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Abstract

Isophotes and reflection lines are standard tools for surface interrogation. We study the correlations
between them. We show that isophotes and reflection lines are different (but not disjunct) classes
of surface curves. Furthermore we introduce the concept of reflection circles as a generalization of
isophotes and reflection lines. Reflection circles can be considered as the mirror images of a family of
concentric circles on the surface. We show that reflection circles contain both isophotes and reflection
lines as special cases.2001 Elsevier Science B.V. All rights reserved.

Keywords:Surface interrogation; Isophotes; Reflection lines

1. Introduction

Isophotes and reflection lines are well-studied standard tools for surface interrogation.
The research on properties of isophotes was done quite independently of the research done
on reflection lines. It turned out that both curve classes have similar properties concerning
continuity features and fairness for properly shaped surfaces.

Isophotes. An isophote on a surfacecan be defined by an eye poigy and an angler.
Then the isophote consists of all surface pointsith the property angle, — x,n) = «
wheren denotes the normalized surface normal. Fig. 1(a) illustrates this.

This definition of isophotes can be simplified by considering an eye direction vector
instead of an eye poim,. Then one isophote is defined band a scalar value. It consists
of all surface points with

en=v. (1)
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Fig. 1. (a) Definition of isophotes using an eye paipt (b) simplified definition of isophotes using
an eye directiore: all points with a constant angte betweene and the surface normal lie on an
isophote.

Fig. 2. (a) Definition of reflection lines: a reflection line on the surfade the mirror image of the
light line | onx while looking frome,,. (b) A line at infinity is defined by a vectqr, it consists of all
directionsa with ap = 0.

This means that all points on the isophote have the same angle bedvaedrthe surface
normaln (Fig. 1(b) illustrates).

The definition of isophotes using an eye vector is commonly used in the literature (Hagen
et al.,, 1992; Poeschl, 1984; Theisel, 1997). It has the advantage that the definition of
isophotes depends only on the normal and not on the location: two surface points with
the same normal direction are located on the same isophote, no matteridiotwosen.

A parametric family of isophotes on a surface is obtained by defining the fixed
normalizece and varying between-1 and 1. For every parametgra particular isophote
is defined.

Reflection lines. A reflection line (Hagen et al., 1992; Kaufmann and Klass, 1988; Klass,
1980; Theisel and Farin, 1997) on a surfacés defined by an eye poi,, a certain
plane (called light plane), and a linan the light plane (called light line). Considering

X as a mirror, the reflection line or is defined as the mirror image ofon x while
looking frome,. Fig. 2(a) gives an illustration. A family of reflection lines is obtained
by considering all parallel lines ¢fin the light plane.



H. Theisel / Computer Aided Geometric Design 18 (2001) 711-722 713

Itis known that isophotes and reflection lines have a number of properties in common:

e A G" continuous surfacg ensures botlG" 1 isophotes and;" ! reflection lines

onx.

e Isophotes and reflection lines react rather sensitive on small perturbations of the

surface.

e Isophotes and reflection lines cannot be expressed in a closed parametric form but

only as a numerical solution of a system of partial differential equations.
However, it seems to be an open question whether or not isophotes and reflection lines
are essentially the same curve concept or not. Parts of the literature treat isophotes as a
special case of reflection lines (Farin, 1996) while others distinguish carefully between
them (Hagen et al., 1992).

In Section 2 of this paper we study the relations between isophotes and reflection lines. It
turns out that isophotes and reflection lines are indeed different (but not disjunct) classes of
surface curves. Section 3 introduces a new class of surface curves called reflection circles.
We show that reflection circles are the generalized concept of both reflection lines and
isophotes. Section 4 discusses other concepts of surface curves which are sometimes used
instead of isophote and reflection lines. We show that they can be considered as special
reflection circles as well.

2. Therelation between isophotesand reflection lines

Given the usual definition of isophotes and reflection lines as given in the Figs. 1(b)
and 2(a), their comparison is trivial: isophotes and reflection lines are different curve
classes. This is due to the fact that reflection lines depend both on the location and the
normal direction of a surface point. Given an eye point and a light line, a reflection line on
the surface changes while translating the surface. In order to make isophotes and reflection
lines comparable, the definition of reflection lines has to be simplified in such a way that
they depend only on the surface normals. This simplification is introduced in the next
section.

2.1. Reflection lines at infinity

The simplification of isophotes from the definition shown in Fig. 1(a) to the commonly
used definition shown in Fig. 1(b) can be interpreted as moving the eyegydiota point
e at infinity. The underlying space of this is an extended 3D affine space which serves as
a model of the 3D projective space. This extended affine space additionally consists of
points at infinity which are represented by directions. See (Boehm and Prautzsch, 1994)
for an introduction of the projective space and the extended affine space.

