997 Elsevier Science B.V.
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1. Introduction

Geometric continuity of curves and surfaces is an important and widely researched
concept in Computer Aided Geometric Design (CAGD). Several definitions of geometric
continuity have been introduced. Here we want to use the following popular definition
(see (Farin, 1992; Pottmann, 1988)):

Two curves are G" at a common point z iff there exists a regular parametrization with
respect to which they are C" at . Two surfaces are G” along a common line ! iff there
exists a regular parametrization with respect to which they are C™ along .

The advantage of this definition is that it works for higher order continuities. On the
other hand, it is rather abstract if we really want to check if a curve/surface is G”. It has
been recognized that there are equivalent definitions for » = 1,2 which use geometric
properties of the curve/surface:

Two curves through the point z, are G? in this point iff

— the normalized tangent vectors coincide in g and

— the osculating planes coincide in xy and

— the signed curvatures coincide in xq.
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Two surfaces sharing a common line | are G' along [ iff their normalized normal
vectors coincide along !.

Two surfaces are G* along [ iff

— the normalized normal vectors coincide along [ and

— the Dupin’s indicatrices coincide along [.

A survey on geometric continuity issues can be found in (Farin, 1992; Gregory, 1989).
In (Pottmann, 1988) conditions for G* of curves and tensor product surfaces described in
Bézier form are shown. In (Pegna and Wolter, 1992) there are more geometric conditions
for G? surfaces formulated.

In this paper we introduce (necessary and sufficient) geometric conditions for G>
continuity of surfaces. These conditions are based on G? continuity of lines of curvature.
The conditions are formulated in Theorem 1. An application of these geometric conditions
for G® continuity of surfaces is shown in Section 4. Here we use the curvature of the
lines of curvature as a surface interrogation method. The visualizations obtained this way
show shape and continuity features of the surface and detect umbilical points.

Notation and abbreviations:

Let

Ly X By
n=n(uv)= ———
[T X @

be the normalized normal vector of the surface x(u, v). Furthermore, we use the classical
abbreviations

E=zy- T, F=z, 2, G=z, Ty,
L=n-z,,, M=n-x,, N=n- T,

and their partial derivatives.

2. Theoretical background

Since we want to deal with G? of lines of curvature and asymptotic lines we have to
show how to compute their curvature. It turns out that we can compute their curvatures
even if a closed parametric form of these curves does not exist.

Lines of curvature can be considered as zangent curves of vector fields. To show this,
we start with the treatment of 2D vector fields and their tangent curves:

Given is a 2D vector field V : E* — R2. V assigns a vector (vz(P),vy(P))T to any
point P ~ (u,v). We use the notation V(P) = V (u,v) = (vz(u,v),vy(u,v))T. A point
P € E? is called critical point of V if V(P) = 0 is the zero vector. A curve t C E? is
called tangent curve (stream line, flow line, characteristic curve) of the vector field V' if
the following condition is satisfied: For all points P € ¢, the tangent vector of the curve
in the point P has the same direction as the vector V(P). For every point P € E? there
is one and only one tangent curve through it (except for critical points of V). Tangent
curves do not intersect each other (except for critical points of V).
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Given a noncritical point Py ~ (ug, vo) in the vector field, we want to compute the
first and second derivative vector of the tangent curve through P, in the point P,. Let
t(t) be the tangent curve through Py and ¢(¢g) = Fy. From the definition of the tangent
curves we know about the first derivative vector of ¢ at t = t,:

t(to) = V(t(t0)) = V(P). (1)
Applying the chain rule to £(t) = V(¢(t)), we obtain for the second derivative vector of
tatt=1ig:

d d
#(to) = Vi - -d%(to) +V,- d—:(to) = (vz - Vi +vy- V) (Ry). Q)

Now we consider a surface x over the (u,v)-domain of the vector field V. This way
the tangent curves of V' are mapped to surface curves on x(u,v). Let (u(t),v(¢)) be a
curve in the domain of . Then we know about the map of this curve onto the surface
and its first and second derivative (see (Farin, 1992)):

o (t) =z (u(t), v(t)).
&(t) = (- Ty + 0 - T)(2), 3
()=l oy + 0 Ty + 0 By + 20U 0~ Ty + 0+ T ) (£)-

Considering the domain curves as the tangent curves of V', we obtain from (1) and (2):

i
=V, =vz-Vy,+vy-V,.

