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Abstract

Farin points (weight points) are a useful tool for handling the weights of rational Bézier curves.
They describe the weights of the Bézier points uniquely and in a geometrically intuitive way.

The main problem for using Farin points for triangular or tensorproduct rational Bézier surfaces is
the fact that they are notindependent of each other and therefore overdefine the weights. To overcome
this problem we present two approaches: moving a Farin point, we adjust the adjacent Farin points
automatically in such a way that the system of all Farin points stays contradiction-free. In the other
approach we present an appropriate subset of Farin points which are independent of each other and
define the weights uniquely. Both approaches are presented for triangular and tensorproduct Bézier
surfaces. They make Farin points useful for the design of rational Bézier surfat899 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Farin points (weight points) are a useful design tool for rational Bézier curves. They
provide an intuitive way of handling the weights of the Bézier points.

Given two adjacent Bézier pointg, b;.1 with their assigned weights;, w;+1 on a
Bézier polygon, the Farin poirfif is defined as

Fo Wi bi +wiy1- bi+1_ )
w; + wit1

The location off; on the line througtb; andb;;1 determines the ratio of; and w;11

uniguely and in an intuitive way. For positive weightsjs located betweeh; andb; 1,

and ratidb;, f;, b;11) = w;11/w;. Intuitively: the largerw; is relative tow; 11, the closer

f; moves towardb;. Fig. 1 gives an illustration. Given the Bézier polygbg ..., b,
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Fig. 1. Farin poinf; for the Bézier point®;, b; 1 and their assigned weights;, w; 1.
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Fig. 2. Rational Bézier curve of degree 3 described by (a) Bézier points and assigned weights,
(b) Bézier points and Farin points.

the assigned weightsy, ..., w, can be described by the Farin poifigs.. ., f,_1. Fig. 2
shows an example faor = 3.

Farin points for rational Bézier curves have the following properties:

(a) Uniqueness: the Farin poirfts . . ., f,—1 describe the weightsy, . .., w, uniquely

except for a common factor. This common factor has no influence on the curve
shape.

(b) Independence: each of the Farin pofigts.. ., f,—1 can be moved freely on the lines

of the Bézier polygon. The adjacent Farin points are not affected by méving

(c) Intuitivity: instead of increasing or decreasing the weights a designer moves Farin

points on the Bézier polygon. He or she may find this more intuitive.

(d) Extended convex hull: for positive weights, the rational Bézier curve lies not only

in the convex hull oby, ..., b,, but also in the convex hull dig, fo, ..., f,—1, b,.
Fig. 3 illustrates fon = 3.

A comprehensive introduction of rational Bézier curves and Farin points (weight points)
can be found in (Farin, 1995).

This paper deals with the extension of Farin points to rational Bézier surfaces.
A straightforward extension to surfaces creates problems because the independence
property gets lost. As we will see in the next sections, Farin points for Bézier surfaces (both
triangular and tensorproduct) overdefine the weights and have therefore dependencies to
each other. In other words: moving a particular Farin point of a Bézier surface may cause
contradictions in the system of all Farin points. A Farin point is no longer freely movable.
An important design feature gets lost.

Section 2 shows the solutions for this problem for triangular Bézier surfaces in order
to keep Farin points being a useful design tool. Section 3 does the same for tensorproduct
surfaces.
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Fig. 3. Extended convex hull property for rational Bézier curves: the curve lies completely in the
convex hull ofbg, fg, f1, f2, bs.

Notation. For describing basic geometric constructions in Euclidean space we use the
following pseudo-code:

L :=lin(a, b): letL be the line through the poingsandb.

L :=panlLo, a): letL be the line parallel to the linkg througha.

a:=int(L1,L>2): letabe the intersection point of the linkg andL».

Furthermore we need the concept of cross ratio for four collinear points. We use the
definition
ratio(a, b, d)

cr(a, b, c,d)= ratio(a, ¢, d)

()

2. Farin points for Bézier triangles

For triangular Bézier point schemes we have to find a way to describe the weight ratios
of the three weights of a subtriangle.

