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Are isophotes and reflection lines the same?
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Abstract

Isophotes and reflection lines are standard tools for surface interrogation. We study the correlations
between them. We show that isophotes and reflection lines are different (but not disjunct) classes
of surface curves. Furthermore we introduce the concept of reflection circles as a generalization of
isophotes and reflection lines. Reflection circles can be considered as the mirror images of a family of
concentric circles on the surface. We show that reflection circles contain both isophotes and reflection
lines as special cases. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Isophotes and reflection lines are well-studied standard tools for surface interrogation.
The research on properties of isophotes was done quite independently of the research done
on reflection lines. It turned out that both curve classes have similar properties concerning
continuity features and fairness for properly shaped surfaces.

Isophotes. An isophote on a surfacex can be defined by an eye pointep and an angleα.
Then the isophote consists of all surface pointsx with the property angle(ep − x,n) = α

wheren denotes the normalized surface normal. Fig. 1(a) illustrates this.

This definition of isophotes can be simplified by considering an eye direction vectore
instead of an eye pointep . Then one isophote is defined bye and a scalar valuev. It consists
of all surface points with

en = v. (1)
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Fig. 1. (a) Definition of isophotes using an eye pointep ; (b) simplified definition of isophotes using
an eye directione: all points with a constant angleα betweene and the surface normaln lie on an
isophote.

Fig. 2. (a) Definition of reflection lines: a reflection line on the surfacex is the mirror image of the
light line l on x while looking fromep . (b) A line at infinity is defined by a vectorp; it consists of all
directionsa with ap = 0.

This means that all points on the isophote have the same angle betweene and the surface
normaln (Fig. 1(b) illustrates).

The definition of isophotes using an eye vector is commonly used in the literature (Hagen
et al., 1992; Poeschl, 1984; Theisel, 1997). It has the advantage that the definition of
isophotes depends only on the normal and not on the location: two surface points with
the same normal direction are located on the same isophote, no matter howe is chosen.

A parametric family of isophotes on a surface is obtained by defining the fixed
normalizede and varyingv between−1 and 1. For every parameterv, a particular isophote
is defined.

Reflection lines. A reflection line (Hagen et al., 1992; Kaufmann and Klass, 1988; Klass,
1980; Theisel and Farin, 1997) on a surfacex is defined by an eye pointep, a certain
plane (called light plane), and a linel in the light plane (called light line). Considering
x as a mirror, the reflection line onx is defined as the mirror image ofl on x while
looking from ep . Fig. 2(a) gives an illustration. A family of reflection lines is obtained
by considering all parallel lines ofl in the light plane.
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It is known that isophotes and reflection lines have a number of properties in common:
• A Gn continuous surfacex ensures bothGn−1 isophotes andGn−1 reflection lines

on x.
• Isophotes and reflection lines react rather sensitive on small perturbations of the

surface.
• Isophotes and reflection lines cannot be expressed in a closed parametric form but

only as a numerical solution of a system of partial differential equations.
However, it seems to be an open question whether or not isophotes and reflection lines
are essentially the same curve concept or not. Parts of the literature treat isophotes as a
special case of reflection lines (Farin, 1996) while others distinguish carefully between
them (Hagen et al., 1992).

In Section 2 of this paper we study the relations between isophotes and reflection lines. It
turns out that isophotes and reflection lines are indeed different (but not disjunct) classes of
surface curves. Section 3 introduces a new class of surface curves called reflection circles.
We show that reflection circles are the generalized concept of both reflection lines and
isophotes. Section 4 discusses other concepts of surface curves which are sometimes used
instead of isophote and reflection lines. We show that they can be considered as special
reflection circles as well.

2. The relation between isophotes and reflection lines

Given the usual definition of isophotes and reflection lines as given in the Figs. 1(b)
and 2(a), their comparison is trivial: isophotes and reflection lines are different curve
classes. This is due to the fact that reflection lines depend both on the location and the
normal direction of a surface point. Given an eye point and a light line, a reflection line on
the surface changes while translating the surface. In order to make isophotes and reflection
lines comparable, the definition of reflection lines has to be simplified in such a way that
they depend only on the surface normals. This simplification is introduced in the next
section.

2.1. Reflection lines at infinity

The simplification of isophotes from the definition shown in Fig. 1(a) to the commonly
used definition shown in Fig. 1(b) can be interpreted as moving the eye pointep to a point
e at infinity. The underlying space of this is an extended 3D affine space which serves as
a model of the 3D projective space. This extended affine space additionally consists of
points at infinity which are represented by directions. See (Boehm and Prautzsch, 1994)
for an introduction of the projective space and the extended affine space.

