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Abstract

Farin points (weight points) are a useful tool for handling the weights of rational Bézier curves.
They describe the weights of the Bézier points uniquely and in a geometrically intuitive way.

The main problem for using Farin points for triangular or tensorproduct rational Bézier surfaces is
the fact that they are not independent of each other and therefore overdefine the weights. To overcome
this problem we present two approaches: moving a Farin point, we adjust the adjacent Farin points
automatically in such a way that the system of all Farin points stays contradiction-free. In the other
approach we present an appropriate subset of Farin points which are independent of each other and
define the weights uniquely. Both approaches are presented for triangular and tensorproduct Bézier
surfaces. They make Farin points useful for the design of rational Bézier surfaces. 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Farin points (weight points) are a useful design tool for rational Bézier curves. They
provide an intuitive way of handling the weights of the Bézier points.

Given two adjacent Bézier pointsbi , bi+1 with their assigned weightswi , wi+1 on a
Bézier polygon, the Farin pointfi is defined as

fi = wi · bi +wi+1 · bi+1

wi +wi+1
. (1)

The location offi on the line throughbi andbi+1 determines the ratio ofwi andwi+1
uniquely and in an intuitive way. For positive weights,fi is located betweenbi andbi+1,
and ratio(bi , fi ,bi+1) = wi+1/wi . Intuitively: the largerwi is relative towi+1, the closer
fi moves towardbi . Fig. 1 gives an illustration. Given the Bézier polygonb0, . . . ,bn,
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Fig. 1. Farin pointfi for the Bézier pointsbi , bi+1 and their assigned weightswi , wi+1.

Fig. 2. Rational Bézier curve of degree 3 described by (a) Bézier points and assigned weights,
(b) Bézier points and Farin points.

the assigned weightsw0, . . . ,wn can be described by the Farin pointsf0, . . . , fn−1. Fig. 2
shows an example forn= 3.

Farin points for rational Bézier curves have the following properties:
(a) Uniqueness: the Farin pointsf0, . . . , fn−1 describe the weightsw0, . . . ,wn uniquely

except for a common factor. This common factor has no influence on the curve
shape.

(b) Independence: each of the Farin pointsf0, . . . , fn−1 can be moved freely on the lines
of the Bézier polygon. The adjacent Farin points are not affected by movingfi .

(c) Intuitivity: instead of increasing or decreasing the weights a designer moves Farin
points on the Bézier polygon. He or she may find this more intuitive.

(d) Extended convex hull: for positive weights, the rational Bézier curve lies not only
in the convex hull ofb0, . . . ,bn, but also in the convex hull ofb0, f0, . . . , fn−1,bn.
Fig. 3 illustrates forn= 3.

A comprehensive introduction of rational Bézier curves and Farin points (weight points)
can be found in (Farin, 1995).

This paper deals with the extension of Farin points to rational Bézier surfaces.
A straightforward extension to surfaces creates problems because the independence
property gets lost. As we will see in the next sections, Farin points for Bézier surfaces (both
triangular and tensorproduct) overdefine the weights and have therefore dependencies to
each other. In other words: moving a particular Farin point of a Bézier surface may cause
contradictions in the system of all Farin points. A Farin point is no longer freely movable.
An important design feature gets lost.

Section 2 shows the solutions for this problem for triangular Bézier surfaces in order
to keep Farin points being a useful design tool. Section 3 does the same for tensorproduct
surfaces.
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Fig. 3. Extended convex hull property for rational Bézier curves: the curve lies completely in the
convex hull ofb0, f0, f1, f2,b3.

Notation. For describing basic geometric constructions in Euclidean space we use the
following pseudo-code:

L := lin(a,b): let L be the line through the pointsa andb.
L := par(L0,a): let L be the line parallel to the lineL0 througha.
a := int(L1,L2): let a be the intersection point of the linesL1 andL2.

Furthermore we need the concept of cross ratio for four collinear points. We use the
definition

cr(a,b,c,d)= ratio(a,b,d)
ratio(a,c,d)

. (2)

2. Farin points for Bézier triangles

For triangular Bézier point schemes we have to find a way to describe the weight ratios
of the three weights of a subtriangle.