For three Beézier pointd; jr, bit1 k-1, bij+1k—1 with the assigned weights
Wi jk, Witl,jk—1, Wi j+1,k—1, We define the Farin point as barycentric combination of
the three Bézier points:

wi k- Bijk + wisd jx—1-Ditajr—1 + Wij+1x-1-0ijr1k-1
Wi jk T Witljk-1 + Wi j+1k-1

®3)

fijk=

For positive weightd; ; « is inside the triangl®; ; «, biy1, k-1, bi k1, j—1. Obviously,
the location off; ; ; in the triangle determines the ratio of the three weights uniquely.
Furthermore, we define the Farin poipts; «, q; ., I, j.x On the edges of the triangle as
determining the ratios of each two of the Bézier points:

wi ik - Bijk + wiryjk—1-Dig1je—1

Pi.jk = Wi, jk + Witd,jk—1 ’

Wit k-1 Pigg -1 4+ wijiak-1-bijrak-1
Qi jk = Wit jk—1 + Wi j+1k-1 ’
i jk= wi jk - bijk + wij+1k-1- b"’”l’k_l.

Wi jk + Wi j+1k-1
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Fig. 4. Farin points; ; x, Pi j.k, di, j.k: Vi, j«x for the Bezier trianglé; ; i, b; 1 jx—1, b j41x-1-

bo20

boo bio. b20,0

Fig. 5. Bézier triangle of order 2. Given the Farin poifg$ 2, fo 1,1, the Farin pointy g 1 is not
freely movable. In facfy g 1 must lie on linrq.0,1,02.0,0)-

The geometric correlation betwe&n «, p; jk, Qi k. I,k iS shownin Fig. 4.

Now we show that Farin points on Bézier triangles are not independent anymore.
Consider a Bézier triangle of order 2, as shown in Fig. 5.

Suppose we know the Farin poirfigg,2 andfg,1,1. Then the following constructions
giverio,a:

do,0,2 := int(lin(b1,0,1. bo,1,1), lin(bo,0,2, f0,0.2)).
Po,1.1 := int(lin(bo,1,1, b1,1,0), lin(bo 2,0, fo,1.1)).
h :=int(lin(po,1,1, b1,0,1), liN(d0,0,2, b1,1,0)).
ri0.1:=int(lin(by,0,1, b1,1,0), lin(bo 1,1, ).

The Farin poinf1 g1 must lie on linr1.0.1, b2,0,0). It is not freely movable any more. If
f1,0,1 IS not on linr1,0.1, b2,0,0), the system of the Farin points o0, fo,1,1, f1,0,1 iS not
contradiction-freefg o2, fo,1,1 andfy o 1 are notindependent of each other.
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To overcome this problem (and therefore make Farin points on Bézier triangles usable

as a design tool) there are two approaches:

(a) Allow the user to move every Farin point and adjust the adjacent Farin points
simultaneously so that the system of all Farin points stays contradiction-free.

(b) Offer the user not all Farin points to move but only a certain number. These Farin
points should be independent of each other and describe all weights of the Bézier
points uniquely (except for a common factor).

Approach (a) is treated in Section 2.1, Section 2.2 shows solutions for approach (b).

2.1. Adjusting adjacent Farin points

Given a triangular Bézier point scheme, we consider all Farin p&ints of “upright”
Bézier subtriangles. As we know from the example in Fig. 5, these Farin points are not
independent of each other.

Fig. 6 shows a part of triangular Bézier point scheme. Suppose the system of all
Farin pointsf; ; ;. is contradiction-free. After movingp o0 to m, the system of Farin
points is generally not contradiction-free any more. In order to preserve the freedom of
contradictions, we adjust the adjacent Farin points

b-12-1 boz-2

b-110

o fooo

fo00

¢
b-1.01 booo bio- bzo.-2

N
~ fi-10
fo-11

fo-1.1 fi-10

¢ o »
bo-11 Po-11 bi-i0 Pi-10 bz-1-s

Fig. 6. Moving the Farin poinig g o to fm. In order to preserve the freedom of contradictions,
the adjacent Farin point§y 1 1, f-110 f-101. fo—1.1, f1,—1,0 have to be adjusted to

