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Abstract. The treatment of stream lines, path lines and streak lines
is a powerful method for visualizing the behavior of unsteady (i.e. time
dependent) flow fields. Although a closed parametric form of these lines
does not exist, we show how to compute their curvatures. The visualiza-
tion of the curvatures of these curves shows several aspects of the flow,
such as location and movement of turbulent areas. The technique works
without applying any numerical integrations.
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1 Introduction

The visualization of flow data has become one of the research topics in scientific
visualization. Several techniques for visualizing the flow of fluids and gases have
been developed.

One of the most important approaches for visualizing steady (i.e., time inde-
pendent) flows is the treatment of stream lines. A stream line can be considered
as the path of a massless particle in the flow. Stream lines have interesting
visualization properties: Visualizing an appropriate number of them gives an
impression of the behavior of the entire flow. Unfortunately, in general stream
lines cannot be computed in a direct way but only as the numerical solution of
partial differential equations.

Several approaches for integrating and visualizing stream lines can be found
in [1], [2], [3], [7] and [9]. In [4] and [5], topological concepts of vector fields are
used for visualizing the flow. The critical points of the vector field are detected
and classified. These points are connected by particular tangent curves, called
separation curves. Unfortunately, the classification of the critical points works
only for first order approximations of the flow. In [6] local properties of the flow
(divergence of the vector field, curvature of the tangent curves...) are computed
and visualized in an icon, called a local probe. [8] can be considered as a first
approach to handle vector fields with higher order topologies. Here the vector
fields are described in terms of Clifford algebras.

In [10], the curvatures of stream lines are used as a global visualization
method: for every point of the domain of a 2D vector field there is only one



stream line through it (except for critical points). In [10] it has been shown that
the curvature of a stream line can be computed in a simple closed form even
if a closed form for the stream lines themselves do not exist. The curvatures
were computed for every point of the domain and color coded using a contin-
uous color coding map with the following properties: red color means positive
curvature, green color means negative curvature, the higher the curvature the
lighter the color is. In fact, a zero curvature gives black; if the curvature tends
to plus (minus) infinity, the red (green) color becomes white.

Fig. 1. Examples of stream line curvature for steady vector fields. a) arrow plot of
a saddle point, b) curvature visualization of a), c¢) arrow plot of repelling focus, d)
curvature visualization of c).

Figure 1 a) and b) show an example of a vector field with a critical point
- a saddle point. Figure 1la) is the arrow plot, figure 1b) shows the curvature
visualization of a). The critical point can be seen clearly as a highlight. Figures
1 ¢) and d) show another example: a vector field with a repelling focus.

In general, critical points can be detected as highlights in the curvature vi-
sualization. The pictures obtained by visualizing the stream line curvature give
a reasonably good impression of the flow. Since in turbulent areas the flow di-
rections change frequently, these areas generally have high curvatures of the
stream lines and can therefore be clearly recognized as highlights. The curvature
of stream lines can be computed without applying any numerical integration
methods. So there is no risk of destroying the topology of the vector field de-
scribing the flow.

In [11] a similar approach was used to visualize the curvature characteristic
curves on free-form-surfaces. These curves (lines of curvature, reflection lines ...)
can be considered as tangent curves of certain vector fields and therefore be
visualized using the methods described in [10].

In this paper, we want to extend the approach of [10] to unsteady 2D flows.
Here we have four kinds of characteristic lines: stream lines, path lines, streak
lines and time lines. We show how to compute the curvature of stream lines,
path lines and streak lines and apply it as a visualization technique for unsteady
2D flows.

Section 2 gives the theoretical background for computing the curvature of
the characteristic lines. Sections 3-6 treat stream lines, path lines, streak lines



and time lines of unsteady 2D flows. In section 7 the technique is discussed at
an example data set.

2 Theoretical Background

A 2D steady flow is usually described as a 2D vector field V' (z,y) = (u(z,y),v(z,y))*.
Then the stream line of the flow correlates with the tangent curves of V. A curve

L C IE? is called a tangent curve of the vector field V if the following condition

is satisfied: For all points P € L , the tangent vector of the curve in the point P

has the same direction as the vector V(P).

For every point P € IE? there is one and only one tangent curve through it
(except for critical points, i.e. points with ||V|| = 0).

From the definition of tangent curves we know their tangent vector for every
point of the domain: x(z,y) = V(z,y). Applying the chain rule, we obtain the
second derivative vector for every point of the domain: X(z,y) = (u -V, + v -
Vy)(z,y). Then we can compute the (signed) curvature of the tangent curve
through (z,y): k(z,y) = %(m,y) See [10] for more details on the curvature
of tangent curves.

An unsteady 2D flow can be described as a 3D vector field

u(z,y,t)
V(z,y,t) = | v(z,y,t) (1)
a(x,y,t)
where
a(z,y,t)=1 , az=ay=a;=0. (2)

The auxiliary dimension a(x,y,t) can be interpreted as the time component of
the flow. Since time passes at a constant rate, we have a(z,y,t) = 1. V has a
critical point iff u? +v? = 0. In general, critical points of V denote the turbulent
areas of the flow. In the following, V' stands only for an unsteady flow field
described by (1).