Similar to isophotes, we simplify the concept of reflection lines by moving both the eye
pointep and the light linel to infinity. Doing this,ep converges to the eye directione while
l converges to a line at infinity. A line at infinity consists of a number of points at infinity,
i.e., a set of coplanar directions. This way a line at infinity can be described by a vectorp;
it consists of all directionsa which are perpendicular top. Fig. 2(b) gives an illustration.
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Fig. 3. (a) Definition of reflection lines at infinity by an eye vectore and a line at infinity represented
by a vectorp. It consists of all surface points where the reflected eye directiona lies on the linep,
i.e.,ap = 0. (b) Isophotes on the unit spheres are circles ons perpendicular toe.

Using the concept of points and lines at infinity we get the following simplified definition
of reflection lines. A reflection line is defined by an eye directione and a line at infinity
represented by a vectorp. It consists of all surface points with the following property: the
reflected eye directiona lies on the line at infinity, i.e.,ap = 0. (The reflected ray is defined
by being coplanar toe andn, and angle(e,n) = angle(a,n).) Fig. 3(a) gives an illustration.

A family of reflection lines at infinity is obtained by varyingp along a line at infinity.
Givene andp, a reflection line at infinity depends only on the surface normals, not on the
location on the surface. As in the isophote case, the major properties of reflection lines are
preserved by simplifying them to reflection lines at infinity. For the rest of the paper we
only consider reflection lines at infinity.

2.2. Isophotes and reflection lines on the unit sphere

For givene andp, both isophotes and reflection lines depend only on the surface normals
and not on the locations of the surface. Two surface points with the same normal direction
always lie on the same isophote/reflection line. Thus, in order to compare isophotes and
reflection lines, it is sufficient to study their behavior on just one particular surface—the
unit sphere.

Given the unit spheres, an isophote (defined bye andv) is a circle ons perpendicular
to e. A family of isophotes is a set of concentric circles ons which are perpendicular toe.
Fig. 3(b) illustrates this.

To describe a reflection line ons, we formulate the following

Theorem 1. Given the unit spheres, the reflection line defined by the eye directione
(normalized) and the linep at infinity (normalized) is the intersection curve ofs with an
upright elliptic cylinderc, wherec is described by the following properties:

• the center ofs lies on the center axis ofc,
• the sweeping direction ofc is in the plane defined bye andp, and perpendicular to

the average ofe andp,
• the minor axis of the ellipse definingc is the average ofe andp; the minor radiusr1

is r1 =
√

2
2 ,
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Fig. 4. A reflection line on the unit spheres is the intersection curve ofs with an elliptic cylinderc.
(a) 3D image of the configuration; (b) configuration inx–y plane; (c) configuration inx–z plane.

Note that the minor radiusr1 of the defining ellipse is alwaysr1 =
√

2
2 .

• the major axis of the ellipse definingc is perpendicular to the plane defined bye
andp; the major radiusr2 is r2 = r1

sinα
whereα = angle(e,p)

2 .

Fig. 4 gives an illustration. To prove this theorem, we apply a transformation of the
coordinate system in such a way that the origin is the center ofs, and the coordinate axes
i, j,k are defined as

i = e + p
‖e + p‖ , j = e × p

‖e × p‖ , k = i × j. (2)

In this new coordinate system,e andp can be expressed as

e =



cosα

0

sinα


 , p =




cosα

0

−sinα


 , (3)

whereα = angle(e,p)
2 . The elliptic cylinderc can be expressed in the new coordinate system

in parametric form as

c(s, t) =



r1 · cost

r2 · sint

s


 . (4)

Then the intersection curve ofc ands can be expressed in parametric form as

x(t) = n =



r1 · cost

r2 · sint

±
√

1− r2
1 · cos2 t − r2

2 · sin2 t


 . (5)

Setting the reflected raya as

a = 2(en)n − e (6)
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Fig. 5. The reflection line ons for α = 45◦ gives a pair of great circles ons. (a) 3D image of the
configuration; (b) configuration inx–y plane; (c) configuration inx–z plane.

Fig. 6. The reflection line ons for e = −p is a pair of circles ons with the radii r1 = r2 =
√

2
2 .