Similar to isophotes, we simplify the concept of reflection lines by moving both the eye
pointe, and the light lind to infinity. Doing this,e, converges to the eye directiewhile
| converges to a line at infinity. A line at infinity consists of a number of points at infinity,
i.e., a set of coplanar directions. This way a line at infinity can be described by a pector
it consists of all directiona which are perpendicular fo. Fig. 2(b) gives an illustration.
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Fig. 3. (a) Definition of reflection lines at infinity by an eye veat@nd a line at infinity represented
by a vectom. It consists of all surface points where the reflected eye direetiis on the linep,
i.e.,ap =0. (b) Isophotes on the unit sphesare circles ors perpendicular te.

Using the concept of points and lines at infinity we get the following simplified definition
of reflection lines. A reflection line is defined by an eye directsand a line at infinity
represented by a vectpr It consists of all surface points with the following property: the
reflected eye directioalies on the line at infinity, i.eap = 0. (The reflected ray is defined
by being coplanar teandn, and angle€, n) = anglga, n).) Fig. 3(a) gives an illustration.

A family of reflection lines at infinity is obtained by varyimgalong a line at infinity.
Givene andp, a reflection line at infinity depends only on the surface normals, not on the
location on the surface. As in the isophote case, the major properties of reflection lines are
preserved by simplifying them to reflection lines at infinity. For the rest of the paper we
only consider reflection lines at infinity.

2.2. Isophotes and reflection lines on the unit sphere

For giveneandp, both isophotes and reflection lines depend only on the surface normals
and not on the locations of the surface. Two surface points with the same normal direction
always lie on the same isophote/reflection line. Thus, in order to compare isophotes and
reflection lines, it is sufficient to study their behavior on just one particular surface—the
unit sphere.

Given the unit sphers, an isophote (defined byyandv) is a circle ons perpendicular
to e. A family of isophotes is a set of concentric circlesswhich are perpendicular &

Fig. 3(b) illustrates this.
To describe a reflection line @ywe formulate the following

Theorem 1. Given the unit sphers, the reflection line defined by the eye direction
(normalized and the linep at infinity (normalized is the intersection curve afwith an
upright elliptic cylinderc, wherec is described by the following properties
o the center oklies on the center axis @f
o the sweeping direction afis in the plane defined byyand p, and perpendicular to
the average oé andp,

o the minor axis of the ellipse definimgs the average of andp; the minor radius-1

iSr]_:%,
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Fig. 4. A reflection line on the unit sphesds the intersection curve afwith an elliptic cylinderc.
(a) 3D image of the configuration; (b) configurationiry plane; (c) configuration in— plane.

Note that the minor radius; of the defining ellipse is alwayg = @

o the major axis of the ellipse definirgis perpendicular to the plane defined by

andp; the major radius-; is r, = g wherea = angldep)

Fig. 4 gives an illustration. To prove this theorem, we apply a transformation of the
coordinate system in such a way that the origin is the centeranid the coordinate axes
i,j, k are defined as

_ e+p . exp
le+pl’ llexpll”
In this new coordinate systermandp can be expressed as

k=ixj. )

COosx COosx
e= 0 ) p = 0 ) (3)
sina —Sina

wherea = w. The elliptic cylinderc can be expressed in the new coordinate system
in parametric form as

r1 - COSt
cs,0)=| ro-sins |. 4)
N
Then the intersection curve ofands can be expressed in parametric form as
r1 - COSt
X(t)=n= r2-sint . (5)
i\/l—rlz-co§t —r2.sirtt

Setting the reflected ragas

a=2(enn—e (6)
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Fig. 5. The reflection line os for « = 45° gives a pair of great circles om (a) 3D image of the
configuration; (b) configuration in—y plane; (c) configuration in— plane.
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Fig. 6. The reflection line o for e= —p is a pair of circles ors with the radiiry = rp» = @
(a) 3D image of the configuration; (b) configurationxny plane; (c) configuration in— plane.

and setting
V2 V2 1
h 2 sina
it is a straightforward exercise in algebra to obtain= 0 from (3), (5), (6), (7). O

()

Figs. 5-7 show special cases of reflection lines.on
2.3. Comparison between isophotes and reflection lines

From studying isophotes and reflection lines on the unit sphere we can deduce that they
are different classes of surface curves. In fact, the only circles which can be obtained as
reflection lines have the radiu§ (for @« = 90, see Fig. 6) or 1 (fow = 45°, see Fig. 5).

