On Properties of Contours of

Trilinear Scalar Fields

Holger Theisel

Abstract. We study properties of contour surfaces of trilinear scalar
fields, and give a classification based on how many unconnected surface
parts they consist of. Furthermore, we introduce the concept of the seg-
ment number of a voxel. The segment number is a threshold-independent
measure which estimates how complicated the contours inside the voxel
are expected to be. Finally, we give necessary and sufficient conditions for
a voxel to have a segment number of 1. These conditions are applied to
analyze a computer tomography data set.

§1. Introduction

Contours (isosurfaces) of trilinear scalar fields are treated in a variety of appli-
cations. For instance, the data used in volume visualization usually consists
of a number of scalars defined at certain grid points; between the grid points
a piecewise trilinear interpolation of the scalar field is applied.

Given a voxel V' = [0,1]3, the trilinear scalar field is defined by setting
the values ¢;;i(7, J, k € {0,1}) of the field at the corners of V. Then the scalar
field is defined as

s(u,v,w) =(1 —u)- (1 —=v)-(1—=w)-cooo+ (1 —u) (1 —v)-w-coo
+(1—u)-v-(I—=w)-coro+ (1 —u) v-w-co
+u-(I1=v) (I —=w) crpo+u-(1-v) w-cin

+u-v-(l—w) -crio+u-v-w- e

(1)

Figure la illustrates this. A contour of V is defined by s(u,v,w) = r =const
for a certain threshold r. Figure 1b shows an example of a contour of (1).
There are a number of algorithms to produce a triangular approximation

of a contour of (1). Of these, the Marching Cubes (MC) method ([3] and [4])
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Fig. 1. a) Voxel V; b) a contour in V7 ¢) result of MC.

is the most popular. Figure 1c shows the resulting triangular approximation
of the contour shown in Figure 1b using the Marching Cubes method.

The Marching Cubes algorithm distinguishes several cases where some of
them are harder to treat than others. In this paper we introduce a measure
of how costly in terms of computing time the MC algorithm inside a certain
voxel is expected to be. This characterization of a voxel — called segment
number — is independent of a particular threshold. It estimates the costs of a
Marching Cubes algorithm for varying thresholds.

As already stated in [2], the contour of (1) is a rational cubic surface. In
[2] this surface is approximated by a collection of rational quadratic triangular
patches.

Section 2 of this paper studies the contours of (1) in the domain R®.
We give a classification based on how many unconnected surface parts the
contours consist of. Sections 3 and 4 focus on contours of (1) inside a certain
voxel. Section 3 introduces the concept of segment number as a measure of
how simply a voxel can be treated by an MC algorithm. In Section 4, necessary
and sufficient geometric conditions for a voxel to have a segment number of
1 are shown. In Section 5, the number of voxels with a segment number of 1
are computed for a real volume data set.

§2. Classification of the Contour in R®

In this section we consider the contour of (1) not in a particular voxel but in
the domain IR®. In general, the contour consists of a number of surface parts
which are not connected to each other. Before we classify the contours of (1)
by the number of unconnected surface parts, we apply a translation of the
coordinate system as shown in Figure 2. Choosing

P = ¢oo1 + €o1o0 + €100 + €111 — Cooo — Co11 — €101 — €110

Cooo + Co11 — €001 — Co10
1

Dy = 2_9 : Cooo + €101 — €001 — C100

Cooo + €110 — €o10 — €100
we obtain for (1)

s=a-u+b-v+ec-wt+d-u-v-w-+e (2)
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Fig. 2. Translating the coordinate system of a voxel.
with
. (0111 - 0011) : (0100 - Cooo) - (0110 - 0010) : (0101 - 0001)
P
b— (0111 - 0101) : (0010 - Cooo) - (0110 - 0100) : (0011 - 0001)
P
_ (0111 - 0110) : (0001 - Cooo) - (0101 - 0100) : (0011 - 0010)
P
d = p,

where ¢ is a certain constant. Thus, we only have to analyze

s(tu,v,w)=a-u+b-v+c-wtd-u-v-w=r=const (3)
in R®. A classification of (3) can be achieved by rewriting (3) as w = %
and comparing the zeros of the numerator and denominator function. The
zeros of the numerator function form a line in the u — v—plane, whereas the
zeros of the denominator function give a hyperbola. Studying their interplay
gives the following classification:

case 1: abed < 0,d # 0 :
case 1.1: r? > —4“71’0: (3) gives 3 unconnected surface parts

4abc

case 1.2: r? < —242¢: (3) gives 2 unconnected surface parts

case 2: abed < 0: (3) consists of 1 connected part
case 3: abed = 0,d # 0:
case 3.1: r #0:
case 3.1.1: ab # 0,¢ = 0: (3) gives 2 unconnected surface parts
case 3.1.2: a # 0,b = ¢ = 0: (3) gives 3 unconnected surface parts
case 3.1.3: a = b= c = 0: (3) gives 4 unconnected surface parts
case 3.2: r =0
case 3.2.1: ab # 0,¢ = 0: (3) gives 3 unconnected surface parts
case 3.2.2: a # 0,b = ¢ = 0: (3) gives 3 parts intersecting each other
case 3.2.3: a = b= ¢ = 0: (3) gives 3 perpendicular planes.

Figure 3 illustrates these cases.
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Fig. 3. Classification of the contours of (3) in R? .