fo,1,—1. f-1,1.0. f-1,01, fo,—1,1. f1.—10.
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b-12-1 boz,-2

b-110 bo.1,-1 bi1.-2
0,00
LC
h _
7\~
fo.00
bo,00 Ppo.oo bio-1

Fig. 7. Moving the Farin pointg o g to fm and adjusting the adjacent Farin points. Constructing
the auxiliary point, we obtain: C(bO,l,—L f—l,l,O! f—l,l,O! r—l,l,O) = Cr(bo,ly_l, fO,l,—ls fO,l,—lr
do,1,—1) = ¢r(bo,1,-1, fo,0,0: ¢ P0,0,0)-

fo,—1,1, f1,—10, f10,-1, fo,1,-1, f-1,01, T-110
to the new points

Y~ Y~ —~— ——~—

fo,.—1.1, f1,—1,0. fro-1, fo,1,—1, f-101, f-1,10.

We know thatfgl\,_/_l lies on lin(bg 1.—1, fo.1,—1). The similar statements for the other
Farin points can be seen in Fig. 6. Furthermore, it can be shown that:

cr(bo,1,-1.fo.1,-1. fo.1,-1. do.1.—1) = cr(bo,1. -1, f 1,10, f 1,10, ~1.1.0).
cr(bo,0,0.f-1,0,1. f-1,0,1. T=1,0,1) = cr(bo,0,0. fo,—1,1. fo,—1,1. Po,-1,1),

cr(byo,-1.f1-10, fL_10. p1,-1,0) =cr(b10-1.f1.0-1. fro-1. d1.0-1)-
All we have to do now is to determine these cross ratios. For doing this, consider Fig. 7.
We constructed the auxiliary pointin the following way:

h := int(par(lin (bo,0,0. b1,0,-1). %), par(lin(bo,0,0. Po,1,-1), f0,0,0)),

C:= int(”n(b(),(),o, h), lin(bo 1,1, f(),o,o)).
Then it can be shown that

cr(bo,1,-1. f0,0,0. €, P0,0,0) = cr(bo,1, -1, fo,1.~1. fo,1,-1. Go,1,-1)
=cr(bo,1,—1,f-1,1,0.f-1,1,0.r-1,1,0)-

Therefore, the new adjusted Farin poirfig; _1 and f_1 10 can be geometrically
constructed. Similar constructions apply for the other adjacent Farin points.
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2.2. Independent Farin points for Bézier triangles

In this subsection we want to establish a system of independent Farin points for Bézier
triangles which describes the weights of the Bézier points uniquely (except for a common
factor). The first solution of this was published in (Albrecht, 1995). Here the problem was
reduced to the curve problem by using not the Farin pdints in the subtriangles but the
pointsp;, j .k, Qi j.k. i jk Onthe edges of the subtriangles (see Fig. 4). A system of these
points—each of them movable on a line segment—gave the solution. This solution was
obtained by searching a spanning tree for the control net which is interpreted as a graph.

In this subsection we use basic ideas of (Albrecht, 1995) but present a system of
independent Farin poinfg; ., i.e., these Farin points are freely movable inside a whole
triangle. Therefore we need fewer Farin points than in (Albrecht, 1995).

First we have to establish that such a system of independent Farin points exists at all.
In doing this we keep in mind that a Farin poft x is movable in 2D and therefore its
location covers 2 degrees of freedom.

The number of degrees of freedom we have to cover in a triangular Bézier point scheme
of the ordem is:

(n+ D +2)
2

This means thatl/f (n) is the number of the Bézier points minus 1. We have to fix the
weights of all Bézier points except for a common factor. One weight can be chosen
randomly, then the other weights are fixed.

Table 1 shows the numbéyf (n) of degrees of freedom for smail

If df (n) is even, we can find a system&f (n)/2 independent Farin points. Fdf (n)
is odd, there are two strategies:

(o) Find (df (n) — 1)/2 independent Farin points and determine the weight of one

corner point of the Bézier triangle explicitly.

