CAGD and

Scientific Visualization

Habilitationsschrift

zur Erlangung des akademischen Grades
Dr. Ing. habil.

an der Fakultdat der Ingenieurwissenschaften
der Universitdt Rostock

vorgelegt von
Holger Theisel
geb. am 16.08.1969 in Jena

Rostock, 1. Juli 2001

Gutachter:

Prof. Dr. Heidrun Schumann (Universitdt Rostock)

Prof. Dr. Gerald Farin (Arizona State University, Tempe, USA)
Prof. Dr. Thomas Ertl (Universitat Stuttgart)



Abstract

In this work we investigate the correlation between the two disciplines CAGD
and Scientific Visualization. Both are correlated to Computer Graphics but be-
came disciplines of their own and therefore developed rather independently of
each other.

It is the task of this work to analyze the interapplicability of both disciplines
to each other, to find where ideas and methods of one discipline can be applied
to the other, and vice versa.

In the first part we analyze both disciplines concerning their histories, the
present data, and their pipelines. Doing so we obtain concrete expectations on
where exactly it makes sense to search for interapplications.

Based on these expectations, part two of this work systematically investi-
gates applications of CAGD ideas and methods in Scientific Visualization. Doing
so, we do not only collect and systematize existing approaches, we also develop
a number of new techniques.

Part three of this work deals with the application of of Scientific Visualization
in the design process of curves and surfaces. Here we also provide a number of
new approaches in addition to the systematization of the existing ones.
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Chapter 1

Introduction

Modern Computer Graphics shows more and more a trend of interdisciplinary
working methods. Today’s real-life problems are of such complexity that a spe-
cialist in one discipline cannot solve them alone. Instead, teams of experts have
to work on the problems. For example, modern approaches in Data Mining con-
tain approaches of Data bases, Scientific Visualization, Modeling/Simulation,
and Statistics. Also within the field of Computer Graphics the disciplines come
closer to each other to solve complex and general problems. This collaboration
with other disciplines can be fruitful for a particular discipline, because this way
a discipline is considered in the light of other disciplines, can contribute to other
disciplines, or can apply and improve their results.

In this context it may occasionally turn out that different disciplines have
worked on similar problems and found similar solutions independently of each
other. Moreover, the application of one discipline to another one might yield
significant new results there. Thus the investigation of correlations, dependen-
cies, and mutual influence between different disciplines is a promising approach
to develop them further.

It is the purpose of this work to investigate the correlations and mutual influence
of two disciplines which are related to Computer Graphics: CAGD (Computer
Aided Geometric Design) and Scientific Visualization. We want to investigate
where to apply the ideas and methods of one discipline to the other in order to
find improvements for both disciplines.

The main purpose of Scientific Visualization is to produce visual representa-
tions of large data sets. The task is to explore data and information in such a
way as to gain understanding and inside into the data. Modern data sources like
satellites or CT (Computer Tomography) devices produce daily a high amount
of data which has to be analyzed. In fact, data sets of the size of Gigabytes or
even Terabytes are nowadays common. To explore these large data sets, visual
analysis is a promising approach. The general reason for this is the fact that the
human eye is able to recognize a high amount information in a single moment.
Scientific Visualization tries to make use of this ability by providing appropriate
visual representations of the data and leaving the interpretations of the images
to the intelligence of a human being. This way Scientific Visualization appears
in a row with other data analysis tools which mostly come from the area of
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8 CHAPTER 1. INTRODUCTION

Figure 1.1: a) piecewise bicubic B-spline surface; b) visualizing one class of lines of
curvature using methods of flow visualization.

statistics. For complex problems a rather common approach is to combine a
number of analyzing tools. Since there are a lot of different kinds of data to
be visualized, and since there are a number of different goals and motivations
for applying visualization, a variety of approaches and techniques to Scientific
Visualization exist, and it is crucial to choose an appropriate one.

While Scientific Visualization is an approach to analyzing data, CAGD can
mainly be considered as an approach to creating data by design. Here the data
to be designed are curves and surfaces. Curves/surfaces and their properties
are well-known for a long time. It is the task of CAGD to find representations
of curves/surfaces which are useful for design purpose. These representations
should be

e intuitive. There should be an intuitive relation between the representation
and the curve/surface.

e simple. The designer should be confronted with as few degrees of freedom
as necessary to design the curve/surface.

o flexible. The designer should be able to design virtually every curve/
surface which he/she has in mind.

It turned out that the representations which fulfill this task best are rather
simple networks of control points which can interactively moved by the designer.
CAGD explores the theory behind these networks of control points and thus
makes designed curves/surfaces applicable to a variety of areas.

Since there are a variety of different motivations and tasks to design curves/
surfaces, there are a number of different curve/surface schemes in CAGD which
emphasize different aspects and properties of the curves/surfaces. Nevertheless,
most applications focus on a particular class of curves/ surfaces which have thus
become a quasi-standard: the class of Bézier- or B-spline curves/surfaces.

It is the purpose of this work to explore the correlations of both disciplines:
Scientific Visualization and CAGD. We want to investigate where ideas, meth-
ods and concepts of one discipline can be applied to the other, and vice versa.
Doing so we show that this approach gives new contributions to both disciplines.
To illustrate the main idea of this work, we consider two examples.

Figure 1.1a shows a piecewise bicubic B-spline surface, a standard surface
class in CAGD. To evaluate the quality of this designed surface, one way is
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Figure 1.2: a) piecewise triangular approximation of an isosurface of a trilinear volume
data set using Marching Cubes; b) computation of the exact isosurface as trimmed
piecewise rational cubic surface.

to consider the lines of curvature! on the surface. Although lines of curvature
on a surface give valuable information about the surface behavior, they cannot
be described in a closed form as families of parametric curves on the surfaces.
However, it can be shown that they can be interpreted as tangent curves of a
certain vector field on the surface. Hence a variety of techniques from Scientific
Visualization (in particular from flow visualization) exist and can be used to
visualized the lines of curvature for the CAGD process. Figure 1.1b shows an
example of applying a visualization technique? which makes the behavior of the
lines of curvature visible. This is an example of how to apply a technique from
Scientific Visualization to CAGD.

To show an example of applying CAGD methods to Scientific Visualization,
consider figure 1.2. Figure 1.2a shows a common approach for an isosurface ex-
traction in volume visualization®. If this approximation is too rough, the correct
isosurface can be described as trimmed piecewise rational cubic surface. Figure
1.2b illustrates this for the example in figure 1.2a. Hence, this is an example of
applying CAGD methods to improve the results of Scientific Visualization.

Nowadays both disciplines Scientific Visualization and CAGD are rather com-
plex and heterogeneous. In both disciplines a lot of different methods and ap-
proaches have been developed. Moreover, both disciplines have collaborations
with other disciplines in science and technology. Thus it cannot be the purpose
of this work to give a complete overview over the state of the art in both dis-
ciplines. Excellent surveys exist for both disciplines ([55], [95] for CAGD, [167]
for Scientific Visualization). Instead, this work only deals with those aspects of
both disciplines where a collaboration with the other discipline makes sense.

To be able to investigate the correlations between CAGD and Scientific Vi-
sualization in a systematic way, as a first step we have to choose the points of
potential correlations between the disciplines inside themselves. To do so, we
have to answer the following specific questions:

1Lines of curvature are surface curves which have the defining property of being tangential
with one of the principal directions of the surface in every point of the curve. They form two
families of surface curves which reflect geometric properties of the surface. See [55] for details.

2The visualization technique applied here is called Integrate & Draw and is explained in
section 4.3.3.2 of this work.

3Volume visualization is a part of Scientific Visualization, as we will see later in this work.
The technique to extract the triangular approximation of the isosurface is called Marching
Cubes ([130]) which is treated in section 3.5.2.2 of this work.
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1. Which concepts and methods of CAGD are good candidates to be applied
in Scientific Visualization?

2. Which concepts and methods of Scientific Visualization can be applied to
CAGD?

To answer question 1, we see the following applications:

e Since the human eye reacts rather sensitively to slight perturbations of
curves or surfaces*, these are promising candidates to encode a high amount
of data. Scientific Visualization needs methods to encode large data sets
intuitively. Hence curves/surfaces are promising geometric objects to be
applied in Scientific Visualization.

e CAGD has gathered knowledge and experience about smooth interpola-
tion and approximation, especially for curves and surfaces. This way,
rather complicated interpolation conditions can be expressed in terms of
simple geometric correlations of control points. In Scientific Visualization
smooth interpolations and approximations which preserve certain proper-
ties play an important role. Hence we may use the knowledge of CAGD
about simple interpolation schemes to find simple and robust interpola-
tions in different parts of the visualization process.

e CAGD is basically concerned with designing data while it is the task of
Scientific Visualization to find appropriate visual representations of given
data sets. Although most of the data treated in Visualization comes from
measurement or simulation, data designed by methods similar to CAGD
are also of interest. Especially when this data has to be compared with
measured data, or if certain techniques in Scientific Visualization have to
be evaluated, the controlled design of input data — and thus the appli-
cation of ideas and concepts of CAGD — may be of interest for Scientific
Visualization.