For three Bézier pointsbi,j,k , bi+1,j,k−1, bi,j+1,k−1 with the assigned weights
wi,j,k, wi+1,j,k−1, wi,j+1,k−1, we define the Farin point as barycentric combination of
the three Bézier points:

fi,j,k = wi,j,k · bi,j,k + wi+1,j,k−1 · bi+1,j,k−1 + wi,j+1,k−1 · bi,j+1,k−1

wi,j,k + wi+1,j,k−1 + wi,j+1,k−1
. (3)

For positive weights,fi,j,k is inside the trianglebi,j,k, bi+1,j,k−1, bi,k+1,j−1. Obviously,
the location offi,j,k in the triangle determines the ratio of the three weights uniquely.
Furthermore, we define the Farin pointspi,j,k , qi,j,k, r i,j,k on the edges of the triangle as
determining the ratios of each two of the Bézier points:

pi,j,k = wi,j,k · bi,j,k + wi+1,j,k−1 · bi+1,j,k−1

wi,j,k + wi+1,j,k−1
,

qi,j,k = wi+1,j,k−1 · bi+1,j,k−1 + wi,j+1,k−1 · bi,j+1,k−1

wi+1,j,k−1 + wi,j+1,k−1
,

r i,j,k = wi,j,k · bi,j,k + wi,j+1,k−1 · bi,j+1,k−1

wi,j,k + wi,j+1,k−1
.
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Fig. 4. Farin pointsfi,j,k , pi,j,k , qi,j,k , r i,j,k for the Bézier trianglebi,j,k , bi+1,j,k−1, bi,j+1,k−1.

Fig. 5. Bézier triangle of order 2. Given the Farin pointsf0,0,2, f0,1,1, the Farin pointf1,0,1 is not
freely movable. In factf1,0,1 must lie on lin(r1,0,1,b2,0,0).

The geometric correlation betweenfi,j,k, pi,j,k , qi,j,k , r i,j,k is shown in Fig. 4.
Now we show that Farin points on Bézier triangles are not independent anymore.

Consider a Bézier triangle of order 2, as shown in Fig. 5.
Suppose we know the Farin pointsf0,0,2 and f0,1,1. Then the following constructions

give r1,0,1:

q0,0,2 := int
(
lin(b1,0,1,b0,1,1), lin(b0,0,2, f0,0,2)

)
,

p0,1,1 := int
(
lin(b0,1,1,b1,1,0), lin(b0,2,0, f0,1,1)

)
,

h := int
(
lin(p0,1,1,b1,0,1), lin(q0,0,2,b1,1,0)

)
,

r1,0,1 := int
(
lin(b1,0,1,b1,1,0), lin(b0,1,1,h)

)
.

The Farin pointf1,0,1 must lie on lin(r1,0,1,b2,0,0). It is not freely movable any more. If
f1,0,1 is not on lin(r1,0,1,b2,0,0), the system of the Farin pointsf0,0,0, f0,1,1, f1,0,1 is not
contradiction-free.f0,0,2, f0,1,1 andf1,0,1 are not independent of each other.
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To overcome this problem (and therefore make Farin points on Bézier triangles usable
as a design tool) there are two approaches:

(a) Allow the user to move every Farin point and adjust the adjacent Farin points
simultaneously so that the system of all Farin points stays contradiction-free.

(b) Offer the user not all Farin points to move but only a certain number. These Farin
points should be independent of each other and describe all weights of the Bézier
points uniquely (except for a common factor).

Approach (a) is treated in Section 2.1, Section 2.2 shows solutions for approach (b).

2.1. Adjusting adjacent Farin points

Given a triangular Bézier point scheme, we consider all Farin pointsfi,j,k of “upright”
Bézier subtriangles. As we know from the example in Fig. 5, these Farin points are not
independent of each other.