(a) 3D image of the configuration; (b) configuration inx–y plane; (c) configuration inx–z plane.

and setting

r1 =
√

2

2
, r2 =

√
2

2
· 1

sinα
(7)

it is a straightforward exercise in algebra to obtainap = 0 from (3), (5), (6), (7). ✷
Figs. 5–7 show special cases of reflection lines ons.

2.3. Comparison between isophotes and reflection lines

From studying isophotes and reflection lines on the unit sphere we can deduce that they
are different classes of surface curves. In fact, the only circles which can be obtained as

reflection lines have the radius
√

2
2 (for α = 90◦, see Fig. 6) or 1 (forα = 45◦, see Fig. 5).

All the other circles (i.e., isophotes) ons cannot be reflection lines because the minor radius

of the ellipse definingc is constant
√

2
2 . Fig. 8(a) shows the relation between the sets of all

isophotes and reflection lines.
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Fig. 7. Reflection line ons for α = 30◦ . (a) 3D image of the configuration; (b) configuration inx–y

plane; (c) configuration inx–z plane.

Fig. 8. (a) Set diagram for the sets of all isophotes and reflection lines. (b) Definition of reflection
circles: mirror images of concentric circles on the light plane while looking fromep to x.

3. Reflection circles

It is the purpose of this section to find a class of surface curves which is a generalization
of both reflection lines and isophotes. These curves are called reflection circles.

Reflection circles are defined similarly to reflection lines. Instead of considering parallel
lines in the light plane, reflection circles are obtained by considering concentric circles
in the light plane. The reflection circles on the surfacex are the mirror images of the
concentric circles in the light plane. Fig. 8(b) illustrates this.

As in the case of isophotes and reflection lines, we simplify the concept of reflection
circles by moving both the eye point and the concentric circles to infinity. A circle at
infinity is defined by a directionr and an angleα. It consists of all vectorsa (i.e., points at
infinity) which fulfill angle(r,a) = α. Fig. 9(a) illustrates this.

A reflection circle at infinity is defined by the eye directione and the circle at infinity
given byr andα. It consists of all surface points with the property that the reflected eye
directiona lies on the circle at infinity, i.e., angle(r,a) = α. Fig. 9(b) illustrates.

Consideringe andn as being normalized, the reflected eye direction can be computed
as (6). Inserting this intoar = cosα, we obtain

ar = 2(en)(rn) − (er) = cosα. (8)



718 H. Theisel / Computer Aided Geometric Design 18 (2001) 711–722

Fig. 9. (a) Circle at infinity, defined byr andα. It consists of all vectorsa with angle(r,a) = α.
(b) Reflection circles at infinity defined bye, r andα. It consists of all surface points where the
reflected eye directiona lies on the circle at infinity, i.e., angle(r,a) = α.

Settingv = cosα+(er)
2 , we obtain: a reflection circle is defined by two vectorse, r and a

scalarv. It consists of all surface points with the property

(en)(rn) = v. (9)

There are several possible ways of defining a family of reflection circles:
(1) varyv,
(2) varya along a line at infinity,
(3) apply (1) and (2) simultaneously.

As for isophotes and reflection lines, the definition of reflection circles at infinity depends
only on the surface normals and not on the surface locations. Thus it is sufficient to study
reflection circles on the unit sphere.

3.1. Reflection circles on the unit sphere

To describe reflection circles on the unit sphere, we give the following

Theorem 2. Given is the reflection circlex on the unit spheres defined by the normalized
vectorse, r and the scalarv. Thenx is the intersection curve ofs with an upright elliptic
cylinderc with the following properties:

• the center ofs lies on the center axis ofc,
• the sweeping direction ofc is the average ofr ande,
• the minor direction of the ellipse definingc lies in the plane defined byr ande; the

minor radiusr1 is r1 =
√

1+(er)
2 − v,

• the major direction of the defining ellipse is perpendicular tor ande; the major radius
r2 is r2 = r1

sinα
with α = 90◦ − angle(r,e)

2 .

Fig. 10 illustrates the theorem. To prove Theorem 2, we apply a transformation of the
coordinate system in such a way that the origin is the center ofs, and the coordinate axes
i, j,k are defined as

k = e + r
‖e + r‖ , j = r × e

‖r × e‖ , i = j × k. (10)
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Fig. 10. A reflection circle on the unit spheres is the intersection curve with an elliptic cylinderc.
(a) 3D view, (b) projection into thex–y plane, (c) projection into thex–z plane. Both the minor
radiusr1 and the major radiusr2 can be varied by varyinge, r andv.