Inserting this into (3) gives

L =VT - Xy + VY - Ty, (G
E=(vx - vy + VY - VL) - Ty + (VT - VYy + VY - VY, ) - Ty
+vr2-wuu+2~vx~vy-wuv+vy2-a:m,. 5)
Now we can compute the curvatures of the tangent curves through every surface point:
o= 122 2] )
|

(4)—(6) yield the following statement: in order to compute the curvatures of tangent curves
on a surface &, we only have to know the vector field V (and its partial derivatives) in
the domain of & which produces the tangent curves.

3. Lines of curvature
Lines of curvature are the tangent curves of the principal directions—considered as a

vector field on the surface. Since there are two principal direction vector fields (whose
vectors are perpendicular to each other) we have two families of lines of curvature.
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The principal directions in the domain of x are the solutions (vz, vy)T of the quadratic
equation (see (Farin, 1992)):

vy2 —vI - VY va?
det{ E F G | =0 @)
L M N

(7) yields two solution classes of (vx,vy)T (where a solution class contains only vectors
of the same direction). We use the abbreviations ha, hd and ic which are defined as:

ha FE L
b |=| F x| M]. €))
he G N

This gives for the partial derivatives:

[ ha E, L B\ (L.
hby |=| Fu | X M|+ | F x| M| 9

hey k G, N G N,

[ ha, w E, L E L,
kb, |=| F, | x{ M|+ F|x] M, (10)

\ hco G, N G N,

Furthermore, we use the abbreviations

hd=hb* —4 - ha - he, (11)
hd, =2-hb-hb, —4-ha, - hc—4 - ha- hey, (12)
hd,=2-hb-hb, — 4 ha, -hc—4- ha - he,. (13)

Then we can write two representatives of the solution classes of (7)—one for each
class—in the form:

‘ —2-ha+ hb—+Vhd
vi=| ) = : (14)
VY 2-hc—hb—vVhd

(—2-ha+hb+\/717l). )

vy — ( VT2 )
VY 2-hec— hb+ Vhd
To show (14) and (15), we have to check (7) for
(v, vy)T = (vz1, o))" ((vz,vy)" = (vzy, vy2)T respectively)

and (vT) - Ty + VY1 - Ty) - (VT2 - Ty + VY2 - T,) = 0. For the partial derivatives of V,
and V, we obtain:
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hd,,
—2 - hay, + hb, — L
(16)
2 - he, — hdy ’
U \/—
hd,
—2 - ha, + hb, — _
a7
2 he, — hd, 7
v 'U \/—
hd
~2 - hay + hb, + e
2-vVhd
) (18)
2 hey — hby, + hdy
" 2 vhd
hd
—2 - hay, + hb, + ——
2. vVhd
Vo, = i ) (19)
2-he, — hby + ——
C 2 \/__

Inserting (14)-(19) into (4)—(6) gives the curvature of the lines of curvature for every
surface point.
Critical points occur iff V; = (0,0)" and V3 = (0,0)T. Since

(vz; = 0) A {vey = 0) < (hd = 0) A (2 - ha = hb),
(vy) = 0) A (vy2 = 0) <= (hd =0) A (2 he = hb),

this is only possible for 2 - ha = hb = 2 - he. This and (8) give
0= (ha,2-ha,ha)"- (E,F,G)" = ha - (z, + z,)*.

Since x is regularly parametrized, this is only possible for ha = 0 = hb = hc, ie., we
have an umbilical point. Therefore, lines of curvature produce critical points in (and only
in) umbilical points on the surface.

Now we can formulate the desired

Theorem 1. Given are two regularly parametrized and each C* continuous surfaces x
and T which join along a common line l. Furthermore, every point on | is nonumbilical
in x and T, and in no point of | the lines of curvature of x and T are tangent to 1. Then
x and T are G° along | iff their lines of curvature are G* across 1.

Proof. “=": If  and T are G along [ they can be reparametrized in a way that they
coincide in all partial derivatives of order < 3. Since the curvature formula of the lines of
curvature contains only those derivatives (see Section 2), the lines of curvature are G.