Fig. 6 shows a part of triangular Bézier point scheme. Suppose the system of all
Farin pointsfi,j,k is contradiction-free. After movingf0,0,0 to f̃0,0,0, the system of Farin
points is generally not contradiction-free any more. In order to preserve the freedom of
contradictions, we adjust the adjacent Farin points

Fig. 6. Moving the Farin pointf0,0,0 to f̃0,0,0. In order to preserve the freedom of contradictions,
the adjacent Farin pointsf0,1,−1, f−1,1,0, f−1,0,1, f0,−1,1, f1,−1,0 have to be adjusted to
˜f0,1,−1, ˜f−1,1,0, ˜f−1,0,1, ˜f0,−1,1, ˜f1,−1,0.
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Fig. 7. Moving the Farin pointf0,0,0 to f̃0,0,0 and adjusting the adjacent Farin points. Constructing

the auxiliary pointc, we obtain: cr(b0,1,−1, f−1,1,0, ˜f−1,1,0, r−1,1,0)= cr(b0,1,−1, f0,1,−1, ˜f0,1,−1,
q0,1,−1)= cr(b0,1,−1, f0,0,0, c, p0,0,0).

f0,−1,1, f1,−1,0, f1,0,−1, f0,1,−1, f−1,0,1, f−1,1,0

to the new points

f̃0,−1,1, f̃1,−1,0, f̃1,0,−1, f̃0,1,−1, f̃−1,0,1, f̃−1,1,0.

We know thatf̃0,1,−1 lies on lin(b0,1,−1, f0,1,−1). The similar statements for the other
Farin points can be seen in Fig. 6. Furthermore, it can be shown that:

cr
(
b0,1,−1, f0,1,−1, f̃0,1,−1,q0,1,−1

)= cr
(
b0,1,−1, f−1,1,0, f̃−1,1,0, r−1,1,0

)
,

cr
(
b0,0,0, f−1,0,1, f̃−1,0,1, r−1,0,1

)= cr
(
b0,0,0, f0,−1,1, f̃0,−1,1,p0,−1,1

)
,

cr
(
b1,0,−1, f1,−1,0, f̃1,−1,0,p1,−1,0

)= cr
(
b1,0,−1, f1,0,−1, f̃1,0,−1,q1,0,−1

)
.

All we have to do now is to determine these cross ratios. For doing this, consider Fig. 7.
We constructed the auxiliary pointc in the following way:

h := int
(
par
(
lin(b0,0,0,b1,0,−1), f̃0,0,0

)
,par

(
lin(b0,0,0,b0,1,−1), f0,0,0)

)
,

c := int
(
lin(b0,0,0,h), lin(b0,1,−1, f0,0,0)

)
.

Then it can be shown that

cr(b0,1,−1, f0,0,0,c,p0,0,0)= cr(b0,1,−1, f0,1,−1, f̃0,1,−1,q0,1,−1
)

= cr
(
b0,1,−1, f−1,1,0, f̃−1,1,0, r−1,1,0

)
.

Therefore, the new adjusted Farin points̃f0,1,−1 and f̃−1,1,0 can be geometrically
constructed. Similar constructions apply for the other adjacent Farin points.
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2.2. Independent Farin points for Bézier triangles

In this subsection we want to establish a system of independent Farin points for Bézier
triangles which describes the weights of the Bézier points uniquely (except for a common
factor). The first solution of this was published in (Albrecht, 1995). Here the problem was
reduced to the curve problem by using not the Farin pointsfi,j,k in the subtriangles but the
pointspi,j,k, qi,j,k, r i,j,k on the edges of the subtriangles (see Fig. 4). A system of these
points—each of them movable on a line segment—gave the solution. This solution was
obtained by searching a spanning tree for the control net which is interpreted as a graph.

In this subsection we use basic ideas of (Albrecht, 1995) but present a system of
independent Farin pointsfi,j,k , i.e., these Farin points are freely movable inside a whole
triangle. Therefore we need fewer Farin points than in (Albrecht, 1995).

First we have to establish that such a system of independent Farin points exists at all.
In doing this we keep in mind that a Farin pointfi,j,k is movable in 2D and therefore its
location covers 2 degrees of freedom.

The number of degrees of freedom we have to cover in a triangular Bézier point scheme
of the ordern is:

df (n)= (n+ 1)(n+ 2)

2
− 1. (4)

This means thatdf (n) is the number of the Bézier points minus 1. We have to fix the
weights of all Bézier points except for a common factor. One weight can be chosen
randomly, then the other weights are fixed.