To answer question 2, we see the following applications:

e At certain levels of the design process in CAGD, the designer has to deal
with rather large amounts of data. Based on this data the designer has to
make decisions concerning the further steps in the CAGD process. (For
example, the designer might have to choose some parameters or decide
if a complete redesign of parts of the curve/surface is necessary.) Hence
it might be worth trying to find a visualization of the present data and
current results of the design process in order to prepare and choose the
next design steps.

In order to investigate the applicability of CAGD methods in Scientific Visual-
ization and vice versa, the rest of this work is divided into three parts. Part one
analyzes CAGD and Scientific Visualization in the light of possible applications
to each other. This part consists of chapter 2. Based on the results of this
analysis, part two treats the applications of CAGD methods in Scientific Visu-
alization. This part consists of the chapters 3-6. Finally part three treats the

4This is a fact which can be confirmed by any owner of a car: he/she will detect a small
bump in the surface of a car immediately, even if it is a very small one!
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applications of Scientific Visualization in CAGD. This part consists of chapter 7 .

Exploring the interapplicability of CAGD and Scientific Visualization, this work
intends both to collect and systematize existing methods and to present new
approaches of applying one discipline to the other. Since it turned out that a
rather high number of interapplications already exists, this work has to incorpo-
rate two styles of presentation. The collection and systematization of existing
methods is done in a survey-like style where readers are referred to the original
papers for details. On the other hand, detailed descriptions are given for new
approaches which are suggested by the author, and some of which are previously
unpublished.
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CHAPTER 1.

INTRODUCTION



Chapter 2

Analysis and Comparison of
Visualization and CAGD

In recent years both Scientific Visualization and CAGD have become rather
complex and consist of a variety of different aspects and facets. In order to
apply one discipline to the other, this complexity of the disciplines has to be
reduced to those parts where an exchange and an application of the ideas of
one discipline to the other gives hope for fruitful results. In other words: we
have to analyze both disciplines concerning to their applicability to the other
discipline. Doing this we formulate expectations about where the applications
may succeed. These expectations yield the guide for the particular investigations
of the applicability of the two discipline to each other.

In order to analyze CAGD and Scientific Visualization, and their correlations
to each other, we compare both disciplines from three points of view. We com-
pare the data which is considered in both disciplines (section 2.1), we compare
the historical development of both disciplines (section 2.2), and we compare the
pipelines of both the Visualization and CAGD processes (section 2.3).

2.1 Data Comparison of Visualization and

CAGD

Scientific Visualization is concerned with a lot of different kinds of data. Hence
there are a large number of approaches to describing and classifying this data.
In CAGD, an explicit classification of the present data does not have the high
importance it does in Scientific Visualization. So we use the following strategy
in that section: among the existing approaches for a data description and clas-
sification in Scientific Visualization, we choose an appropriate one and try to
describe the data which is present in CAGD in terms of this data classification.

To describe the data in Scientific Visualization, a number of schemes exist
which emphasize different aspects of the data. Most of them agree in the as-
sumption that the data consists of a number of values which are measured in a
certain space. Hence the data in Scientific Visualization is mainly characterized
by describing and classifying the values and the space where the values were
obtained.

13
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[17] considers the data as m-dimensional data on a k-dimensional grid using
the notation LF,. This way k gives the dimensionality of the grid where the
data is measured while m counts the number of values which are measured
at a grid point. This approach to describing the data mainly focuses on an
exact description of the underlying grid but does not allow us to give a further
characterization of the present data types in a grid point.

In [210] a specification of scientific data is introduced which has been kept
as simple as possible while still describing the most important properties of the
data set. In fact, [210] only counts the dimensionality of the dimensions of the
observation space and the number of measured values in a point of this space.
This specification of scientific data was originally done to describe a particular
subclass of scientific data (called multiparameter data, see chapter 5), but its
ideas can generalized to describe general scientific data sets as well.

[70] introduces a data specification which focuses on an exhaustive and com-
plete description of the data. There too, the underlying space and the data at
the grid points of this space are specified, but a lot of additional and detailed
information about the data set is given as well. The result is a quite complete
and exact description of a data set. Unfortunately, the specification tends to
become too complex and cluttered.

The specification we want to use here for our purposes comes from [23] and
is a useful compromise between a compact and a complete description of the
data. [23] considers scientific data to be a map from a certain domain into a
certain range of values using the notation EE. Both the domain D and the
range of values R are then specified in detail. To describe D, [23] describes
the dimensionality and the regions of validity for a measured data point. Three
cases are distinguished: the data values are only valid at the observation points
(written EF), the data values are valid in certain areas around the observation
point (written E[Ifb]), or the domain is an enumerated set (written Eﬁl}). In
these notations, n describes the dimensionality of the domain.

To describe the range of values R, [23] distinguishes between the data types
point (P), scalar (S), vector (V), and tensor (T). Tt describes E2° '3 a data
set where 2 scalar values and a 3D vector are measured at the points of the
domain.

The description of [23] gives a compact description of both domain and range
of values. The main disadvantage is the fact that the structure and the con-
nectivity of the domain are not considered. Usually the data lies on a certain
grid in the domain. To take this into consideration, we give additional verbal
descriptions of the grid characteristics to the data specification of [23] when
necessary.

Since its very beginning, Scientific Visualization has focused on a number of
different data classes where the research and application of these data classes
became quite independent of each other. The most important data classes in
Scientific Visualization are:

e volume data: Eé] — (treated in chapter 3 of this work);

e 2D flow data: E[‘ﬁ — (treated in chapter 4);

e 3D flow data: E[‘?ﬁ — (treated in chapter 4);
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e multiparameter data: E™ with m > 2 — (treated in chapter 5);

e 2D scattered data: Eé] with no connectivity of the sample points in the
domain — (treated in section 6.1.1);

e 3D scattered data: E[};] with no connectivity of the sample points in the
domain — (treated in section 6.1.2);

e 3D second order tensor data: Eﬁg — (treated in section 6.2).

Although virtually all combinations of the specification of domain and range of
value are thinkable, the combinations collected above are the most relevant for
Scientific Visualization.

In order to compare the data of Scientific Visualization and CAGD, we now
try to insert the data which CAGD deals with into the data specification of
[23]. We obtain:

e 2D parametric curves: E[‘ﬁ The points of a 1-dimensional domain are
mapped to 2D vectors which are interpreted as locus vectors.

e 3D parametric curves: E[‘ﬁ The points of a 1-dimensional domain are
mapped to 3D locus vectors.

e Parametric surfaces: E[‘gﬁ The points of a 2-dimensional domain are
mapped to 3D locus vectors.

e Control polygons of 2D curves: EZ and Efl}. EF describes a set of points

in 2D where a linear connectivity is additionally assumed. Ef{gl} describes
the parameterization.

e Control polygons of 3D curves: Ef and Efls} EF describes a set of points
in 3D where a certain regular connectivity (linear, triangular, rectangular)
is additionally assumed. Eff} describes the parameterization for a rect-
angular control point scheme. (If the scheme of control points has a liner
connectivity, the parameterization is described by Efl}. For a triangular
connectivity of the control points, no parameterization may be necessary.)

Comparing this classification of CAGD data with the classification of the most
relevant data in Scientific Visualization collected above, we can see that the
CAGD data is not explicitly treated as a data class in Scientific Visualization.
This leads us to

Expectation 1 In CAGD there are currently only a few applications of Scien-
tific Visualization because the data which is dealt with in CAGD is not explicitly
considered by Scientific Visualization.

Comparing the data specifications of CAGD and Scientific Visualization again,
we can see that the data description of curves and surfaces come close to the data
description of flow data (at least closer than to the other Scientific Visualization
data classes mentioned above). For example, 3D flow data E[‘ﬁ and surface data

E[‘ﬁ only differ in one dimension of the domain. So we can formulate
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Expectation 2 Due to similarities of the treated data, most of the applications
of CAGD in Scientific Visualization can be expected in the visualization of flow
data.

2.2 History of Visualization and CAGD

In this section we want to analyze the correlation of CAGD and Scientific Vi-
sualization from a historical point of view. By analyzing and comparing both
disciplines we derive more expectations on where to apply one discipline to the
other. Section 2.2.1 outlines the history of Scientific Visualization, section 2.2.2
does so for CAGD. Section 2.2.3 compares the histories to give conclusions and
expectations on the goal of this work.