(B) Find(df (n) —3)/2 independent Farin points and determine the weights of all three
corner points of the Bézier triangle explicitly. This strategy has the advantage of
preserving symmetry in the triangular scheme.

Fig. 8 shows the solution for strategy)(for smallx. In this figure, all subtriangles for
which a Farin pointis used are marked. kot 2, 3, 6 we havedf (n) odd. For the special
treatment of the corners lower left we introduced Farin points on line segments which relate
the weight of the corner to the average of the weights of the other two Bézier points in the
subtriangle.

df (n) = 1. ()

Table 1
Numberdf (n) of degrees of freedom to be covered by Farin points
in triangular Bézier point schemes of the order

n 1 2 3 4 5 6 7
df (n) 2 5 9 14 20 27 35 ...

even odd odd even even odd odd..
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Fig. 8. Schemes of independent Farin points for Bézier triangles of degree 1-6, stsgtéddgrked
are all subtriangles in which the Farin point is considered.i=er2, 3, 6 the weights of one corner
Bézier point was fixed by introducing a Farin point on a line segment.

Fig. 9. Obtaining the system of independent Farin points for the deg#e®é from a given solution
for degreen, using strategyd): (a) fordf (n) even, (b) fordf (n) odd.

Fig. 9 shows how to get the solution for degree 6 from a given solution for degree
n. Figs. 8 and 9 give the solution for strategy) for any degree: by induction. Figs. 10
and 11 show the solution for strateg$)(by induction.

Fig. 12 shows an example: the system of independent Farin points for a triangular Bézier
point scheme of order 13.

2.2.1. Remarks

(1) The schemes introduced in this subsection use Farin points both on “upright”
and “upside down” subtriangles. This might be unusual because the triangular
de Casteljau algorithm works only on “upright” subtriangles. But the additional
consideration of “upside down” subtriangles is necessary for finding systems of
independent Farin points.

(2) The systems of Farin points introduced in this subsection have the independence
property butnot the local control property. This means that moving one of the
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!

Fig. 11. Obtaining the system of independent Farin points for the degte®from a given solution
for degreen, using strategyf): (a) fordf (n) even, (b) fordf (n) odd.

Fig. 12. System of independent Farin pointsi/fee 13, using the strategyj and (8).
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marked Farin points might change any other unmarked Farin point. If the local
control property of Farin points is important we have to apply the automatic
adjusting introduced in Section 2.1. A system with both the independence property
and the local control property seems not to exist.

(3) All schemes and constructions introduced in Section 2 work both in the domain of
the Bézier triangles and in the Bézier point scheme in 3D. This is because the Bézier
point subtriangles in 3D can be considered as affine maps of the subtriangles in the
domain, and all constructions are affine invariant.

3. Farin points for tensorproduct Bézier surfaces

To handle the weights of a rectangular Bézier point scheme by Farin points, we first
have to solve the problem for a subquadrilateral. We look for a Farin point solution for a
subquadrilateral both in the domain of the surface and in 3D.

For the domain case, the Bézier poibts;, b1 j, bit1,j+1, bi j+1 form a rectangle,
see Fig. 13(a). Then we can define the points on the edges of the rectangle which define
the ratios of each two of the weights:

wij - bij+wit ;i big;
_ Wij-Bij J j

Pi,j = )
Wi, j + Witl,;
Cwi 1 b w1 biva
Pij+1= )
Wi j4+1+ Wit j+1
Cwj by wi by
qi,j = )
Wi, j + Wi j+1
wit1,j - Dit1j +wivajr1-Biva
qi+1,j = .
Wit1,j + Witl, j+1
bi,j+1 Pi+1 bi+l,j+] bi,j+l Pij+1 bi+],j+]
qij qi
£,
a) Y b) .
’qi+],j qt+1,]
bi,j Pii bi+],j bi,j Pi bi+l,j