Table 1 shows the numberdf (n) of degrees of freedom for smalln.
If df (n) is even, we can find a system ofdf (n)/2 independent Farin points. Fordf (n)

is odd, there are two strategies:
(α) Find (df (n)− 1)/2 independent Farin points and determine the weight of one

corner point of the Bézier triangle explicitly.
(β) Find(df (n)− 3)/2 independent Farin points and determine the weights of all three

corner points of the Bézier triangle explicitly. This strategy has the advantage of
preserving symmetry in the triangular scheme.

Fig. 8 shows the solution for strategy (α) for smalln. In this figure, all subtriangles for
which a Farin point is used are marked. Forn= 2,3,6 we havedf (n) odd. For the special
treatment of the corners lower left we introduced Farin points on line segments which relate
the weight of the corner to the average of the weights of the other two Bézier points in the
subtriangle.

Table 1
Numberdf (n) of degrees of freedom to be covered by Farin points
in triangular Bézier point schemes of the ordern

n 1 2 3 4 5 6 7 . . .

df (n) 2 5 9 14 20 27 35 . . .

even odd odd even even odd odd. . .
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Fig. 8. Schemes of independent Farin points for Bézier triangles of degree 1–6, strategy (α). Marked
are all subtriangles in which the Farin point is considered. Forn= 2,3,6 the weights of one corner
Bézier point was fixed by introducing a Farin point on a line segment.

Fig. 9. Obtaining the system of independent Farin points for the degreen+ 6 from a given solution
for degreen, using strategy (α): (a) fordf (n) even, (b) fordf (n) odd.

Fig. 9 shows how to get the solution for degreen+ 6 from a given solution for degree
n. Figs. 8 and 9 give the solution for strategy (α) for any degreen by induction. Figs. 10
and 11 show the solution for strategy (β) by induction.

Fig. 12 shows an example: the system of independent Farin points for a triangular Bézier
point scheme of order 13.

2.2.1. Remarks
(1) The schemes introduced in this subsection use Farin points both on “upright”

and “upside down” subtriangles. This might be unusual because the triangular
de Casteljau algorithm works only on “upright” subtriangles. But the additional
consideration of “upside down” subtriangles is necessary for finding systems of
independent Farin points.

(2) The systems of Farin points introduced in this subsection have the independence
property butnot the local control property. This means that moving one of the
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Fig. 10. Schemes of independent Farin points for Bézier triangles of degree 1–6, strategy (β).

Fig. 11. Obtaining the system of independent Farin points for the degreen+ 6 from a given solution
for degreen, using strategy (β): (a) for df (n) even, (b) fordf (n) odd.

Fig. 12. System of independent Farin points forn= 13, using the strategy (α) and (β).
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marked Farin points might change any other unmarked Farin point. If the local
control property of Farin points is important we have to apply the automatic
adjusting introduced in Section 2.1. A system with both the independence property
and the local control property seems not to exist.

(3) All schemes and constructions introduced in Section 2 work both in the domain of
the Bézier triangles and in the Bézier point scheme in 3D. This is because the Bézier
point subtriangles in 3D can be considered as affine maps of the subtriangles in the
domain, and all constructions are affine invariant.

3. Farin points for tensorproduct Bézier surfaces

To handle the weights of a rectangular Bézier point scheme by Farin points, we first
have to solve the problem for a subquadrilateral. We look for a Farin point solution for a
subquadrilateral both in the domain of the surface and in 3D.

For the domain case, the Bézier pointsbi,j , bi+1,j , bi+1,j+1, bi,j+1 form a rectangle,
see Fig. 13(a). Then we can define the points on the edges of the rectangle which define
the ratios of each two of the weights:

pi,j = wi,j · bi,j +wi+1,j · bi+1,j

wi,j +wi+1,j
,

pi,j+1 = wi,j+1 · bi,j+1+wi+1,j+1 · bi+1,j+1

wi,j+1+wi+1,j+1
,

qi,j = wi,j · bi,j +wi,j+1 · bi,j+1

wi,j +wi,j+1
,

qi+1,j = wi+1,j · bi+1,j +wi+1,j+1 · bi+1,j+1

wi+1,j +wi+1,j+1
.