Projecting V' into the planes ¢ = const, we obtain another description of an

unsteady 2D flow:
u(x,y,t
Vet = (40D, ®

The introduction of both V' and V), for describing unsteady flow fields has tech-
nical reasons: Both descriptions are useful for describing stream lines, path lines,
streak lines and time lines.

3 Stream Lines

Stream lines are the tangent curves of V. For every time and every location
there is one and only one stream line through it (except for critical points).
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Fig. 2. Stream line [, of an unsteady flow

Figure 2 shows the computation of the stream lines for the time ¢ = t5. We
consider the tangent curves of V}, at this time. We obtain the curvature of the
stream lines by computing first and second derivative vector of the stream line
for every point of the domain of V},:

Xstream(mayat) = Vp(xayﬂf) (4)
Xstream (.’L’, Y, t) = (u ’ Vpx +uv- pr)(l‘, Y, t) (5)
Katroam (:E, v, t) _ det[xstream: Xstream] (.27, v, t). (6)

||Xstream | |3

4 Path Lines

Path lines are obtained by setting out a particle and tracing its path in the
unsteady flow. Therefore, path lines are projections of the tangent curves of V/
into a plane ¢t = const. For every location and every time there is one and only
one path line through it (except for critical points).

t=to

Fig. 3. Path line [, of an unsteady flow

Consider figure 3. The curve [ is the tangent curve of V' through the point
(@0, Yo, to)- The curve I, is the projection of [ into the plane ¢ = to. The curvature
of the path line through (o, yo, to) is the curvature of I, in this point. To compute



it, we express the first and second derivative vectors of I in (zo, Yo, to):
=V , Zi=u-Vo+v-Vy+a Vi (7)

Projecting %; and %; into the plane ¢ = ¢y and taking (2) into consideration we
obtain the first and second derivatives of the path line in (zo, yo, to):

Xpath(-r;y7t) = Vp(mayat) (8)
ipath(wayvt) = (U ’ Vpx tu- pr + th)(m’y’t)' (9)

Then the curvature of the path line through (zg,yo,to) is

det[x th,)"( th
Hpath(xayat) = [H:;a th”ga ]("L‘ yvt) (10)
pa

5 Streak Lines

A streak line is the location of all particles set out at one point at different times.

t Is _

t=t

1 (X3,y3,t) ™ 4 (x2,y2,t1) !

(X1,y1,t1)

(Xo,Yo,to+dt) t=to
(Xo,Yo,to) ¥
(Xo,Yo, to—dt)

X

Fig. 4. Streak line [, of an unsteady flow

Consider figure 4. Suppose a particle is set out at (o, Yo, o). The path of the
particle is the tangent curve /; of the vector field V. [; might pass the location
(z1,y1) at the time 1 (to < t1). We consider two more particles set out at (o, yo)
but a short time before and after ¢, i.e. we set out particles at (xo,yo,to — dt)
and (xo, Yo, to + dt). They follow the tangent curves Iy and I3 of V. Suppose Iy
passes the location (z2,y2) at the time ¢ = 1, and l3 passes the location (3, ys3)
at the time ¢t = t;. Then (z1,y1,t1), (v2,y2,t1) and (3, ys,t1) lie on a streak line
ls through (1, y1,t1). Converging dt to 0, we might compute tangent direction
and curvature of I in (z1,y1,t1).



Dealing with streak lines gives the following two problems:
a) A streak line through (z1,y1,%1) is not uniquely defined. Another choice of ¢,
might lead to another streak line through (z1,y1,1).
b) Computing a streak line through (1, y1,t1), we have to compute the tangent
curve [; of V. This is only possible by integrating l; numerically - a procedure
we wanted to avoid !
To avoid the problems a) and b) there are two solutions:
1) We consider only the special case to = t;. This way a streak line through
(x1,y1,t1) is uniquely defined and we do not have to trace the tangent curves.
Unfortunately, in this case the streak line through (z1,y1,¢1) coincides with the
stream line through (z1,y1,t1) computed in section 3. So this case is of less
interest.
2) Setting to = t1, the direction of the streak lines coincides with the direction
of the stream lines: Xg¢peak = Xstream = Vp- Setting ¢ty = t; — dt, the direction
of the streak lines might be x4, which usually differs from Xgyeqr- Then we
want to define the ”curvature” of streak lines as a measure of how much the
directions of Xgtreqr and x4 differ. In other words: The ”curvature” of streak
lines is a measure of how ”strong” the directions of the streak lines change while
varying the time #y of setting out the particles around t; of considering the
streak lines. The choice of the concept ”curvature” is justified in the following
similarity to the usual curvature concept of curves: The curvature of a curve can
be considered as a measure of how much the tangent direction changes while
varying the location on the curve.