2.2.1 History of Scientific Visualization

Visualization is not a new issue. Instead, centuries ago people tried to find
appropriate visual representations of certain information. Euclid’s ” Elements”
([53]) uses drawings to represent and illustrate properties in geometry. In the
Middle Ages astronomical maps appeared which used arrow plots' to visual-
ize prevailing winds over the oceans. Height lines were used in topographical
maps in the 18" century. Early applications of isolines include representations
of magnetic declinations on the earth surface (Halley, 1701) or investigations
of temperature gradients on the northern hemisphere (von Humboldt, 1817).
Other developments of early visualization approaches were motivated by the
arts. Artists (especially painters) were always interested in finding appropriate
visual representations of certain ideas or information. Already in 1637 Descartes
formulated ([33]): ” Imagination or visualization, and in particular the use of di-
agrams, has a crucial part to play in scientific investigations’. This statement
holds until today.

With the development of computer technology in the last century, visual-
ization was confronted with new challenges and new possibilities which shifted
visualization into a completely new quality. On the one hand the presence
of computers caused a rapid growing of the data to be processed, making it
impossible to find visual representations ”by hand”. On the other hand, the de-
velopment of computers (and especially Computer Graphics) gave opportunities
to create visual representations of larger data sets automatically by the com-
puter. Hence early developments in visualization using computers were strongly
connected to the development of Computer Graphics.

The time of birth of Scientific Visualization as a discipline of its own can
be seen in 1987. In [35] the term ”Visualization in Scientific Computing”, now
generally shortened to ”Scientific Visualization”, appeared for the first time.
The developments of the following years were characterized by ”the creation of
an industry concerned with advanced scientific workstation hardware, software
and networking. Conferences, journals, trade shows, videotapes, books, CD
ROMs and networked communication to online digital libraries now abound,
and indicate a healthy, growing research, development and technology-transfer
environment” ([45]). In these times most of the algorithms and approaches were

1 Arrow plots are still a frequently applied standard technique for flow visualization - see
[167].
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developed which became standard algorithms for the visualization of particular
data classes. Examples are the Marching Cubes algorithm ([130]) for volume
data in 1987, parallel coordinates ([100]) for multiparameter data, in 1987 as
well, and Line Integral Convolution ([26]) for flow data in 19932.

Since 1990, the annual IEEE Visualization Conference has been held, which
has managed to be the currently most important conference on Scientific Visual-
ization. In Europe, the annual Eurographics Workshop on Scientific Visualiza-
tion has been established since 1990. A variety of other journals, conferences,
and workshops exist as well. Since 1987, a number of surveys and introduc-
tions to Scientific Visualization have been published. Most of them focus on
the application of Visualization to particular data classes (for instance [210] for
multiparameter data, [107] for volume data, or [152] for flow data). The reasons
for this may be twofold:

e The different data classes in Scientific Visualization require quite a differ-
ent treatment. In fact, inside the discipline ”Scientific Visualization” the
developments for the different data classes are rather independent of each
other.

e A new discipline needs some years to gather the most important ap-
proaches, to find agreements in the community about important concepts
and classifications. The discipline needs to collect material to be system-
atized. Only once this is done, do surveys or textbooks about the whole
discipline have the chance to be widely accepted.

However, the first textbook about the whole discipline of Scientific Visualization
seems to be [167] which appeared 13 years after Scientific Visualization was born
as a discipline of its own. It gives a broad introduction into into all relevant
aspects and data classes of visualization.

In recent years Scientific Visualization focuses on the application on very
large data sets as well as on the steering and controlling of the visualization
process. To do so, quality criteria® of a visualization technique have to be
introduced and the particular visualization techniques have to be evaluated
according to these criteria. The results are rule-based visualization systems
which not only enable the scientist to visualize large data sets but also help
him/her to produce appropriate and high quality visualizations.

Another trend of recent Scientific Visualization is the connection with other
research areas. Already [35] formulated: ”Visualization and Science go hand in
hand as partners”. For instance, the results of the visualization may be used to
directly control the parameters of the modeling and simulation process which
produced the data. This visualization scenario (already introduced under the
name ”interactive steering” in [85]) requires a level of computing power which is
still too high for today’s computing resources. Instead a focusing on particular
issues has to been done ([120], [200]).

One particular approach of connecting Scientific Visualization with another
discipline is treated in the work - the connection with CAGD.

2All these techniques are treated in detail later in this work.
3[167] introduces and explains the quality criteria expressivity, effectiveness, and suitability.
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2.2.2 History of CAGD

Similar to Scientific Visualization, the roots of CAGD go back to Euclid and
Descartes. Most of the bases of CAGD came from differential geometry and
approximation theory. In fact, curves and surfaces have been a well-researched
issue for a long time. With the appearance of computers, ”only” their applica-
bility to the design had to be discovered.

In the 50’s computers were used to drive numerical controlled milling ma-
chines in automotive and aircraft industry. Also in shipbuilding people got
interested in finding curve/surface schemes for the design. For this, a number
of schemes have been tried.

In 1959 and 1963, de Casteljau ([40], [41]) and Bézier developed indepen-
dently of each other the concept of Bézier curves and surfaces (which is strongly
related to the de Casteljau algorithm). This scheme might be the most impor-
tant development of the whole discipline. Nowadays the overwhelming majority
of applications in CAGD are based on these concepts. Another approach that
gained a rather high popularity were Coons patches ([34]) and Gordon surfaces.

B-spline curves and surfaces were introduced as design tools by de Boor
([39]) and Cox ([36]). Their extension to NURBS (non-uniform rational B-
splines) builds nowadays the quasi-standard for free-form curves and surfaces.
Apart of this, a variety of other spline curve schemes have been tried which were
mainly motivated by approximation-theoretical approaches, i.e. they were the
solutions of certain minimization problems.

The year 1974 can be considered to be the date of birth of CAGD as a
discipline of its own. In a conference at the University of Utah the concept
"CAGD” was used for the first time ([10]). In the following years the classic
concepts of CAGD were applied in a variety of areas, such as CAD, geoscience,
molecule design, pharmacy, architecture or simple word-processing. Of course,
car and aircraft design was still a main application area of CAGD.

The first textbooks which cover the most relevant issues of the whole disci-
pline appeared in 1988 ([55]) and 1989 ([95]), hence 14 and 15 years after CAGD
was considered as a discipline of its own. Both textbooks have been updated
and still set the standard in CAGD textbooks. Other textbooks which focus
on certain aspects of CAGD are [150], [54], [158], [56] and [1] . A variety of
conferences was held on CAGD. CAGD has its own journal at Elsevier.

In recent years CAGD has sought new application areas in science and indus-
try. In addition, research into a number of unsolved problems is being carried
out. Current research in CAGD includes the investigation of new curve/surface
classes with special properties as well as research on still unsolved theoretical
problems.

2.2.3 Historical comparison

Comparing the historical development of CAGD and Scientific Visualization,
we can find a number of similarities:

e Both disciplines have roots which go back centuries; their development
was mainly driven by the challenges of applying these roots to computer
technology.
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e The development of both disciplines is highly correlated to the develop-
ment of Computer Graphics. In fact, in their early stages both disciplines
were treated as parts of Computer Graphics before becoming disciplines
of their own.

e In both disciplines the development of the most important algorithms
was done quite soon after their "time of birth”. On the other hand, in
both disciplines it took more than 10 years until the first comprehensive
textbooks appeared.

e Both disciplines are currently in a stage of systematization, search for new
applications and for connections with other disciplines.

These points mentioned above give some of the motivations for the research
described in this work.

However, the historical development of CAGD and Scientific Visualization also
has a significant difference:

e CAGD is the older discipline. It was founded more than 10 years be-
fore Scientific Visualization. When Visualization started its fast-growing
developments in the 80’s, most of the relevant concepts and methods of
CAGD were already present and could be included. Reversely, most of
the CAGD algorithms had to be developed without the tools of Scientific
Visualization in mind.

The reason for this difference might be the fact that Scientific Visualization in
general makes higher demands on the resources of a computer. In fact, many
of the classical CAGD algorithms work on rather slow computers while visu-
alization problems deal with large data sets and thus need high-end machines.
Hence the development of Visualization had to wait until computers reached a
suitable level of power.

From the historical difference between CAGD and Visualization we can obtain
the following

Expectation 3 Since CAGD was already well-researched when Scientific Vi-
sualization came up, we can expect a broad application of CAGD methods in
Visualization. Also new applications of CAGD in Visualization can be expected.

Considering the application of Visualization in CAGD, we get the following

Expectation 4 Since most of the relevant CAGD algorithms were developed in
a time when Scientific Visualization was not present yet, we expect only a small
number of applications of Scientific Visualization in CAGD. On the other hand,
this gives the chance that a redevelopment of classical CAGD problems with
Visualization in mind may give improvements of the classical CAGD algorithms.