All the other circles (i.e., isophotes) sitannot be reflection lines because the minor radius
of the ellipse defining is constant@. Fig. 8(a) shows the relation between the sets of all
isophotes and reflection lines.
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Fig. 7. Reflection line ois for « = 30°. (a) 3D image of the configuration; (b) configurationxiny
plane; (c) configuration in— plane.

a)
isophotes . reflection
lines

Fig. 8. (a) Set diagram for the sets of all isophotes and reflection lines. (b) Definition of reflection
circles: mirror images of concentric circles on the light plane while looking fegrto x.

3. Réflection circles

It is the purpose of this section to find a class of surface curves which is a generalization
of both reflection lines and isophotes. These curves are called reflection circles.

Reflection circles are defined similarly to reflection lines. Instead of considering parallel
lines in the light plane, reflection circles are obtained by considering concentric circles
in the light plane. The reflection circles on the surfacare the mirror images of the
concentric circles in the light plane. Fig. 8(b) illustrates this.

As in the case of isophotes and reflection lines, we simplify the concept of reflection
circles by moving both the eye point and the concentric circles to infinity. A circle at
infinity is defined by a direction and an angle. It consists of all vectora (i.e., points at
infinity) which fulfill angle(r, @) = «. Fig. 9(a) illustrates this.

A reflection circle at infinity is defined by the eye directierand the circle at infinity
given byr ande. It consists of all surface points with the property that the reflected eye
directiona lies on the circle at infinity, i.e., angle(@) = «. Fig. 9(b) illustrates.

Consideringe andn as being normalized, the reflected eye direction can be computed
as (6). Inserting this intar = cosx, we obtain

ar = 2(en)(rn) — (er) = cosa. (8)
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Fig. 9. (a) Circle at infinity, defined by and«. It consists of all vectora with angle¢, a) = «.
(b) Reflection circles at infinity defined by, r and«. It consists of all surface points where the
reflected eye directioa lies on the circle at infinity, i.e., angle(@ = «.

Settingv = &;(a) we obtain: a reflection circle is defined by two vecters and a
scalarv. It consists of all surface points with the property

(en)(rn) =v. )

There are several possible ways of defining a family of reflection circles:

(1) varyv,

(2) varyaalong a line at infinity,

(3) apply (1) and (2) simultaneously.
As for isophotes and reflection lines, the definition of reflection circles at infinity depends
only on the surface normals and not on the surface locations. Thus it is sufficient to study
reflection circles on the unit sphere.

3.1. Reflection circles on the unit sphere
To describe reflection circles on the unit sphere, we give the following

Theorem 2. Given is the reflection circlg on the unit sphere defined by the normalized
vectorse, r and the scalaw. Thenx is the intersection curve afwith an upright elliptic
cylinderc with the following properties

e the center o lies on the center axis @f

o the sweeping direction afis the average of ande,

o the minor direction of the ellipse definirgies in the plane defined hyande; the

minor radiusry isry = /& —y

o the major direction of the defining ellipse is perpendicular emde; the major radius

r2isrp = g with o = 90° — 209818

Fig. 10 illustrates the theorem. To prove Theorem 2, we apply a transformation of the
coordinate system in such a way that the origin is the centsranid the coordinate axes
i,j,k are defined as

e+r , rxe

K= —, = i=j xKk. 10
lerrl” T lrxel : (10)
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Fig. 10. A reflection circle on the unit spheses the intersection curve with an elliptic cylinder
(a) 3D view, (b) projection into the—y plane, (c) projection into the—; plane. Both the minor
radiusry and the major radiug, can be varied by varying, r andv.

In this new coordinate systeraandr can be expressed as

cosu — COoSu
e= 0 , p= 0 , (12)
sina sina

wherea = 90° — %. The elliptic cylinderc can be expressed in the new coordinate
system in parametric form by (4). Then the intersection curweafds can be expressed
in parametric form as (5). Setting

1+ (er) 1
] . 12
1 2 v 2= sina (12)

we get from (11), (5) and (12):
(en)(rn) =v (13)
which proves thax(z) defined by (5) and (12) is a reflection circle

Note that the minor radiug, of the ellipse defining can be chosen freely between 0
and 1, while the major radius can be chosen freely between and infinity. For all
choices ofr; andrp, appropriatee, r, v can be found to describe the intersection curve of
c andsas a reflection circle.

3.2. Relation between reflection circles, isophotes and reflection lines
The relation between reflection circles, isophotes and reflection lines can be formulated
in

Theorem 3. Given is a reflection circlex on a surface which is described by the
normalized eye directiog, the(normalized centerr of the circle at infinity, and the scalar
valuev. Then the following statements apply

(1) xis anisophote iff =eorr = —e.

(2) x is areflection line iffre= 2v.