Fig. 13. (a) Defining the pointg; ;, p; j+1. d;,j. di+1,; and the Farin point; ; for the Bézier
pointsb; ;, b; 11 j, bit1, j+1, b, j+1 assigned with the weights; ;, w;11 j, wit1, j+1, Wi j+1-
(b) Constructingy; j, d;+1,; andp; ;11 from the given pointd; ; andp; ; geometrically.
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Furthermore we define the Farin point

fi j =int(lin(p;,j, pi,j+1), liN(Qij, Git+1,)))
wij - bij+wigaj - bigsj +wivsjv1-bigr e+ wija-bija

Wi j+ Witlj + Wit j+1 + Wi j+1

See Fig. 13(a) for an illustration. The Farin poifit; has the intuitivity property:
increasing the weight of one Bézier point leads to moving towards this Bézier
point. Unfortunately,f; ; is not sufficient to define uniquely the weight ratios in a
subquadrilateral. In fad; ; is freely movable in 2D and therefore covers two degrees
of freedom. What we have to determine are three degrees of freedom in a quadrilateral (the
weight of one Bézier point can be chosen randomly, then the weights of the other three
Bézier points have to be fixed).

Suppose the poinf ; andp; ; are given. Then the remaining poirds; 11, q; ; and
0i+1,; can be geometrically constructed in the following way:

Pi,j+1 = int(lin(p;j, fi ;). lin(bj j+1, bit1,j+1)).
h:=int(lin(f; j, bjy1,j+1), parlin(bita,j, bit1j4+1), Pij)).
di,j :=int(lin(b; ;, b;, j+1), parlin(b;, j4+1, bi1, j+1), ),
i+1,j :=int(lin(q;,j, fi, ;). lin(bit1, j, bit1,j+1)).

See Fig. 13(b) for an illustration. For reasons of simplification, we consider from now on

the Bézier point subquadrilateriad o, b10, b1.1, bo.1. The pointsp.0, 91,0, Po.1, do.0

are not independent of each other. In fact, the location of three of these points determines

the remaining one. To find a construction for this fact we consider a property illustrated in

Fig. 14(b): the three lines lig,0, b1.1), lin(Po,0, d1,0) and lin(go,0, Po.1) either intersect

at one point or are all parallel. As shown in Fig. 14(a), the same property is true in 3D.
Given the Farin poinfg g in the rectangular domain quadrilateral, we seek a way to

determine all weight ratios. One way of doing this is fixing one of the weight points on the

edges, as shown in Fig. 13(b). This approach is not symmetric because we have to make

&
b) °
bo.1 p’(}l/by
qo.0
qio
boo poo  bio

Fig. 14. Weight points on the edges of a subquadrilateral: the lindsglin by 1), lin(pg,0. d1.0)
and lin(go,0, Po,1) either intersect at one point or are parallel. This is true both in the domain case
(b) and in the 3D case (a).
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a) b)

bO,l bl,l bo,l R ] bl,l
x o
5

(1-1
foo () foo .
\ \ l
boo bio boo (1= :t bip

Fig. 15. (a) Constructing permitted areas (grey marked) on the edges of the rectangle by intersecting
the lines linbg g, fo,0), lin(b1 0.f00), lin(by 1,fp0) and linlbg 1,fg o) with the rectangle.

(b) Dividing the permitted areas in the ratig(1 — 7). We obtain the weight points on the edges

of the quadrilateral.

the choice which point on the edges to fix. Now we want to introduce a symmetric way of
defining the weight ratios using the Farin pdigb.

Consider Fig. 15(a). We assume that the weighé®, w10, w11, w1 Which are
assigned to the Bézier poinitg o, bo.1, b1,1, b1 are all positive. This means that the
point po.o lies inbetweerbg o andbs o, similar for the other three weight points on the
edges. Now we seek all possible locationsggn betweenbg 1 andbs 1, so thatpg g is
betweerbg o andby o.

Obviously, this is the grey marked area on the Imgi, by 1. We call this area the
permitted area

The permitted area of an edge of the rectangle is the area where the weight point can lie
so that the weight point of the opposite edge is inbetween the corner points. In Fig. 15(a),
the permitted area of the eddg o, b1 o is the whole line segmeffilp o, b1,0: N0 matter
wherepg o is located, the opposite poipp,1 will be in betweerbg 1, by 1.