2.3 Pipelines in Visualization and CAGD

In Computer Graphics it is a common approach to describe the processes in
terms of pipelines. This way a systematic treatment of the data and processes
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Figure 2.1: The visualization pipeline.

is possible (despite the fact that there are some applications which only run
outside the pipelining concepts). Hence pipelines can be considered as a tool
which gives a unified approach to most of the data and processes. Examples
of pipelines in classical Computer Graphics are the rendering pipeline and the
viewing pipeline ([59], [50], [51]).

Since both CAGD and Scientific Visualization have strong correlations to
Computer Graphics, a logical question is to ask for their pipelines. We do
so in the following sections 2.3.1 and 2.3.2. Section 2.3.3 summarizes which
conclusions for the task of this work can be taken from the treatment of the
pipelines.

2.3.1 The visualization pipeline

The visualization pipeline is a concept for a unified approach to Scientific Vi-
sualization which is widely accepted in the visualization community. Although
there are argues about details of it, there is an agreement about the general
structure of the visualization pipeline.

Figure 2.1 shows the visualization pipeline we want to use here. This pipeline
is similar to the commonly accepted pipelines in [78] and [167]. The first step
of the visualization pipeline, data acquisition, can also be considered as a pre-
step of the pipeline. There is a variety of possibilities where the data to be
visualized comes from. The data may be obtained by measurement or observa-
tion. Examples of this is data which was sent from satellites, or medical data
from CT (Computer Tomography) devices. On the other hand, the data can be
obtained by modeling and simulating certain processes. Examples of this are
climate simulation models. However, for the following steps in the visualization
pipeline it does not matter where the data to be visualized comes from. What
matters is the fact that the data sets are usually rather large. For smaller data
sets a visual analysis might not be necessary at all.
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The result of the data acquisition step is raw data which goes into the next step
of the visualization pipeline: the filtering step. It is the purpose of this step
to modify the data to prepare it for the next steps. The filtering step might
contain operations for data completion, data reduction, filtering, smoothing or
extracting metadata out of the raw data. Data completion may be applied for
incomplete data (i.e. if the data values are not available for all grid points). To
do so, simple interpolations (nearest neighbor, (bi/tri)linear) may be applied.
Since in this step only values for particular grid points have to be found, more
involved interpolation schemes which consider a certain smoothness of the data
are usually not necessary here.

Data reduction is necessary if the data set is either too large to be processed
by the visualization system, or if the data set contains strong redundancies.
This reduction may be done interactively by applying selection or projection
algorithms, or it may be done (semi)automatically by applying statistical ap-
proaches to detect redundancies and areas of high information.

Filtering and smoothing operations may be applied to the raw data in order
to remove the noise which comes from measuring the data. To do so, operations
such as Gaussian filters or Laplacian smoothing may be applied.

Metadata collects information about the current data set. It may contain
quantitative and qualitative statements about the data. This data may be used
to steer and control the following steps of the visualization pipeline.

After applying the filtering step to the data, the filtered data goes to the map-
ping step of the visualization pipeline. This step is actually the core of the
visualization pipeline. The filtered data has to be mapped to geometric primi-
tives and their drawing attributes. Since a variety of primitives is possible, care
has to be taken to choose them in such a way that the information in the filtered
data is represented in an appropriate way.

In the rendering step of the visualization pipeline, the geometric primitives
have to be mapped onto the 2D screen. This issue is not a specific problem in
visualization. Instead, standard approaches of Computer Graphics ([59]) can
be applied here. The resulting image / sequence of images can now be visually
analyzed by the scientist.

As we can see in figure 2.1, the visualization pipeline is an iterative process.
Analyzing the resulting images, the scientist may decide to go back in the visu-
alization pipeline and change parameters in one of the upper steps. This way
the new visualization may give better results to the scientist who can repeat
these iterative steps as often as necessary. Of course, iterations to higher levels
are possible at virtually every step of the visualization pipeline.

The visualization pipeline in figure 2.1 serves as a model for general scien-
tific data. For particular data classes, special pipelines have been introduced
(see chapters 3-5). These pipelines differ in certain details but have a globally
similar structure to the general pipeline of figure 2.1.

Considering the amount of data which is present in the visualization pipeline,
we can make the following statement: the further the visualization pipeline is
processed, the less data is present. This is justified by the fact that the original
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Figure 2.2: The CAGD pipeline.

large amount of raw data has to be decreased as much as necessary to place
it onto the screen. Of course, this global statement is only a trend and has
exceptions. For instance a data completion in the filtering step may increase
the amount of data temporarily.

2.3.2 The CAGD pipeline

Since CAGD has some of its foundations in Computer Graphics, it is a rather
natural step to bring the processes which belong to CAGD into a pipeline.
Modern CAGD consists of a variety of problems, approaches, processes, and
open questions; the ordering of them in a pipeline seems to be useful but not
done yet. It is the purpose of this section to introduce a pipeline where we
insert the most relevant processes of CAGD in a systematic way. We are aware
that not all CAGD processes can be included in such a pipeline, but this is a
problem of other pipelines as well.

There is another reason to try to put the CAGD process into a pipeline: it
makes CAGD comparable to the visualization pipeline. Hence, from comparing
the CAGD pipeline and the visualization pipeline we might derive more expec-
tations on how to apply visualization to CAGD, and vice versa.

Figure 2.2 shows the CAGD pipeline we want to consider here. The pipeline
starts with some input data. This input data may be rather vague and not
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formalized. The designer may have an idea of the curve/surface to be designed
in mind, or he/she may have a rough hand drawing of the desired shape. The
input data may also be a set of measured points to be interpolated or approxi-
mated later.

In the next step of the CAGD pipeline, the designer has to specify the task of the
curve/surface to be designed. So he/she has to determine if the curve/surface
should interpolate or approximate the input data, or to fit certain points/curves
of the input data. It might also happen that — if no data points came as input
data — no particular task of the resulting curve/surface has to be specified.

In the next step the designer has to select the curve/surface type to be used.
He/she can choose between Bézier curves/surfaces, Bézier-spline curves/sur-
faces, B-spline curves/surfaces, Coons patches, or other curve and surface
schemes. It has also to be decided if, for a polynomial curve/surface, a ra-
tional or non-rational version is used. In the surface case, it has also to be
decided if triangular or tensorproduct surfaces are used. For special input data
and special tasks, surfaces of general topology (n-sided patches) or other surface
concepts like Gregory patches ([71]) may also be considered.

Obviously, the decision for an appropriate curve/surface type is crucial for
the success of the design process, but it is not trivial at all. A number of as-
pects influence this decision, like the input data, the specified task, and also the
question which curves/surfaces are available for the design system to be used.

Once the type of the curves/surface to be used is specified, further requests
of the curves/surfaces to be designed have to specified in the next step. For in-
stance for piecewise polynomial curves/surfaces, a certain global continuity may
be requested. Another request to the curve/surface may be the preservation of
convexity properties, or the minimization of a certain energy functional.

In the next step of the CAGD pipeline, global degrees of freedom have to be
determined. The kind of these degrees of freedom depend on the decisions
made above. For Bézier- and B-spline curves, the degree of freedom to be de-
termined are parameterization and the end conditions of the curve. For tensor
product Bézier- and B-spline surfaces, the twist vectors additionally have to be
fixed.

The next step of the CAGD pipeline is the core of the design process. After
all the decisions above have been made, the designer can interactively move the
control points until an appropriate curve/surface appears on screen. Depending
on the chosen curve/surface scheme, the control points to be moved might be
Bézier points (for Bézier- or Bézier-spline curves/surfaces), de Boor points (for
B-spline curves/surfaces), or Farin points (for rational curves/surfaces). The
result of this step is a first version of the curve/surface which has to be evalu-
ated in the next step of the visualization pipeline.

In the curve/surface interrogation part of the CAGD pipeline the curve/sur-
face is checked for any undesired behavior which is not visible at first glance.
Typical methods for curve/surface interrogation are curvature plots, isophotes,
or reflection lines. The results of curve/surface interrogation methods are the
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parts of the curve/surface where a redesign is necessary.

In the last step of the CAGD pipeline, a curve/surface fairing is done. Au-
tomatic methods are applied to move the control points by minimal amounts to
increase the fairness of the surface while keeping the general shape. Curve/ sur-
face fairing methods may be based on curve/surface interrogation algorithms,
or they may focus on obtaining certain higher continuities of the curve/surface.

As we can see in figure 2.2, the CAGD pipeline, too, describes an iterative
process. After every step of the pipeline, the designer may go back to earlier
steps of the pipeline to apply a redesign there. In figure 2.2, this is illustrated
by the upward arrows on the right-hand side of the boxes.