To compute the ”curvature” of streak lines, we have to compute

. — I Xstreak — Xdt
Xstreak = 1M ——————.
dt—0 dt

From (11) we obtain

. . u(z,y,t
Xstreak(xayat) = Vp(mayat) , Xstreak(xayat) = <,UZEZ, z t;) (12)

and can compute the curvature of the streak lines by

det[x b, X .
Rstreak (.’L', Y, t) — [ ||S;(ria 7k |r§rea ]
strea

(z,y,1). (13)

6 Time Lines

Time lines are obtained by setting out particles located on a straight line at a
fixed time and tracing them in the unsteady flow.

Consider figure 5. Suppose a particle is set out at (zo,yo,%0). The path of
the particle is the tangent curve [; of V. The curve /; might pass the location
(z1,y1) at the time t; (to < t1). We consider two more particles set out at the
time t = to: (xg — dz,yo — dy,to) and (zo + dx,yo + dy,to). These points and
(zo,Yo,to) are located on a straight line in the plane ¢ = . Let these particles
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Fig. 5. Time line I; of an unsteady flow

follow the tangent curves I, and I5 of V. Suppose l4 passes the location (z4,y4)
at the time t = t1, and I5 passes the location (x5,ys) at the time ¢t = ¢;. Then
(z1,y1,t1), (T4,y4,t1) and (z5,ys,t1) lie on a time line [; through (z1,y1,t1).

The choice of a particular time line through (x1,y1,t1) depends on two pa-
rameters: the choice of ¢y and the choice of the straight line in the plane t = ;.
Thus a time line through (z1,y1,¢1) is not uniquely defined. We therefore cannot
compute its curvature as a local property.

7 The Visualization Technique

In sections 3-6 we have shown that for a given location (zg,yo) and a given time
to there is one and only one stream line and one and only one path line through
it. Furthermore we were able to compute the curvature of the stream line and
the path line in (xo, yo, to)- With some more effort we were able to reduce the
number of streak lines through (xo,yo,t0) to one and could thus compute its
curvature as a local property. In general, the curvatures of stream lines, path
lines and streak lines in (zg,yo, to) differ.

For visualizing the flow we pick certain time steps to, 1, ... and compute and
color code the curvature of stream lines, path lines and streak lines for every
point of the domain. We use the color coding map described in [10] and section
1.

Figure 6 shows the flow of water in the bay area of the Baltic Sea near
Greifswald, Germany (Greifswalder Bodden). The bay covers an area of 23 x 26
km. The maximal depth of the water is 12 m. The vectors of the sample points
on a regular 115 x 103 grid are obtained by numerical simulation over 25 time
steps. Therefore, the flow in this shallow water can be considered as an unsteady
2D flow.



Fig. 6. Flow at time ¢o. a) arrow plot; b) curvature of stream lines; c) curvature of
streak lines; d) curvature of path lines

Figure 6a) shows an arrowplot of the vector field at a time of interest ¢ = ¢o.
Figure 6b) shows the curvature of the stream lines for every point of the domain
of the field at ¢ = t¢. Figure 6¢) shows the curvature of the streak lines, figure 6d)
is the curvature of path lines. In all the curvature visualizations we can detect
turbulent areas as brightly colored regions in the pictures. The critical points
appear as highlights.

The curvatures of stream lines, path lines and streak lines show different
aspects of the flow for a certain time of interest ¢ = to. The stream line curvature
shows how much the flow direction changes locally, i.e. the flow at a point and its
environment is considered for a fixed time. The streak line curvature shows how
much the flow direction changes temporarly at a fixed location. Here a bright
color at a certain point of the vector field means that the flow direction is going



to change rapidly in the next moments at this location. The path line curvature
can be considered as a combination of stream line curvature and streak line
curvature.

Fig. 7. Flow at time to (magnification). a) arrow plot; b) curvature of stream lines; c)
curvature of streak lines; d) curvature of path lines

Figure 7 shows the magnification of the turbulent area upper left in figure
6. Here the visualizations of the stream line curvature and path line curvature
show clearly the underlying grid structure of the vector field. Due to the bilinear
interpolation of the vector field, stream lines and path lines are not curvature
continuous at the boundaries of the grid cells. In contrast to this, streak lines are
curvature continuous in a bilinear vector field: the visualization of their curvature
looks smooth (see figure 7c).



8 Conclusions

We have shown how to compute the curvatures of stream lines, path lines and
streak lines of unsteady flow fields. We applied this as a visualization technique
for flow data. The pictures obtained this way are without overloadings and am-
biguities. They show clearly the turbulent regions of the flow as highlights. The
local and temporal behavior of the flow can be deduced from the curvatures of
stream lines and streak lines.

In future, the method should be applied to unsteady 3D flow data. Here we
have to apply approaches of volume visualization for visualizing the curvature
of the characteristic lines.
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