Fig. 13. (a) Defining the pointspi,j , pi,j+1, qi,j , qi+1,j and the Farin pointfi,j for the Bézier
pointsbi,j , bi+1,j , bi+1,j+1, bi,j+1 assigned with the weightswi,j , wi+1,j , wi+1,j+1, wi,j+1.
(b) Constructingqi,j , qi+1,j andpi,j+1 from the given pointsfi,j andpi,j geometrically.
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Furthermore we define the Farin point

fi,j = int
(
lin(pi,j ,pi,j+1), lin(qi,j ,qi+1,j )

)
= wi,j · bi,j +wi+1,j · bi+1,j +wi+1,j+1 · bi+1,j+1+wi,j+1 · bi,j+1

wi,j +wi+1,j +wi+1,j+1+wi,j+1
.

See Fig. 13(a) for an illustration. The Farin pointfi,j has the intuitivity property:
increasing the weight of one Bézier point leads to movingfi,j towards this Bézier
point. Unfortunately,fi,j is not sufficient to define uniquely the weight ratios in a
subquadrilateral. In factfi,j is freely movable in 2D and therefore covers two degrees
of freedom. What we have to determine are three degrees of freedom in a quadrilateral (the
weight of one Bézier point can be chosen randomly, then the weights of the other three
Bézier points have to be fixed).

Suppose the pointsfi,j andpi,j are given. Then the remaining pointspi,j+1, qi,j and
qi+1,j can be geometrically constructed in the following way:

pi,j+1 := int
(
lin(pi,j , fi,j ), lin(bi,j+1,bi+1,j+1)

)
,

h := int
(
lin(fi,j ,bi+1,j+1),par(lin(bi+1,j ,bi+1,j+1),pi,j )

)
,

qi,j := int
(
lin(bi,j ,bi,j+1),par(lin(bi,j+1,bi+1,j+1),h)

)
,

qi+1,j := int
(
lin(qi,j , fi,j ), lin(bi+1,j ,bi+1,j+1)

)
.

See Fig. 13(b) for an illustration. For reasons of simplification, we consider from now on
the Bézier point subquadrilateralb0,0, b1,0, b1,1, b0,1. The pointsp0,0, q1,0, p0,1, q0,0
are not independent of each other. In fact, the location of three of these points determines
the remaining one. To find a construction for this fact we consider a property illustrated in
Fig. 14(b): the three lines lin(b0,0,b1,1), lin(p0,0,q1,0) and lin(q0,0,p0,1) either intersect
at one point or are all parallel. As shown in Fig. 14(a), the same property is true in 3D.

Given the Farin pointf0,0 in the rectangular domain quadrilateral, we seek a way to
determine all weight ratios. One way of doing this is fixing one of the weight points on the
edges, as shown in Fig. 13(b). This approach is not symmetric because we have to make

Fig. 14. Weight points on the edges of a subquadrilateral: the lines lin(b0,0,b1,1), lin(p0,0,q1,0)

and lin(q0,0,p0,1) either intersect at one point or are parallel. This is true both in the domain case
(b) and in the 3D case (a).
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Fig. 15. (a) Constructing permitted areas (grey marked) on the edges of the rectangle by intersecting
the lines lin(b0,0, f0,0), lin(b1,0, f0,0), lin(b1,1, f0,0) and lin(b0,1, f0,0) with the rectangle.
(b) Dividing the permitted areas in the ratiot/(1− t). We obtain the weight points on the edges
of the quadrilateral.

the choice which point on the edges to fix. Now we want to introduce a symmetric way of
defining the weight ratios using the Farin pointf0,0.

Consider Fig. 15(a). We assume that the weightsw0,0, w1,0, w1,1, w0,1 which are
assigned to the Bézier pointsb0,0, b0,1, b1,1, b1,0 are all positive. This means that the
point p0,0 lies inbetweenb0,0 andb1,0, similar for the other three weight points on the
edges. Now we seek all possible locations forp0,1 betweenb0,1 andb1,1, so thatp0,0 is
betweenb0,0 andb1,0.

Obviously, this is the grey marked area on the lineb0,1, b1,1. We call this area the
permitted area.

The permitted area of an edge of the rectangle is the area where the weight point can lie
so that the weight point of the opposite edge is inbetween the corner points. In Fig. 15(a),
the permitted area of the edgeb0,0, b1,0 is the whole line segmentb0,0, b1,0: no matter
wherep0,0 is located, the opposite pointp0,1 will be in betweenb0,1,b1,1.