In the CAGD pipeline not all parts have to be processed. For instance,
it is possible to omit the part ”select curve/surface type” and go directly to
the part ”"specify further requests of curve/surface”. If rather strong requests
are formulated here (for instance to minimize certain integrals), the type of
the curve/surface can be derived directly from this. For example, many spline
functions have been developed to minimize certain functionals.

Another example of omitting parts of the CAGD pipeline are variational
design approaches in curve and surface modeling ([80], [20], [72], [24]). There the
curve/surface type and rather strong further requests (minimizing functionals)
are defined in such a way that the curve/surface is already uniquely defined. In
this case, no further degrees of freedom have to be determined and no control
points have to be moved.

The fact that parts of the CAGD pipeline can be left out is illustrated by
the downward arrows on the left-hand side of the boxes in figure 2.2.

Considering the amount of data which has to be dealt with in the CAGD
pipeline, we can make the following statement: the amount of data increases
from the top to the bottom of the pipeline. This is not surprising because the
design process starts with almost nothing and ends in curves/surfaces which are
rather complex geometric objects. As in the case of the visualization pipeline,
this statement is a global one. Local variation are possible.

2.3.3 Conclusions from the pipelines

In this section we evaluate the pipelines for visualization and CAGD in such a
way that we get more detailed information about the question where to apply
CAGD methods for visualization, and vice versa. Before doing so, we have to
mention that the two pipelines were introduced at different levels of abstraction.
The visualization pipeline was introduced in a quite rough level of detail. In
fact, more detailed visualization pipelines have been introduced especially for
particular data classes. The CAGD pipeline here was newly suggested in this
work and thus needed a more detailed description. Despite of the different levels
of abstraction of the two pipelines, we do a comparison of them in the following.

As shown in figure 2.1, visualization is especially useful for rather large in-
put data sets. Since in the CAGD pipeline the amount of data is growing when
approaching the lower parts of the pipeline, we can formulate the following
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Expectation 5 Most applications of Scientific Visualization in CAGD can be
expected in the lower parts of the CAGD pipeline.

Indeed, as we will see later in chapter 7, the main applications of Scientific
Visualization are in the part ”move control points” and ”curve/surface interro-
gation” of the CAGD pipeline.

Asking the reverse question, where CAGD methods can be applied in the
visualization pipeline, a similar statement to expectation 5 is not possible. This
is due to the fact that we defined the application of CAGD in a rather general
way: we considered both a simple usage of curves/surfaces and for instance
the application of interpolation methods as CAGD applications. Hence we can
formulate the following

Expectation 6 Applications of CAGD methods can be found in almost all parts
of the visualization pipeline.

Later we will apply CAGD methods for data acquisition, for filtering, and for
the mapping step. Only the rendering step was left untouched because there
standard methods of Computer Graphics apply, and no specific visualization
background is necessary.

2.4 Strategies for Proceeding Further

After analyzing CAGD and Scientific Visualization concerning data, history and
pipelines, we obtain the following strategies for proceeding further:

Concerning expectations 3 and 4, the treatment of applications of CAGD in
Scientific Visualization is larger than the treatment of applications of Scientific
Visualization Visualization in CAGD. Hence the application of CAGD in Sci-
entific Visualization is treated in the four chapters 3—6 while for the treatment
of the application of Scientific Visualization in CAGD only the one chapter 7 is
reserved.

Following the trend in Scientific Visualization to focus on particular data
classes, we split the treatment of applying CAGD to Scientific Visualization to
the different data classes in Scientific Visualization. Hence the application of
CAGD for volume data is treated in chapter 3, for flow data in chapter 4, for
multiparameter data in chapter 5, and for the remaining data classes in chapter
6.

Concerning expectation 2, chapter 4 can be expected to be the largest.
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Chapter 3

CAGD for Volume
Visualization

Volume data is one of the most important data classes in scientific visualization.
The main applications of volume visualization are in medicine, meteorology
and other areas of natural science. Volume data may come from computer
tomography (CT) devices, or from raster electron microscopes.

The volume data we consider here consists of single scalar values on a regular
3D grid. The grid is given by two points Xmin = (Tmin, Ymin, Zmin)> > Xmaz =
(Tmazs Ymaz, Zmaz)’ and the grid resolutions n,,n,,n, in z—,y— and z—
direction. Then the grid points can be computed as

Ny —1% i
:lz Tmin + N Tmax
1=0,...,ng
Xijk = ny Ymin T ny Ymazx for ] = 0, vy My (31)
k=0,...,n
) b z
n,—k

n, Zmin T niz Zmazx

Research has also been done on volume data on curvilinear or irregular grids
[176]. Since most of volume data comes on regular grids we restrict ourselves
to the treatment of this type of grid. Here we also assume that the grid is
normalized, i.e. Xmin = (0,0,0)T, Xpazr = (nz,ny,n.)T. This can always be
achieved by applying an appropriate translation and scaling to the original grid.
For the normalized grid we obtain

7 )
Xijk = J for j
k k

0,...,nz
0,...,ny . (3.2)
0,....,n,

Given a regular normalized grid x; ; 5, the volume data is simply described by a
3D array c; ;. of scalar values. It means that at the grid point x; ;, the scalar
value ¢; j, was measured or computed. Concerning the data classification of
[23], volume data can be described as E[*g].

Before visualizing a volume data set given by x; ;, and ¢; ;, it has to be
converted into a scalar field

S [xminaxmax] X [yminaymaac] X [Zminy Zmax] — 1R

27
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by applying an interpolation between the grid points. This means that s has to
be chosen in such a way that

~
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The choice of an appropriate interpolation influences the behavior of the scalar
field and thus the whole visualization process. Various ways of interpolating
volume data are discussed in sections 3.3 — 3.8.

A variety of techniques have been developed to visualize volume data or the
scalar fields derived from them. It is not the purpose of this work to survey
existing techniques of volume visualization. Instead, here we try to find out for
which classes of techniques in volume visualization approaches of CAGD may
be applied. Surveys on volume visualization can be found in [107] and [167].

3.1 Techniques for Volume Visualization

The general approaches to visualize volume data can be classified into three
groups:

e decomposition methods
e direct volume rendering
e isosurface extraction.

Decomposition methods visualize certain subsets of the scalar field. These sub-
sets may be slices, particular points of the scalar field, or small geometric objects.
A representative of the last-named subset is the vanishing cubes method ([143],
[83]). Also in [143] a slicing approach is introduced which represents the data of
certain slices as height surfaces. Given a point
Xp = (Tp,Yp, 2p)T in the volume, three bivariate scalar fields s%, s, s* can be
defined out of s by

s°(y,2) = s(xp,y,2)
sY(z,z) = s(x,yp,2)
s5(z,y) = s(z,y,2).

These scalar fields can be visualized using color coding or as height fields over
their domain planes. Figure 3.1 gives an illustration of this.

Decomposition methods focus on simple geometric shapes such as planes or
tiny cubes. More complicated shapes such as curves or surfaces are not consid-
ered in this group of visualization techniques. Also the choice of a particular
interpolation between the grid points is of less importance here because decom-
position methods usually use discrete shapes. This is the reason that further
CAGD applications of decomposition methods are not known (except for the
example in figure 3.1 ).

To visualize the volume data set using direct volume rendering, either ray
casting or cell projection methods are used. In the ray casting approach, for
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Figure 3.1: 2D slices for a point of interest in the volume; its three 2D scalar fields
are visualized as height fields; the point of interest can be moved interactively (from
[143)).

each pixel a ray is sent through the volume. Along the ray the contributions of
the points in the scalar field are sampled. This means that the value for a pixel
is a certain average of the scalar values along the ray. The ray casting approach
can also be used to visualize isosurfaces. In this case an intersection of the
ray with a particular isosurface has to be computed. See [147] for a discussion
of this. This pixelwise representation of isosurfaces may be handled in real
time on high-end graphics workstations. However, this representation is view
dependent; the change of the view point requires a complete recomputation
of the representation. An alternative is a surface oriented representation of
the isosurface either as a triangular mesh or as parametric surfaces. These
approaches, which are candidates for applying CAGD methods, are discussed
in the sections 3.2 — 3.8.

Using cell projection for direct volume rendering, each cell is semitranspar-
ently projected to the screen. This way the final color of a pixel consists of
an average of a number of projected cells. See [209] for a survey of direct vol-
ume rendering methods. Direct volume rendering is of particular usefulness
when analyzing the whole scalar field. Particular surfaces are less emphasized
here. (Even in the case of ray casting an isosurface, the result is a pixelwise
description.) Also the question of what kind of interpolation to use plays a less
important role because the scalar values are sampled at discrete points. Thus
applications of CAGD methods to improve direct volume visualization are not
known.