Proof. The proof of (1) comes from (1) and (9). (2) Follows directly from (7) and (12).
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isophotes ' reflection

lines

x(u,v)

Fig. 11. (a) Set diagram for reflection circles, isophotes and reflection lines; (b) definition of a light
line on the surfaca& by a straight lind.

The correlations between reflection circles, isophotes and reflection lines are illustrated
in Fig. 11(a).

A family of isophotes is obtained by setting= e and varyingv. A family of reflection
lines is obtained by varying andv simultaneously. In fact; is moved along a line at
infinity while v is adjusted in such a way that 2 re.

4. Further concepts of surface curves

In this section we study further concepts of surface curves concerning their relation to
reflection circles.

Light lines. A lightline on a surface is defined by a straight liné consists of all surface
pointsx with the property that the ray+ An intersectd. Fig. 11(b) illustrates this.

Simplifying the concept of light lines by movinigto infinity, we obtain: a light line at
infinity is defined by a line at infinity. It consists of all surface points witir = 0.

A light line on the unit sphersis the great circle perpendiculartoThus light lines are
special cases of reflection circles.

Isophenges. Isophenges (Hoschek and Lasser, 1989) are defined as lines of constant
apparent light intensity on a surface. Given a surface, a light direction and a view direction,
an isophenge consists of all surface points with)oosst = const. Herel is the angle
between light direction and surface normal whilés the angle between view direction

and surface normal. Thus isophenges and reflection circles are essentially the same.

Simplified reflection lines following (Kaufmann and Klass, 1988). In (Kaufmann and
Klass, 1988) another class of simplified reflection lines is used. Here families of lines on
the surface are considered instead of the surface itself. The angle between the tangents of
these line families and a certain vectds used to determine reflection lines. The families

of surface curves can be parametric lines or intersections with planes. For our purposes
we are interested only in families of surface curves which are independent of a particular
surface parametrization; we consider intersection curves with a family of parallel planes.
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Fig. 12. Simplified reflection lines as used in (Kaufmann and Klass, 1988). Intersection curves with
a family of planes parallel tp are considered. A reflection line consists of all surface points with a
constant angle between the tangent vectbof the intersection curves and the eye direcon

Given is a surface, an eye vectoe, and a family of parallel planes defined by the
common normap. Then all points ok with a constant angle betweere and the tangent
of the intersection curve through this point belong to one reflection line. Fig. 12 illustrates
this.

To study this version of reflection lines on the unit sprerge transform the coordinate
system in such a way that the origin is in the centesahde = (0, cosw, sina)T and
p=(0,1,0)". Then we get for a poirtx, y, z)" € s(i.e.,x?> + y? 4+ z? = 1) the following
normalized tangent vector

—z —Z
x2 472 1_)’2
X X

N Ny
The points which fulfillte = v =const lie on the intersection sfand an elliptic cylinder
c described by (4) anth = g, r2 = 1. This describes a pair of great circlesoThus
reflection lines in (Kaufmann and Klass, 1988) are special cases of reflection circles as
well.

Acknowledgements
The author thanks Prof. Heidrun Schumann from the University of Rostock for her

constant support and encouragement of this work.

References

Boehm, W., Prautzsch, H., 1994. Geometric Concepts for Geometric Design. AK Peters, Wellesley.



722 H. Theisel / Computer Aided Geometric Design 18 (2001) 711-722

Farin, G., 1996. Curves and Surfaces for Computer Aided Geometric Design, 4th edn. Academic
Press, Boston.

Hagen, H., Hahmann, S., Schreiber, T., Nakajima, Y., Wordenweber, B., Hollemann-Grundstedt, P.,
1992. Surface interrogation algorithms. IEEE Computer Graphics and Applications 12 (5), 53—60.

Hoschek, J., Lasser, D., 1989. Grundlagen der Geometrischen Datenverarbeitung. B.G. Teubner,
Stuttgart. English translation: Fundamentals of Computer Aided Geometric Design, AK Peters,
Wellesley, 1993.

Kaufmann, E., Klass, R., 1988. Smoothing surfaces using reflection lines for families of splines.
Computer-Aided Design 10 (6), 312—-316.

Klass, R., 1980. Correction of local surface irregularities using reflection lines. Computer-Aided
Design 12 (2), 73-77.

Poeschl, T., 1984. Detecting surface irregularities using isophotes. Computer Aided Geometric
Design 1 (2), 163-168.

Theisel, H., 1997. On geometric continuity of isophotes, in: Le Mehaute, A., Rabut, C., Schumaker,
L.L. (Eds.), Curves and Surfaces with Applications in CAGD. Vanderbilt Univ. Press, Nashville,
TN, pp. 419-426.

Theisel, H., Farin, G., 1997. The curvature of characteristic curves on surfaces. IEEE Computer
Graphics and Applications 17 (6), 88—96.