The location of the permitted areas on the edges depends on the location off0,0. All
permitted areas can be found by intersecting the four lines lin(b0,0, f0,0), lin(b1,0, f0,0),

lin(b1,1, f0,0), lin(b0,1, f0,0) with the rectangle. See Fig. 15(a) for an illustration.
Now we divide the four permitted areas in the ratiot/(t − 1), as shown in Fig. 15(b)

(with 0< t < 1). The resulting four points on the edges of the rectangle can be considered
as the weight points on the edges. It can be shown that these four points have the property
described in Fig. 14(b). This means that we have described the weight ratios in the
quadratilateral completely byf0,0 andt . For finding a geometric meaning oft , we consider
Fig. 15(b) again. The moret tends to 0, the closer the weight points tend tob0,1 or b1,0.
The moret tends to 1, the closer the weight points tend tob0,0 or b1,1. This means that the
parametert is a measure which diagonalb0,0,b1,1 or b0,1,b1,0 is more emphasized. This
gives reason for introducingextended Farin points.

An extended Farin point is a freely movable icon as shown in Fig. 16. The location of
the lower hollow point is the location of the Farin pointf0,0. The upper hollow point is
freely movable on the horizontal line segment and fixes which of the diagonalsb1,0,b0,1
or b0,0,b1,1 is more emphasized. The diagonals are symbolized by the nonhorizontal lines.
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Fig. 16. Extended Farin point: freely movable icon in the rectangular domain. The location of the
lower hollow point givesf0,0. The upper hollow point determines the parametert .

Fig. 17. Usage of extended Farin points. (a) Given is Bézier point rectangleb0,0,b1,0,b1,1,b0,1
and the extended Farin point inside the rectangle. (b) Construct the permitted areas on the edges
of the rectangle. (c) Divide the permitted areas in the same ratio as the upper hollow point
divides the horizontal line segment of the extended Farin point. The resulting four weight points
p0,0,q1,0,p0,1,q0,0 define the ratios of the weights of the four Bézier points uniquely.

An extended Farin point describes the weight ratios of the Bézier points in a
subquadrilateral uniquely and symmetrically: no particular edge or corner of the rectangle
has to be chosen. The conditions of independence and intuitivity are also fulfilled by
extended Farin points. An example of the usage of an extended Farin point is given in
Fig. 17.

Farin points in 3D

Up to here, this chapter has treated Farin points in the rectangular domain of a
quadrilateral. Now we consider four Bézier pointsb0,0, b1,0, b1,1, b0,1 as living in the
3D space of the surfaces. The straightforward approach here to determine the weight ratios
is to consider the barycentric combination

f = w0,0 · b0,0+w1,0 · b1,0+w1,1 · b1,1+w0,1 · b0,1

w0,0+w1,0+w1,1+w0,1
. (5)

For positive weights,f lies in the convex hull ofb0,0, b1,0, b1,1, b0,1. In generalf is
movable in 3D and thus covers the three degrees of freedom we have to fix. Unfortunately,
this approach fails completely ifb0,0, b1,0, b1,1, b0,1 are coplanar, and it fails numerically
if b0,0, b1,0, b1,1, b0,1 are almost coplanar. Since in practical applications the case of
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Fig. 18. The extended Farin point in the 2D domain is mapped onto the bilinear interpolant of
b0,0,b1,0,b1,1,b0,1 in 3D.

Fig. 19. Getting the weight ratios from an extended Farin pointfe on the bilinear interpolation: apply
a projection in the twist vector directionb0,0−b1,0−b0,1+b1,1. The projection of the four Bézier
points gives a parallelogram inside which we can apply all constructions for extended Farin points
in the 2D domain. Note that the projections of the locationfe of the extended Farin point and the
barycentric combinationf introduced in (5) are identical.

almost planar subquadrilaterals is common, we have to find another way to describe the
weight ratios: we use the concept of the extended Farin points in 2D and map this onto the
bilinear interpolant ofb0,0, b1,0, b1,1, b0,1 in 3D. Fig. 18 gives an illustration.