The majority of applications of CAGD methods can be expected for the
extraction of isosurfaces for volume data. Here the graphical objects to be
analyzed are representations of isosurfaces for a given threshold. Thus the
remaining part of this chapter focuses on the question of how to apply CAGD
methods to deal with isosurfaces of volume data.

3.2 Pipeline for Isosurface Extraction of Volume
Data

Figure 3.2 shows the pipeline for the process of isosurface extraction for volume
data. We recognize the three steps (filtering, mapping, rendering) of the usual
visualization pipeline (see section 2.3.1).
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Figure 3.2: Pipeline for isosurface extraction of volume data.

As the first step of the mapping process, an appropriate interpolation be-
tween the grid points has to be chosen. This process transforms the volume data
into a piecewise interpolated scalar field. Note that this step is done before a
particular threshold is chosen. !

The scalar field and a picked threshold give an implicit description of the
isosurface (contour). It consists of all points in the scalar field which attain the
chosen scalar value. It is the task of the next step of the pipeline to convert this
implicit description of the surface into an explicit representation. This explicit
representation is finally sent to the rendering process.

In [76] and [65] extensions of isosurface extractions algorithms are treated
by considering interval sets. Interval sets are given by the definition of two
thresholds and consist of all points in the scalar field which have a scalar value
between the two thresholds. In this work we restrict ourselves to isosurfaces
because surfaces are classical objects treated in CAGD.

The choice of a particular interpolation of the volume data has a great influ-

ence on the rest of the mapping process for isosurface extraction. The following
kinds of interpolation between the grid points are possible:

f the volume data set is incomplete (i.e. the scalar values at certain grid points are
unknown) a data completion has to be performed as part of the filtering step (see [167]).
In this case the unknown values are obtained by interpolation of the values at adjacent grid
points. We want to distinguish between this kind of interpolation in the filtering process and
the interpolation in the mapping process. The interpolation in the filtering process computes
additional scalar values at a finite number of grid points while the interpolation in the mapping
step applies to the whole volume.
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Figure 3.3: a) voxel V; ; x; b) cell C; ;.

e piecewise constant interpolation

e piecewise linear interpolation

e piecewise trilinear interpolation

e piecewise higher order polynomial interpolation

e piecewise trilinear interpolation with local reparametrization
e piecewise trilinear interpolation over larger areas

We want to study each of these kinds of interpolation to explore where CAGD
methods can be applied. To do this we reserve one of the sections 3.3 — 3.8
for each kind of interpolation. Sections 3.3 — 3.8 are organized in the following
way: first we study the nature of the isosurface for the particular interpolation,
then ways of their explicit graphical representation are discussed. Here it is our
particular interest to study if an effective description as a parametric surface is
possible.

3.3 Piecewise Constant Interpolation

For doing a piecewise constant interpolation of the volume data, a Dirichlet
tessellation of the grid points (see [55]) is applied. All points inside the Dirichlet
cell of a certain grid point x; ; 1 get the scalar value ¢; ;. For a regular grid, the
Dirichlet cells around the grid point x; ;5 form a box with its center in x; ; .
This box is called a vozel V; j ;. Figure 3.3a gives an illustration. 2

An 7isosurface” of a piecewise constant scalar field consists of a number of
voxels - all voxels with its scalar value within a certain tolerance to the picked
threshold. To find a graphical representation of this set of voxels, they may
be sent directly to the renderer, or they may be transferred to a triangular
representation. Representatives of the last-named strategy are the cuberilles
introduced in [89]. Figure 3.4 shows an example of a conversion of voxel data
into a triangular mesh.

2Sometimes a voxel is not defined as shown in figure 3.3a but as shown in figure 3.3b. In
this case all points inside the box have the constant scalar value c; ; x of one particular vertex
X; 7, k- Lhe properties and results of both voxel definitions coincide.
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Figure 3.4: Transforming voxel data (a) to a triangular mesh (b) (from [132]).
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Figure 3.5: Two ways of subdividing a cell into 5 tetrahedra.

If the voxels are large, both representations (voxel and triangular) look rather
rough. In this case better interpolations of the volume data should be applied
(see sections 3.4 — 3.8). For smaller voxels both representations may give opti-
cally good results. In this case it depends on the specialization of the graphical
workstation if voxel data or triangular data should be chosen for representation.

Due to the discrete nature of a piecewise constant interpolation, approaches
to apply parametric surfaces for piecewise constant volume data are not known.

3.4 Piecewise Linear Interpolation

To obtain a piecewise linear interpolation of the volume data we consider cells
in the volume data. The cell C; ;; is a box defined by the eight grid points

Xigks Xitl,j,ky Xij+1,ks Xit1,j+1,k> Xijk+1s Xit1,5,k+15 Xij+1,k+15 Xit1,j+1,k+1
obtained from (3.1):

Cijk = [Ti,zit1] X [Yj,y501] X [2r 2r41]- (3.3)

Figure 3.3b gives an illustration. To apply a piecewise linear interpolation, each
cell has to be subdivided into a number of tetrahedra. Several approaches exist
for doing this. Figure 3.5 shows two different ways to subdivide a cell into 5
tetrahedra. Subdivisions into 6 or 24 tetrahedra are applied as well (see [142]).

For computing the scalar value of a point x inside a certain tetrahedron we
apply a linear interpolation of the scalar values in the vertices of the tetrahe-
dron. This way the scalar value at x is a weighted sum of the scalar values
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AN ON
S

Figure 3.6: Two cases of the marching tetrahedra algorithm.

at the vertices where the weights are obtained by computing the barycentric
coordinates of x relative to the tetrahedron vertices.

An isosurface of a piecewise linear interpolated scalar field inside a tetrahe-
dron is always plane. Thus it is a natural approach to represent the contour
of a piecewise linear scalar field as a triangular mesh. One algorithm which
computes the isosurface for all tetrahedra of a scalar field is the marching tetra-
hedra algorithm ([37]). For each tetrahedron, the scalar values at the vertices
are checked to see if they are larger or smaller than the picked threshold. If all
four values are smaller (or larger) than the threshold, the isosurface does not
pass the tetrahedron. In all other cases the exact isosurface can be computed by
obtaining the intersections of the isosurface and the edges of the tetrahedron.
To do this, linear interpolations of the vertices along the edges are applied. Here
two cases are possible, which are illustrated in figure 3.6. An improvement of
the marching tetrahedra algorithm is introduced in [174]. There, data structures
are built to prevent tetrahedra where the isosurface does not pass through from
being processed by the algorithm.

The marching tetrahedra algorithm computes the isosurface of a piecewise
linear scalar field exactly. It was originally developed to overcome the ambigu-
ities of the Marching Cubes algorithm (described in section 3.5.2.2). In fact,
once the grid is tetrahedrized, only the simple cases shown in figure 3.6 appear.
The problem is the choice of a particular tetrahedrization of the cells. This de-
cision has to be done independently of the particular data but has an influence
on the shape of the isosurface. This means that the ambiguities from which the
Marching Cubes algorithm suffers exist for the marching tetrahedra algorithm
as well. They are only shifted into the selection of an appropriate tetrahedriza-
tion. This is one reason why in most cases a trilinear interpolation is preferred
to a piecewise linear interpolation. Another reason is that a tetrahedrization of
the cells usually produces a higher number of triangles.

Since an isosurface of a piecewise linear scalar field is piecewise plane, the
piecewise triangular representation is optimal; no further CAGD applications
for this kind of interpolation are known.

3.5 Piecewise Trilinear Interpolation

As in the case of piecewise linear interpolation, the volume is subdivided into
cells by applying (3.3). In each cell a local trilinear interpolation of the scalar
values in the vertices is carried out to get the scalar values inside the cell.

To study properties of the piecewise trilinear interpolation, we consider the
cell Cooo = [0, 1] of a regular normalized grid given by (3.2). Then the scalar
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Figure 3.7: Translating the coordinate system of the cell Cogo.

field in Cypg can be written as

s(z,y,2) = I-2)1—y)(1 —2)co0 + (1 —2)(1 —y)zcon
+ 1—-2)y(1—2)cor0 + (1 —x)yzco1n
+ 2(1-y)(I—-2)cio0 + (1 —y)zcio1
+ zy(l—2)c110 + zyzenn (3.4)

where c;ji, (i, j, k € {0,1}) are the scalar values in the vertices (i, j, k)T of Cyoo.
A contour (isosurface) is given by specifying a threshold r; it consists of all
points (z,y,z)T with

s(z,y,2) = T (3.5)

The trilinear interpolation is widely used and has a variety of applications.
Section 3.5.1 gives a collection of properties of trilinear contours. These proper-
ties are used to survey and improve algorithms for extracting trilinear contours
in section 3.5.2.

3.5.1 Properties of trilinear contours

The contours of a trilinear scalar field can be studied in two general ways.