“«<": We assume that the junction line [ is (0,v),0 < v < 1. This can be done by a
linear reparametrization of & and  without loss of generality.
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The G? condition of the lines of curvature contains coincidence in surface normal,
principal directions and principal curvatures, therefore G* of the surfaces along [. Thus,
we can assume that & and & are parametrized in such a way that

z(0,v) = Z(0,v), z,(0,v) =Z,(0,v), x,(0,v)=2,(0,v),
ZTyy (O, 'U) = iuu (0, ’U), Ty (0, U) = 5u'u (O’ U)1 Loyy (07 U) = ivv (07 U)- (20)

From (20) and the assumption that [ is the parametric line © = 0 we obtain

LTyuv (07 U) = E’uuv (07 ’U), Tyvv (07 ’U) = ium/ (0» U),

Tyyv (07 U) = ivvv (07 'U)- (21)
Let &; and &, be the tangent vectors of the lines of curvature on x. Furthermore, let
Z, and Z, be the tangent vectors of the lines of curvature on . Then (4), (14), (15)
and (20) give

dzl(ovv):(ﬂ”xl T Ty vy 'zv)(oav) :il(o,v)v (22)

22(0,v) = (vx2 - Ty + VY7 - T4)(0,0) = 52(0, v), (23)
where vz, vy, vy, vy, are given by (14) and (15).

Let & and &; be the second derivative vectors of the lines of curvature of x, and

let z; and T, be the second derivative vectors of the lines of curvature of . Then (5),
(14)-(19), (20) and (21) give

51(0, v) — &1(0,v) =vx) - (n AT — muuu)) (a1 - Ty + by - T), (24)
3’%2(0’ 'U) - 5:2(07 'U) =vx (n . (iuuu - muuu)) . (a2 "Xy + b wl})7 (25)
where

u _2-ha-F+hb-G‘_G
1= Jhd )
b1=2'ha'5h%hb'c+2-F+G, @7)
_2-ha-F+hb-G
B Vhd
b2=2-ha~F+hb-G
Vhd

(The assumption that no umbilical point is on the junction line { ensures that hd > 0
along [.)

Now the G? condition of the lines of curvature across ! can be formulated in the
following way (see (Farin, 1992, Chapter “Geometric Continuity I")):

(Z1(0,v) — %(0,v)) parallel to &1(0,v), (30)

(26)

ax + G, (28)

-2.F-G. (29)

(Z2(0,v) — #,(0,v)) parallel to (0, v). (31)

Using (22), (23), (24), (25) and the fact that x,, and z,, are linearly independent, we can
write (30) and (31) in the form
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Iy - (n ATy — :cuuu)) -det; =0, (32)
vZ2 - (N (Zuwy — Tuww)) - dety =0, (33)
where
VI ap
det; = det , 34)
- vyl bl n
VI @
det,=det | ~ . (35)
| vy2 b2 |

(22), (23) and the assumption that the lines of curvature are not parallel to [ give

vy - vz # 0. (36)
From (26)—(29), (34) and (35) we obtain
vz - vr?  (F?2— E-G)

det; - det, = hd . 37
This, (36) and the assumption that = and & are regularly parametrized yield
det; - det; # 0. (38)
From (32), (33), (36) and (38) we obtain
(7 - (T — ) (0,0) = 0. (39)
Because of (39), there exist two scalar functions r;(v) and r;(v) so that
Ty (0, V) = Ty (0, ) + 71 (V) - (0, v) + r2(v) - 2,(0, v). (40)
Now we look for a reparametrization Z of « which is C* to Z along [. We define
z(u,v) = m(ﬁ(u, v),ﬁ(u,v)), 4n
du,v) =u+t-ud m), B(uv)=v+i-w ().
Considering (41) to the junction line ! (i.e. setting u = 0), we obtain:
4(0,v) =0, Uu(0,v) =1, Uuu(0,0) =0, Uyyu(0,v) =r1(v), (42)
9(0,v) =v, 0,(0,v) =0, 0uu(0,0) =0, Vyuu(0,v) =r2(v). 43)
Applying the chain rule to (41), we obtain for the u-partials of Z:
Ty =y - Ty + Uy, - Ty, (44)
iuu:ﬁi CTyu +2 Uy Uy T +6,2L C Ty + Uuy * Ty + Vyy * Ty (45)

~ ~3 ~) o~ ~ D ~3
wuuu:uu'muuu+3'uu'vu'muuv+3'uu‘vu‘:cuvv+vu * Tyyy

+ 3 N (uu *Uyu * Tuu + (vu s Uyu + Uy * vuu) * Ly + Uy * Uy * mv'u)