The extended Farin point in 3D is freely movable on the bilinear interpolant. The
location fe of the extended Farin point on the bilinear interpolant can be computed as

fe = hw0,0 · b0,0+ hw1,0 · b1,0+ hw1,1 · b1,1+ hw0,1 · b0,1

hw0,0+ hw1,0+ hw1,1+ hw0,1
(6)
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with

hw0,0= (w0,0+w1,0) · (w0,0+w0,1), hw1,0= (w1,0+w0,0) · (w1,0+w1,1),

hw1,1= (w1,1+w1,0) · (w1,1+w0,1), hw0,1= (w0,1+w0,0) · (w0,1+w1,1).

In order to get the weight ratios out offe, we apply a parallel projection in the direction of
the twist vectorb0,0− b1,0− b0,1+ b1,1. Doing this the four Bézier points happen to form
a parallelogram with the projection offe inside it. In this parallogram we can carry out all
constructions introduced in this section for the domain case. See Fig. 19 for an illustration.

3.1. Adjusting adjacent Farin points in rectangular Bézier point schemes

After showing how to handle the weights in a subquadrilateral by using the concept of
extended Farin points, we now treat the case of a whole rectangular Bézier point scheme.
As in the triangular case there are two ways for keeping the system of all Farin points
contradiction-free:

(a) Allow every Farin point to be movable and adjust the adjacent Farin points.
(b) Provide a system of Farin points which are independent of each other and describe

the weight ratios uniquely.
This subsection treats approach (a); a solution for (b) is given in Section 3.2.

Consider Fig. 20 for a rectangular Farin point scheme in the domain. Suppose the weight
ratios in the subquadrilateralb1,1, b2,1, b2,2, b1,2 are changed, for instance using the
concepts of an extended Farin point. This means that the pointsf1,1, p1,1, q2,1, p1,2, q1,1

are moved to the new locations̃f1,1, p̃1,1, q̃2,1, p̃1,2, q̃1,1. Then the following points have
to be adjusted:f0,0, f1,0, f2,0, f2,1, f2,2, f1,2, f0,2, f0,1, q1,0, q2,0, p2,1, p2,2, q2,2, q1,2,

p0,2, p0,1. The pointsp0,0, p1,0, p2,0, q3,0, q3,1, q3,2, p2,3, p1,3, p0,3, q0,2, q0,1, q0,0

remain unchanged.

All we have to show here is how to adjust the pointsf0,0, f2,0, f2,2, f0,2 to the points
f̃0,0, f̃2,0, f̃2,2 ,f̃0,2. Then the other adjusted points can be geometrically constructed using
the properties described in the Figs. 13(b) and 14(b).

The adjusted point̃f0,0 lies on lin(f0,0,b1,1). Similarly, f̃2,0 lies on lin(f2,0,b2,1), f̃2,2

lies on lin(f2,2,b2,2), f̃2,0 lies on lin(f0,2,b1,2). We present a construction for̃f2,2, the

pointsf̃0,0, f̃2,0, f̃0,2 can be constructed in a similar way.
Consider Fig. 21(a). First we construct the auxiliary points

h1= w3,2 · b3,2+w3,3 · b3,3+w2,3 · b2,3

w3,2+w3,3+w2,3
,

h2= w1,1 · b1,1+w2,1 · b2,1+w1,2 · b1,2

w1,1+w2,1+w1,2
,

h3= w̃1,1 · b1,1+ w̃2,1 · b2,1+ w̃1,2 · b1,2

w̃1,1+ w̃2,1+ w̃1,2
.
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Fig. 20. Moving the Farin pointsf1,1, p1,1, q2,1, p1,2, q1,1 to f̃1,1, p̃1,1, q̃2,1, p̃1,2, q̃1,1. The
adjacent Farin points have to be adjusted.

Fig. 21. Moving the Farin pointsf1,1, p1,1, q2,1, p1,2, q1,1 to f̃1,1, p̃1,1, q̃2,1, p̃1,2, q̃1,1:

constructing the adjusted Farin point̃f2,2. (a) Constructing the auxiliary pointsh1,h2,h3;

(b) Constructing the auxiliary pointsh4,h5. Then cr(b2,2, f1,1,h5,h2) = cr(b2,2, f2,2, f̃2,2,h1).
This gives the location of̃f2,2 uniquely.
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w̃1,1, w̃2,1, w̃1,2 are the new weights after movingf1,1, p1,1, q2,1, p1,2, q1,1:

h1 := int
(
lin(b3,2,p2,3), lin(b2,3,q3,2)

)
,

h2 := int
(
lin(b1,2,p1,1), lin(b2,1,q1,1)

)
,

h3 := int
(
lin(b1,2, p̃1,1), lin(b2,1, q̃1,1)

)
.