1. We analyze the contour of a particular threshold defined by (3.4) and
(3.5). This analysis can be done for a contour either in a cell or in the
domain IR

2. We analyze all contours passing through the cell C; ; ;. to get global state-
ments about the cell itself.

The following sections give characteristics of both methods of analysis.

3.5.1.1 Connectivity of a contour

Here we consider the contour of (3.4) and (3.5) not only in the cell C; ; , but in
the domain IR3. In general, the contour consists of a number of surface parts
which are not necessarily connected to each other. It is the purpose of this
section to study how many unconnected surface parts the contour of (3.4) and
(3.5) consists of. This gives a classification of all contours of (3.4) and (3.5). To
do this, we apply a translation of the coordinate system as shown in Figure 3.7.
This translation is defined by the scalar values ¢; j 1 (4,7, k € {0,1}) at the grid
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points (i, j, k). Choosing

P = Coo1 + Co10 + €100 + €111 — Cooo — Co11 — €101 — €110
Tpy 1 €000 + Co11 — €001 — €010
Po = Yoo | = > €000 + €101 — €001 — C100 | » (3.6)
Zpo €00 + €110 — €010 — €100

equation (3.4) can be written in the form

s(z,y,2) =ax+by+cz+dzyz+te (3.7
with
o = (0111 - 6011) : (6100 - Cooo) - (0110 - 0010) : (0101 - 0001)
p
b — (c111 — c101) - (co10 — €o00) — (€110 — €100) - (Co11 — Co01)
p
¢ = (€111 — €110) - (€001 — €000) — (€101 — €100) - (Co11 — C010)
p
d = p,

and e is a certain constant. Thus, we only have to analyze the contours of
s(z,y,2) =ax+by+cz+dryz=r=const (3.8)
in IR3. A classification of (3.8) can be achieved by rewriting it as a height field

r—ax—by

c+dzxy (3.9)

z(z,y) =
and comparing the zeros of the numerator and denominator function. The zeros
of the numerator function form a line in the x — y—plane, whereas the zeros of
the denominator function give a hyperbola. Studying their interplay gives the
following classification:

e case 1: abed < O:

— case 1.1: 2 > —4“Tbc

: (3.9) gives 3 unconnected surface parts 3

—2abe. (3.9) gives 2 unconnected surface parts *

— case 1.2: r2 <
e case 2: abced > 0: (3.9) consists of 1 connected part
e case 3: abcd =0, d#0:

—case 3.1: r#£0:

3In this case the line r — ax — by = 0 does not intersect the hyperbola ¢ + dxy = 0. This
denominator hyperbola of (3.9) divides the z — y— plane into three parts which correspond
to the three unconnected surface parts of (3.9).

4In this case the line 7 — ax — by = 0 intersects one branch of the hyperbola ¢ +dzy =0
twice. For these intersection points (z1,y1) and (z2,y2) we obtain az1+byi1+cz+dxiyiz=1r
and az2+bya+cz+dxays z = r for any z. This means that the lines (z1,y1, 2) and (z2, y2, 2)
for z € IR are on the contour defined by (3.8). Thus the height surface of (3.9) consists of two
parts.
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Figure 3.8: Classification of the contours of (3.8) in IR,

case 3.1.1: ab # 0, ¢ = 0: (3.9) gives 2 unconnected surface
parts

case 3.1.2: a # 0,b = ¢ = 0: (3.9) gives 3 unconnected surface
parts

case 3.1.3: a = b =c¢ = 0: (3.9) gives 4 unconnected surface
parts

—case 3.2: r=0:

% case 3.2.1: ab # 0, ¢ = 0: (3.9) gives 3 unconnected surface

parts

% case 3.2.2: a # 0,b =c¢=0: (3.9) gives 3 parts intersecting each

other

* case 3.2.3: a=b=c=0: (3.9) gives 3 perpendicular planes.

Figure 3.8 gives illustrations of these cases.
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©) n(p,((a+b)’2))

n(p,(a)) n(p.(b))

=

Py

Figure 3.9: a) projections p,(a), py(a), p-(a) of a point a onto the contour in z—, y—
and z—direction; b) projection p.(t) of the line segment (1 —¢)a+t¢b onto the contour
is a rational cubic curve; c) configuration for computing the control points of p.(t).

3.5.1.2 Bézier representation of the contour

As already mentioned in [84], the contour defined by (3.4) and (3.5) is a rational
cubic surface ®. In this section we want to find a representation of it as a
triangular rational cubic Bézier surface.

Given a point a = (Za, Ya, 2a)’ , we compute the intersection of a ray starting
from a and the contour defined by (3.4) and (3.5). In general this computation
ends in the solution of a cubic equation. For the special case that the ray is
parallel to one of the coordinate axes, the problem simplifies to the solution of a
linear equation: let p,(a) be the intersection of the ray a+ - (1,0,0)7 with the
contour defined by (3.4) and (3.5). Furthermore, let p,(a) be the intersection
of the ray a+ A - (0,1,0)7 with the contour, and let p,(a) be the intersection of
the ray a+ A - (0,0,1)” with the contour. Then we obtain from (3.4) and (3.5):

T
7 —coo0 (1 = ¥a)(1 — 2a) — coo1 (1 — Ya) 2a
p (a) o — €010 Ya (1 - Za) — €011 Ya Ra Va2
’ (c100 — c000)(1 — ¥a)(1 — za) + (c101 — co01) (1 — ¥a) 22~~~
+ (c110 — €010) Ya (1 — 2a) + (111 — C011) Ya 2a
T
r —cooo (1 — Za)(1 — za) — 100 Ta (1 — 2a)
p (a) = |z — Coo1 (1 - xa) Za — C101 Ta Ra .
! *7 (co10 — co00) (1 = #a) (1 — 2a) + (c110 — €100) Ta (1 — 2a)
+ (co11 — €001)(1 — Za) 2za + (111 — €101) Ta Za
T

T — Cooo (1 - Ia)(l - ya) — Co10 (1 - «ra) Ya
— €100 Za (1 = ¥a) — €110 Ta Ya
(co01 — €000)(1 — a)(1 — ya) + (co11 — c010)(1 — Za) Ya
+ (c101 — €100) Ta (1 — ya) + (c111 — €110) Ta Ya

pz(a) = | Ta, Ya,

We call p(a), py(a), p-(a) the projections of a onto the contour in z—,y— and
z—direction. This means that we can construct three points on the contour for
a given point a in a simple way. Figure 3.9a gives an illustration.

5 After mentioning that the contour of (3.4) and (3.5) is a rational cubic, [84] approximates
it by a number of rational quadratic surfaces. This was motivated by the fact that the
intersections of the contours with the faces of a cell are hyperbolas and therefore exactly
describable by rational quadratic curves.
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Given a point a, there is one and only one contour defined by (3.4) through
it. We can compute its (unnormalized) normal vector n(a) in a by

n(a) = grad(s(za, Ya, 2a)) = (52(Ta, Ya, 2a); Sy (Tas Ya, Za); 52 (Tas Ya, 2a)) "
(3.10)
where sz, sy, s, are the partial derivatives of s defined in (3.4).
Now we construct curves on the contour by projecting line segments onto it.
Given is the line segment x(t) = (1 — t) a4+t b. Then the curves

Px(t) = P2(x(t)) , Py(t) =py(x(t)) , Pz(t) = P:(x(1)) (3.11)

are obtained by projecting each point of x(¢) onto the contour in x—,y—, or
z—direction . Figure 3.9b gives an illustration for p,(¢).

It is a straightforward exercise in algebra to show that the curves
pz(t), py(t), p~(t) on the contour defined by (3.4) and (3.5) are rational cubics.
The curve p,(t) can be expressed as

i wibi BY(t)

p:(t) = ¢ (3.12)
Yo wi B(t)
where B3(t) are the Bernstein polynomials (see [55]) and
4 1
Wo = Zn(pz(a)) » W17 3 %n(p.(242)) ~ 3 “n(p:(b)
4 1
W3 = Zn(pz(b)) » W2 = 3 %n(p.(242)) T 3 “n(p:(a)
by = P- (a) ) bz = P- (b) (313)
( ) T, + 3wTol Tby
by = (1*W)ybo+3wﬁ'lyb3
(1 + 3111}51) pz(#) - 311%1 Zbs
3111)32 + ( )xb3
b, = Fug Uby + ( _—)ybs

Wo
(I+ 3w2)zpz(%) F1ey Zbo

Figure 3.9c gives an illustration of the components used in (3.13). The curves
pz(t), py(t) can be computed as rational cubics in a similar way.