+ auuu T Ly + Vyuw * Ty- (46)

Setting v = 0, we obtain from (44)—(46) using (42) and (43).
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Z(0,v) =2(0,v) = (0, v), “n
Z,(0,v) = 2, (0,v) = £,{0, v), (48)
Tyuu(0,0) = Ty (0, v) = Tuu(0,v), (49)

ZTuuu(0,0) = Ty (0, ) + 71 (V) - 24(0,v) + r2(v) - ,(0,v),
= Funa (0, 0). (50)

From (47)—(50) we obtain
z,(0,v) = Zu(0,v), Luu(0,v) = ZTuu(0,v),
Zyp(0,0) = oy (0,0),  Zuuw(0,v) = Zyuo (0, ),
Ty (0,0) = Zuiw(0, ), Zuoo(0,7) = Ty (0,v). (51)

Therefore, T and T are C* along I, which gives that z and T are G° along [. O

Remark 1. If there is only a single point s on the junction line [ which is umbilic or
in which one of the lines of curvature is tangent to [, this point ¢ divides [ in two parts
which both (except for x itself) fulfill Theorem 1. Since x and Z are continuous, we
still can infer G? of the surface from G? of the lines of curvature across [ \ {z}.

Remark 2. The proof of Theorem 1 used the assumption that both lines of curvature
are G2 across [ only for making sure that & and T are G? along I. Therefore, we can
rewrite Theorem 1 in the following form:

Given are two regularly parametrized and each C* continuous surfaces = and T which
are G* along a common line l. Furthermore, every point on | is nonumbilical in « and
Z, and in no point of | the lines of curvature of ® and X are tangent or perpendicular
to 1. Then x and T are G along | iff there is one family of lines of curvature which is
G? across 1.

Remark 3. Theorem 1 has some similarities to the linkage curve theorem described in
(Pegna and Wolter, 1992). In this theorem, the sufficient condition for G? of two surfaces
along a common line [ is the continuity of the normal curvature of a family of surface
curves across {. That means, both Theorem 1 and the linkage curve theorem use curvature
properties of families of curves across the junction line to obtain conditions for geometric
continuity of the surface.

Remark 4. A similar theorem to Theorem 1 can be formulated for asymptotic lines:

Given are two regularly parametrized and each C* continuous surfaces x© and T which
join along a common line . Furthermore, every point on | has negative Gaussian cur-
vature in © and ¥, and in no point of | is one of the asymprotic lines of x and T tangent

tol. Then x and & are G along | iff their asymptotic lines are G* across 1.

See (Theisel, 1996) for a proof.
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4. Visualizing the curvature of the lines of curvature

Since we have shown how to compute the curvature of the lines of curvature, we can
use this for visualizing certain surface properties.

The upper left picture of Fig. 1 shows a ray traced test surface: a shoe shaped (non-
rational) piecewise bicubic surface. It consists of 29 x 10 patches and is G? along the
patch borders.

We compute the geodesic curvature of the lines of curvature for every surface point
and color code those values. The geodesic curvature can be obtained by projecting & into
the tangent plane and applying (6). The curvature obtained this way can be considered
as the curvature of a 2D curve and therefore equipped with a sign.

Fig. 1. Test surface and geodesic curvature of its lines of curvature.
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Knorm

Fig. 2. Color coding the geodesic curvature.

The color coding map for the geodesic curvature of the lines of curvature is shown in
Fig. 2: The curvature « (which can lie anywhere between —oc and co) is “normalized”
t0 Kporm in the interval (—1, 1} using the equation

Knorm == sgn{k) - (1 — e—Hnllcon)'

The positive value con can be considered as the contrast of the visualization. Decreasing
con leads to a darker picture but emphasizes the critical points (in this case: the umbilical
points). con should be chosen interactively.

The pictures middle left and middle right of Fig. 1 show the geodesic curvature of
the two families of lines of curvature. The lower two pictures are magnifications of
the middle ones. For comparison, the upper right picture shows the visualization of the
Gaussian curvature of the test surface.

The curvature visualizations of the lines of curvature show clearly discontinuities at the
patch borders of the test surface. This shows that the surface is not G° continuous. The
umbilical points of the surface can be clearly detected as highlights: around umbilical
points the curvature of the lines of curvature tends to infinity.
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