§3. Segment Number of a Voxel

We now study the contour of (3) in a particular voxel V. = [ug,ug + 1] X
[vg,v0 + 1] X [wo,we + 1]. Unfortunately, the results of Section 2 are not
directly applicable here because one connected surface part may intersect V
more than once.

Varying the threshold r in (3), the contours change. So does the number
of unconnected surface parts of the contour.

Definition 1. Given the trilinear scalar field s(u,v,w) =a-u+b-v+c-w+
d-u-v-w in the domain of the voxel V. = [ug, ug+ 1] X [vg, vo + 1] X [wo, wo + 1],
the segment number S(V') of V is the maximal number of unconnected surface
parts of the contour s(u,v,w) =r =const in V for any threshold r.

Figure 4 gives an example of a voxel V with S(V) = 1. Increasing the
value of r, the isosurface "moves” through the voxel. It consists of at most
one connected part for any r. Figure 5 shows a voxel with S(V) = 4. Here
the contours consist of up to 4 unconnected parts.

The segment number is a threshold-independent characterization of a
voxel V. For any V we get S(V) € {1,2,3,4}. For visualization purposes,
voxels with a segment number 1 are of particular interest. As shown in the
example of Figure 4, they have a nice behavior while varying r. In fact, for
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Fig. 5. Contours of a voxel with S(V) = 4.

any r the contour consists of only one connected surface part inside V. Thus,
accelerated Marching Cubes methods may apply to them. Moreover, adjacent
voxels with S(V') = 1 may be merged to form one bigger voxel before applying
Marching Cubes methods. So it makes sense to search for geometric conditions

for a voxel V to have S(V) = 1.

§4. Geometric Conditions for S(V) =1

In this section we give necessary and sufficient geometric conditions for a
voxel to have S(V) = 1. Again, we consider the contour of (3) in the voxel
V = [ug,up + 1] X [vg,v0 + 1] X [wo, wg + 1].

To formulate the conditions for S(V) = 1, we need to introduce the
concept of characteristic hyperbolas. The first characteristic hyperbola h; in
R? is defined by the condition s,,(u,v,w) =0 in (3). h; can be written as a
rational quadratic Bezier curve described by two control vectors bé, b% and a
control point b; (see [1]). For h; we obtain

(—4be)/d 0 0
b, = 0 cobi=10], by=|1/b]|, wl=1,
0 0 1/e
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Fig. 6. Location of characteristic hyperbolas; a),b): abed < 05 ¢),d):abed > 0.

where w] is the weight of bi. Then we obtain

_ BABR() + wlb Bt + BB (1)

) wIBH(?)

In a similar way we define the characteristic hyperbola hy by sy (u,v,w) = 0,
and hs by sy(u,v,w) = 0. The Bezier point bf with the corresponding weight
w? and the control vectors b2, b2 describing hy are

0 0 1/a
by = | (—dac)/a |, d=(0], b3=] 0 |, wi=1.
0 0 1/e
hs is described by
0 0 1/a
by = 0 cob=]o], =1/ |, wi=1
(—4ab)/d 0 0

If a-b-c-d<0then hy, hs, hs intersect in two common points. Figures 6a
and b illustrate this situation from two different viewpoints. If a-b-c-d > 0
then hy, ho, by do not have any intersections. Figures 6¢ and d show this from
different viewpoints. The degenerate case a-b-c¢-d = 0 is omitted here.

To formulate conditions for S(V') = 1, we have to classify the faces of V.
Given the voxel V' = [ug, ug+1] X [vg,vo + 1] X [wo, wo+1], let f1 = {(u,v,w) €
Viu=uVu=u+1}, fy = {(u,v,w) €V :v =05 Vv =1+ 1}, and
fs={(u,v,w) €V :w=1wyVw=mwy+ 1}. See Figure 7 for an illustration
of the faces.

Theorem 1. Let V = [ug,ug + 1] X [vg, v + 1] X [wo,we + 1] be a voxel in
the scalar field defined by (3). Then the condition S(V') = 1 is equivalent to
the three conditions hy N f; =0 and ko N f, =0 and hy N f3 = 0.

Figure 8 illustrates the idea of the proof. Suppose hj intersects f, as
shown in Figure 8a. Figure 8b is a magnification of the voxel and hj in
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Fig. 8. Proof idea of Theorem 1.

Figure 8a. We compute the intersection point of hs and f,, and consider
the contour passing through this point. As shown in Figure 8a, this contour
consists of at least two surface parts.

For the proof of the converse statement of Theorem 1, we assume that for
a certain threshold r the contour consists of at least two unconnected surface
parts. Then we can find a face of V' which has two intersection curves with the
contour. (In the worst case we have to vary r to find such a face). (Figure 8¢
shows two surface parts of the contour which produce two intersection curves
in the upper face of f;). Then we can find a point on this face which is the
intersection point with the corresponding characteristic hyperbola. (In Figure
8¢, the marked point on the upper part of f, is the intersection with hs).

§5. Results and Future Work

We have tested the voxels of a CT test data set for the property S(V) = 1.
The data set consists of 255 x 255 x 108 = 7,022, 700 voxels. Figure 9 shows
a slice through the data set.

In the raw data we found 1,978,711 voxels with S(V) =1 (28 %). After
some noise reducing filter operations on the data, we detected 4,833,063 voxels
with S(V') =1 (69 %). This shows that there is a reasonable number of voxels
with S(V') =1 to pay special attention to them.

In the future we plan to develop algorithms to merge voxels with S(V') = 1
to form bigger voxels before starting the Marching Cubes algorithm.
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Fig. 9. Slice through the test data set.
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