In this new coordinate system,e andr can be expressed as

e =



cosα

0

sinα


 , p =




−cosα

0

sinα


 , (11)

whereα = 90◦ − angle(r,e)
2 . The elliptic cylinderc can be expressed in the new coordinate

system in parametric form by (4). Then the intersection curve ofc ands can be expressed
in parametric form as (5). Setting

r1 =
√

1+ (er)
2

− v, r2 = r1 · 1

sinα
(12)

we get from (11), (5) and (12):

(en)(rn) = v (13)

which proves thatx(t) defined by (5) and (12) is a reflection circle.✷
Note that the minor radiusr1 of the ellipse definingc can be chosen freely between 0

and 1, while the major radiusr2 can be chosen freely betweenr1 and infinity. For all
choices ofr1 andr2, appropriatee, r, v can be found to describe the intersection curve of
c ands as a reflection circle.

3.2. Relation between reflection circles, isophotes and reflection lines

The relation between reflection circles, isophotes and reflection lines can be formulated
in

Theorem 3. Given is a reflection circlex on a surface which is described by the
normalized eye directione, the(normalized) centerr of the circle at infinity, and the scalar
valuev. Then the following statements apply:

(1) x is an isophote iffr = e or r = −e.
(2) x is a reflection line iffre = 2v.

Proof. The proof of (1) comes from (1) and (9). (2) Follows directly from (7) and (12).✷
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Fig. 11. (a) Set diagram for reflection circles, isophotes and reflection lines; (b) definition of a light
line on the surfacex by a straight linel.

The correlations between reflection circles, isophotes and reflection lines are illustrated
in Fig. 11(a).

A family of isophotes is obtained by settingr = ±e and varyingv. A family of reflection
lines is obtained by varyingr andv simultaneously. In fact,r is moved along a line at
infinity while v is adjusted in such a way that 2v = re.

4. Further concepts of surface curves

In this section we study further concepts of surface curves concerning their relation to
reflection circles.

Light lines. A light line on a surface is defined by a straight linel. It consists of all surface
pointsx with the property that the rayx + λn intersectsl. Fig. 11(b) illustrates this.

Simplifying the concept of light lines by movingl to infinity, we obtain: a light line at
infinity is defined by a liner at infinity. It consists of all surface points withnr = 0.

A light line on the unit spheres is the great circle perpendicular tor. Thus light lines are
special cases of reflection circles.

Isophenges. Isophenges (Hoschek and Lasser, 1989) are defined as lines of constant
apparent light intensity on a surface. Given a surface, a light direction and a view direction,
an isophenge consists of all surface points with cosλcosθ = const. Hereλ is the angle
between light direction and surface normal whileθ is the angle between view direction
and surface normal. Thus isophenges and reflection circles are essentially the same.

Simplified reflection lines following (Kaufmann and Klass, 1988). In (Kaufmann and
Klass, 1988) another class of simplified reflection lines is used. Here families of lines on
the surface are considered instead of the surface itself. The angle between the tangents of
these line families and a certain vectore is used to determine reflection lines. The families
of surface curves can be parametric lines or intersections with planes. For our purposes
we are interested only in families of surface curves which are independent of a particular
surface parametrization; we consider intersection curves with a family of parallel planes.
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Fig. 12. Simplified reflection lines as used in (Kaufmann and Klass, 1988). Intersection curves with
a family of planes parallel top are considered. A reflection line consists of all surface points with a
constant angleα between the tangent vectort of the intersection curves and the eye directione.

Given is a surfacex, an eye vectore, and a family of parallel planes defined by the
common normalp. Then all points ofx with a constant angleα betweene and the tangent
of the intersection curve through this point belong to one reflection line. Fig. 12 illustrates
this.

To study this version of reflection lines on the unit spheres, we transform the coordinate
system in such a way that the origin is in the center ofs ande = (0,cosα,sinα)T and
p = (0,1,0)T. Then we get for a point(x, y, z)T ∈ s (i.e.,x2 + y2 + z2 = 1 ) the following
normalized tangent vectort:

t =




−z√
x2 + z2

0
x√

x2 + z2


 =




−z√
1− y2

0
x√

1− y2


 . (14)

The points which fulfillte = v =const lie on the intersection ofs and an elliptic cylinder
c described by (4) andr1 = v

sinα
, r2 = 1. This describes a pair of great circles ons. Thus

reflection lines in (Kaufmann and Klass, 1988) are special cases of reflection circles as
well.
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