The location of the permitted areas on the edges depends on the locafipn @l
permitted areas can be found by intersecting the four lingbdif fo.0), lin(b1.0,o,0),
lin(b1,1,f0.0), lin(bo,1,fo,0) with the rectangle. See Fig. 15(a) for an illustration.

Now we divide the four permitted areas in the ratigr — 1), as shown in Fig. 15(b)
(with 0 < ¢ < 1). The resulting four points on the edges of the rectangle can be considered
as the weight points on the edges. It can be shown that these four points have the property
described in Fig. 14(b). This means that we have described the weight ratios in the
quadratilateral completely ty o andz. For finding a geometric meaning afwe consider
Fig. 15(b) again. The moretends to 0, the closer the weight points tendga or by o.

The morer tends to 1, the closer the weight points tenthg® or b1 1. This means that the
parameter is a measure which diagoniag o, b1,1 or bo 1, b1,0 is more emphasized. This
gives reason for introducingxtended Farin points

An extended Farin point is a freely movable icon as shown in Fig. 16. The location of
the lower hollow point is the location of the Farin pofiats. The upper hollow point is
freely movable on the horizontal line segment and fixes which of the diagbnal$o,1
or bo,0, b1,1 is more emphasized. The diagonals are symbolized by the nonhorizontal lines.
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t:(1-1)

(u,v)

Fig. 16. Extended Farin point: freely movable icon in the rectangular domain. The location of the
lower hollow point givedg g. The upper hollow point determines the parameter

bo.i @ bii  bos b b1 bo po,lc) b
V oo
q.
boo bio boo bio boo p“"-" bio

Fig. 17. Usage of extended Farin points. (a) Given is Bézier point rectémgiebs o, b1 1, bg 1

and the extended Farin point inside the rectangle. (b) Construct the permitted areas on the edges
of the rectangle. (c) Divide the permitted areas in the same ratio as the upper hollow point
divides the horizontal line segment of the extended Farin point. The resulting four weight points
Po,0, 1,0 Po,1, do,o define the ratios of the weights of the four Bézier points uniquely.

An extended Farin point describes the weight ratios of the Bézier points in a
subquadrilateral uniquely and symmetrically: no particular edge or corner of the rectangle
has to be chosen. The conditions of independence and intuitivity are also fulfilled by
extended Farin points. An example of the usage of an extended Farin point is given in
Fig. 17.

Farin points in 3D

Up to here, this chapter has treated Farin points in the rectangular domain of a
quadrilateral. Now we consider four Bézier poibigo, b1, b11, bo1 as living in the
3D space of the surfaces. The straightforward approach here to determine the weight ratios
is to consider the barycentric combination

~ wo,0-boo+wio-bro+wii-b11+wo1-boa
wo,0 +w1,0 + w11+ wo,1

f

()

For positive weightsf lies in the convex hull obg,9, b1,0, b1,1, bo.1. In generalff is
movable in 3D and thus covers the three degrees of freedom we have to fix. Unfortunately,
this approach fails completelylib o, b1,0, b1.1, bo,1 are coplanar, and it fails numerically
if boo, b1,0, b11, bo,1 are almost coplanar. Since in practical applications the case of
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bo.1 b1
V| =

boo bio bio

Fig. 18. The extended Farin point in the 2D domain is mapped onto the bilinear interpolant of
bo,0. b1,0. b1,1. bo 1 in 3D.

boo—b1o—bo.i+bi

Fig. 19. Getting the weight ratios from an extended Farin gionh the bilinear interpolation: apply

a projection in the twist vector directidip g — b1 0 —bg 1 + b1,1. The projection of the four Bézier
points gives a parallelogram inside which we can apply all constructions for extended Farin points
in the 2D domain. Note that the projections of the locafigrof the extended Farin point and the
barycentric combinatiofintroduced in (5) are identical.

almost planar subquadrilaterals is common, we have to find another way to describe the
weight ratios: we use the concept of the extended Farin points in 2D and map this onto the
bilinear interpolant obg o, b1.0, b1,1, b1 in 3D. Fig. 18 gives an illustration.