Then the pointsb2,2, f2,2, h1 are collinear.b2,2, f1,1, h2 and b2,2, f̃1,1, h3 are also
collinear. Now consider Fig. 21(b). We construct

h4 := int
(
par
(
lin
(
b2,2, f̃1,1), f1,1

)
,par

(
lin(h2,h3), f̃1,1

))
,

h5 := int
(
lin(b2,2, f1,1), lin(h3,h4)

)
.

Then it is a straightforward exercise in algebra to show that

cr(b2,2, f1,1,h5,h2)= cr
(
b2,2, f2,2, f̃2,2,h1

)= w̃2,2

w2,2
.

From this fact it is a basic construction to get̃f2,2 from b2,2, f2,2, h1, f1,1, h5, h2 (see, for
instance, (Farin, 1995)). The adjusted points̃f0,2, f̃0,0, f̃2,0 can be constructed in a similar
way. Thus the problem of adjusting the adjacent Farin points geometrically is solved.

3.2. Independent Farin points in a rectangular Bézier point scheme

In this subsection we want to establish a system of independent Farin points for
rectangular Bézier point schemes. Here we only consider Bézier patches of the ordern×n.
The solution consists of a number of extended Farin points and in addition a number of
“normal” Farin pointsfi,j (i.e., the barycentric combination of the four corners of the
subquadrilateral).

Fig. 22(a) shows the solution for a patch of the ordern× n wheren is odd. We provide
the quadrilateral in the middle of the patch with an extended Farin point. The same is done
with the quadrilaterals “on the diagonals” of the patch. For the other patches we provide
every second one with a “normal” Farin point. In Fig. 22(a) the patches with a “normal”
or extended Farin point are marked with a black closed line. An extended Farin point is
marked by the icon similar to Fig. 16, a “normal” Farin point is marked with a hollow dot.

The solution for an evenn is more complicated, see Fig. 22(b). Here we provide
the patches “on one diagonal” with an extended Farin point. The other extended Farin
points are next to the other diagonal. The rest is filled with normal Farin points for every
second patch. This way, the weights of two opposite corner Bézier points have to be fixed
explicitly. This can be done by using two Farin points on a line, as shown in Fig. 22(b).

Consider Fig. 23. It shows that the weight ratios in a bicubic Bézier patch can be
described in terms of five extended Farin points. Since this case often occurs in practical
applications, the practical relevance of the approach presented in this subsection is given.

3.2.1. Remarks
(1) A similar approach as introduced in (Albrecht, 1995) for the triangular case is

possible for the rectangular case. Here we have to search for a system of independent
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Fig. 22. A system of independent Farin points for a Bézier patch of the ordern × n: (a) n odd;
(b) n even. The system consists of of extended Farin points and normal Farin points. In case (b),
the weights of two opposite Bézier points have to be fixed by introducing two Farin points on a line
segment.

Fig. 23. Describing the weight ratios in a bicubic rational Bézier patch with five extended Farin
points.

Farin pointspi,j ,qi,j on the line segments of the control net. As in the triangular
case, this approach would require more Farin points than the solution introduced in
this subsection.

(2) The solution introduced in this subsection is not the only one. In fact, other systems
of extended and normal Farin points are thinkable which solve the problem as
well. The distinguishing property of our scheme is the symmetry along at least one
“diagonal” in the control net.

4. Conclusions

In this paper we have shown how to use Farin points as a design tool for rational Bézier
surfaces on a triangular or rectangular domain. The main problem we had to solve was to
keep the contradiction freeness of the systems of Farin points. This was achieved by two
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approaches: adjusting the adjacent Farin points or provide only an appropriate subset of
Farin points to be movable.

Applying these approaches makes Farin points to a practicable tool for the design of
rational Bézier surfaces.
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