The extended Farin point in 3D is freely movable on the bilinear interpolant. The
locationf, of the extended Farin point on the bilinear interpolant can be computed as

¢ _ hwoo- o0+ hw10-b1o+hwi1-b11+hwoi-boa
‘ hwo,0 +hwi,0+hwi 1+ hwoa

(6)
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with
hwo,0 = (wo,0 + w1,0) - (wo,0 + wo,1), hwi0= (w1,0+ wo,0) - (w1,0+ w1,1),

hwy1 = (w114 wio) - (w11 + wo,1), hwo,1 = (wo,1 + wo,0) - (wo,1 + w1,1).

In order to get the weight ratios out bf, we apply a parallel projection in the direction of
the twist vectobg o — b1,0 — bo.1 + b1,1. Doing this the four Bézier points happen to form
a parallelogram with the projection &f inside it. In this parallogram we can carry out all
constructions introduced in this section for the domain case. See Fig. 19 for an illustration.

3.1. Adjusting adjacent Farin points in rectangular Bézier point schemes

After showing how to handle the weights in a subquadrilateral by using the concept of
extended Farin points, we now treat the case of a whole rectangular Bézier point scheme.
As in the triangular case there are two ways for keeping the system of all Farin points
contradiction-free:

(a) Allow every Farin point to be movable and adjust the adjacent Farin points.

(b) Provide a system of Farin points which are independent of each other and describe

the weight ratios uniquely.
This subsection treats approach (a); a solution for (b) is given in Section 3.2.

Consider Fig. 20 for a rectangular Farin point scheme in the domain. Suppose the weight
ratios in the subquadrilaterlh 1, b2 1, b2 2, b1 are changed, for instance using the
concepts of an extended Farin~point. This means that the geint1,1, 02,1, P1.2, d1.1
are moved to the new locatiofs:, p11, 921, P1.2, d1.1. Then the following points have
to be adjustedi o, f1.0. f2,0, f2.1, f2.2, f1,2, fo.2, fo,1, 1.0, A2,0, P2,1. P22, 02,2, 1.2,

Po,2, Po,1. The pointgo,0, P1,0. P2,0. 93,0, U3,1, 93,2, P2,3, P13, Po,3. do,2, do,1, Jo,0
remain unchanged.

~AII we hgye to show here is how to adjust the poifits, f2,0, 2,2, fo,2 to the points
fo.0, f2,0, 2.2 ,fo.2. Then the other adjusted points can be geometrically constructed using
the properties described in the Figs. 13(b) and 14(b). .

The adjusted poirti g lies on lin(fo 0, b1,1). Similarly, f2 o lies on lin(f2,0,b2,1), f22
lies on lin(f22, b2 2), f20 lies on lin(fg 2, b1,2). We present a construction fés », the
pointsfao, fzo, fgjz can be constructed in a similar way.

Consider Fig. 21(a). First we construct the auxiliary points

_w32-bz2+wszz-bzz+wrz-bas
w32 + w33+ w2,3

hy

wi1-bri+wo1-bo1+wiz-bio
hy = ,
w11+ w21+ w12

_wr1-bia4wza-bai+wiz-bi2

h3 —
w11+ w21+ w12
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bos bis p.3 b2 bs s
[ O O O 9
fovz ° fZ,Z 0q3‘2
q0'2 9 \/\,
fo2
g B
—o0— b " $h
I b 3,2
o 9qs3.!
o ®b;
Y
0
\ofz B
o @ O O 9
boo  Poo b1o Pro bz P20 bso

Fig. 20. Moving the Farin pointéy 1, p1.1. G2.1, P12, d1.1 10 f11, P11, 621, P12, di1. The
adjacent Farin points have to be adjusted.

b2s p23 bs,s

qsz2

bs.2

b b2.;

Fig. 21. Moving the Farin point§y 1. p11. O21. P12, Q1110 f11. P, 21, Pie. dia:
constructing the adjusted Farin poifi 5. (a) Constructing the auxiliary pointq, hy, ha;

(b) Constructing the auxiliary pointss, hs. Then c(bz 2,11, hs, h2) = cr(bz 2, fz,z,ffz\fz, hy).
This gives the location di > uniquely.
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w11, w21, w12 are the new weights after movirfig1, p1.1, 92,1, P1.2, q1.1:

hy :=int(lin(bs 2, p2,3), lin(b2;3, 43.2)).
hz :=int(lin(by,2, p1.1), lin(b2,1, d1.1)).
hz:= int(lin(bl,z, [5171), lin(bz.1, qu))

Then the pointdy 2, f2.2, hy are collinear.by 2, 11, hz and by, ffl, hz are also
collinear. Now consider Fig. 21(b). We construct

ha := int(par(lin (bz,2, f1.1), f1,1), par(lin (hz, h3), f11)),
hs:= int(”n(bz,z, f1.1), lin(hs, h4)).

Then it is a straightforward exercise in algebra to show that

~ u’;"’
cr(bz 2. f1,1. hs, ha) = cr(bz 2. f22. f22. h1) = ﬁ

From this fact it is a basic construction to ggt_a from by 2, 2.2, ha, f11, hs, h2 (see, for
instance, (Farin, 1995)). The adjusted poﬁatg, fo 0, fz o can be constructed in a similar
way. Thus the problem of adjusting the adjacent Farin points geometrically is solved.

3.2. Independent Farin points in a rectangular Bézier point scheme

In this subsection we want to establish a system of independent Farin points for
rectangular Bézier point schemes. Here we only consider Bézier patches of the ender
The solution consists of a number of extended Farin points and in addition a number of
“normal” Farin pointsf; ; (i.e., the barycentric combination of the four corners of the
subquadrilateral).

Fig. 22(a) shows the solution for a patch of the omder n wheren is odd. We provide
the quadrilateral in the middle of the patch with an extended Farin point. The same is done
with the quadrilaterals “on the diagonals” of the patch. For the other patches we provide
every second one with a “normal” Farin point. In Fig. 22(a) the patches with a “normal”
or extended Farin point are marked with a black closed line. An extended Farin point is
marked by the icon similar to Fig. 16, a “normal” Farin point is marked with a hollow dot.

The solution for an evem is more complicated, see Fig. 22(b). Here we provide
the patches “on one diagonal” with an extended Farin point. The other extended Farin
points are next to the other diagonal. The rest is filled with normal Farin points for every
second patch. This way, the weights of two opposite corner Bézier points have to be fixed
explicitly. This can be done by using two Farin points on a line, as shown in Fig. 22(b).

Consider Fig. 23. It shows that the weight ratios in a bicubic Bézier patch can be
described in terms of five extended Farin points. Since this case often occurs in practical
applications, the practical relevance of the approach presented in this subsection is given.

3.2.1. Remarks
(1) A similar approach as introduced in (Albrecht, 1995) for the triangular case is
possible for the rectangular case. Here we have to search for a system of independent
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Fig. 22. A system of independent Farin points for a Bézier patch of the arden: (a) n odd;
(b) n even. The system consists of of extended Farin points and normal Farin points. In case (b),
the weights of two opposite Bézier points have to be fixed by introducing two Farin points on a line

segment.

Fig. 23. Describing the weight ratios in a bicubic rational Bézier patch with five extended Farin
points.

Farin pointsp; ;, g; ; on the line segments of the control net. As in the triangular
case, this approach would require more Farin points than the solution introduced in
this subsection.

(2) The solution introduced in this subsection is not the only one. In fact, other systems
of extended and normal Farin points are thinkable which solve the problem as
well. The distinguishing property of our scheme is the symmetry along at least one
“diagonal” in the control net.

4. Conclusions

In this paper we have shown how to use Farin points as a design tool for rational Bézier
surfaces on a triangular or rectangular domain. The main problem we had to solve was to
keep the contradiction freeness of the systems of Farin points. This was achieved by two
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approaches: adjusting the adjacent Farin points or provide only an appropriate subset of
Farin points to be movable.

Applying these approaches makes Farin points to a practicable tool for the design of
rational Bézier surfaces.
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