Now we extend the concept of curves on the contour to parametric surfaces
on the contour defined by (3.4) and (3.5). Given is a triangle

x(u,v,w) =ua+vb+wc (3.14)

in barycentric coordinates of the vertices a,b,c, i.e. u+ v+ w = 1. Then
Pz (x(u,v,w)), py(x(u,v,w)), p-(x(u,v,w)) are the projections of x onto the
contour defined by (3.4) and (3.5). Figure 3.10a gives an illustration for
p:(x(u, v, w)).

The surfaces pg(x(u,v,w)), py(x(u,v,w)), p(x(u,v,w)) are rational cu-
bics. For example, p,(x(u,v,w)) can be described as a rational Bézier triangle
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Figure 3.10: a) p.(x(u,v,w)) is obtained by projecting every point of x(u,v,w) =
ua + vb + wc into z—direction onto the contour defined by (3.4) and (3.5); b)
p-(x(u, v, w)) is a rational cubic surface; ¢) two adjacent triangles projected in different
directions: the resulting contour patches may have gaps.

(see [55])

Zi+j+k:3 Wik bijk B?jk(u’ v, W)
Zi+j+k:3 Wijk Bg’jk(“, v, W)
where the Bézier points and their weights on the boundary curves can be com-

puted as in (3.13) above, and

pz(x(u,v,w)) = (3.15)

w201 + Wi02 + Wo21 + Wo12 + Wi20 + W21  W300 + Wo30 + Woo3

w111 =
4 6
. Wo12 + Wo21  Wo30 + Woo3
Tbhiyn = - a
4wi11 12 w111
w102 + W201  W300 + Wo03
+ - b
4wyyy 12wq1y
Wi20 + W210  W300 + Wo30
+ - c
4wt 12 w111
y Wo12 + Wo21  Wo30 + Woo3
b _
e 4wi11 12wq1q
wio2 + W201  W300 T Woo3
+ —
4wy 12w111
Wi20 + W210  W300 + Wo30
- c
4wy 12wy
W210 2b210 T W201 2b201 + W120 Zb120
Zbi11 4wy,
i Wp21 Zb021 T Wo12 2bo12 + W102 2b102
4wy
W300 Zp.(a) T W030 Zp. (b) T W003 2p. (c)
12 w111 '

Figure 3.10b gives an illustration. The surfaces p,(x), py(x) can be described
in a similar way.
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In this section we have shown that a contour of (3.4) and (3.5) can be
described as rational cubic Bézier triangles. To make this description usable to
Computer Graphics, more problems have to be solved:

e we have to choose the triangles (a, b, c) to be projected
e we have to choose the projection direction for each triangle

e we have to eliminate gaps between the patches which happen by projecting
adjacent triangles in different directions (see figure 3.10c for an example)

e we have to make sure that the weights of the rational cubic surfaces do
not have alternating signs

These problems will be discussed in section 3.5.2.3 .

3.5.1.3 Special points on the contour - the inner ring

In this section we want to study special points on the contour defined by (3.4)
and (3.5). These points will later be useful to find suitable triangulations of the
contour. The points we consider are all points on the contour where the surface
normal points either in z—, y— or z—direction.

Given a contour defined by (3.4) and (3.5), there are at most two points
X(, X1 on the contour with a normal in z-direction. Similarly, there are at most
two points yg, y1 on the contour with a normal in y-direction, and there are at
most two points zg, z1 on the contour with a normal in z-direction. These six
points can be computed as

Tm — Tp Vo Tm + Tp Vo
X0=| ym+wVe | » xi=| ym—uypV0
zm—l—zp\/g zm—zp\/g
T + Tp \/5 Tm — Tp \/5
Yo = ymfyp\/g y Y1 = ym.+yp\/3 (316)
Zm + Zp \/3 Zm — Zp \/5
Ty + Tp \/S Tm — Tp \/g
Zy = ym+yp\/g )y 21 = ym_yp\/g
Zm_Zp\/g zm'i'zp\/g
with
(c111 — co11)(r — cooo) — (€110 — Co10)(r — coo1)
. + (€100 — €000) (1 — co11) — (c101 — coo1) (7 — co10)
" 2 ((e111 — co11)(€100 — €o00) — (€110 — co10) (€101 — C001))
(0111 - 6101)(7“ - Cooo) - (0110 - 0100)(7" - 0001)
U — + (co10 — o00) (1 — c101) — (co11 — co01)(r — c100)
" 2 ((c111 — c101)(Co10 — €o00) — (c110 — €100)(Co11 — Co01))
(0111 - 0110)(?" - Cooo) - (0101 - 0100)(7” - 0010)
L + (001 — cooo) (1 — c110) — (Co11 — Co10)(r = €100)

2 ((e111 — €110) (€001 — co00) — (€101 — €100)(co11 — €010))
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Figure 3.11: The points (xo,y1,%0,X1,¥Y0,%1) on the contour which have normals
either in x—,y—, or z—direction form a closed polygon on the edges of a box - the
inner ring; this inner ring lies completely on the contour.

1

2 ((e111 — co11) (€100 — co00) — (€110 — co10) (€101 — C001))
1

2 ((e111 — c101)(co10 — co00) — (€110 — €100)(Co11 — Co01))
1

2 ((e111 — €110) (€001 — co00) — (€101 — €100)(C011 — C010))

ar?+3r + v
(3.17)

2
(—c111 + c110 + €101 — €100 — €001 + Co0o + Co11 — Co10)

2 (coo1 €110 + Co11 €100 + €101 Co10 + €111 C000)
“(e111 + cooo + c101 + €110 + €100 + Co10 + Co11 + Coo1)
—4 ( €000 C111 (6111 + Cooo) + Coo1 C110 (0110 + 8001)
+ ¢o10 c101 (€101 + €010) + €011 €100 (€100 + CO11) )
— 4 (co00 €110 €101 + €000 Co11 €110 + C000 Co11 €101 + €110 €101 Co11)

—4 (€111 €001 €010 + €111 €100 €001 + C010 €100 €111 + €001 €010 €100)

2
— (€001 €110 + Co11 €100 + €101 Co10 + €111 Co00)
2 2 2 2 2 2 2 2
+2 (€111 €goo + 101 €010 T 001 €110 T 011 Cl00)

+4 (co00 €110 €101 Co11 + Co10 €100 €111 C001)-

Depending on the value 4, all these six points are either real points on the
contour, or all have imaginary values. If they are real (i.e. if 6 > 0), then the
closed polygon (xg,¥1, %0, X1,Y0,%1) lies on the edges of a box. Note that this
polygon lies completely on the contour®. We call this closed polygon the inner
ring of the contour. Figure 3.11 gives an illustration.

6To show this, compute s(z, y, z) using (3.4) for (z,y,2)T = (1—t)xg+ty1. It is a straight-
forward exercise in algebra to show that s(z,y,z) = r for any ¢ € IR. This means that the line
through xq,y1 lies on the contour. The remaining lines of the polygon (xo,y1,20,X1,Y0,%1)
are treated in a similar way.
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r=0.7
[ r=01 r=0.3

Figure 3.12: Contours of a cell C' with seg(C) = 1: any contour in C consists of at
most one connected surface part.

r=0.05 r=0.1 r=0.2 r=0.3 r=0.4

e

r=05 r=0.6 r=0.7 r=0.8 ‘ r=0.9
A #Ur ﬂ. \ZR

Figure 3.13: Contours of a cell C' with seg(C) = 4: for r = 0.2 the contour consists
of 4 unconnected surface parts.

W

e

3.5.1.4 Segment number of a cell

In this section we study all contours of (3.4) in the cell Cygp following [191]. We
are especially interested in the connectivity of the contours in the cell. Unfor-
tunately the results of section 3.5.1.1 are not directly applicable here because
one connected surface part may intersect Cpygp more than once.

To study all contours of (3.4) in Cygg we apply — as in section 3.5.1.1 — the
translation (3.6) of the local coordinate system and have to study the contours
of (3.8) in the cell C' = [zp,, Zp, + 1] X [Upy, Ypo + 1] X [2py, 2po + 1]-

Varying the threshold r in (3.8), the contours change. So does the number
of unconnected surface parts of the contour. We define

Definition 1 Given the trilinear scalar field s(z,y,z) =ax+by+cz+dzyz
in the domain of the cell C = [zpy, Tp, + 1] X [YposUpo + 1] X [2pys 2po + 1],
the segment number seg(C) of C is the maximal number of unconnected surface
parts of the contour s(x,y, z) = r =const in C for any threshold r.

Figure 3.12 gives an example of a cell with seg(C') = 1. Changing the value of
r, the isosurface "moves” through the cell. It consists of at most one connected
part for any r.

Figure 3.13 shows a cell with seg(C') = 4: for a particular threshold the
contour consists of four unconnected parts.

The segment number is a threshold-independent characterization of a cell
C. For any C we get seg(C) € {1,2,3,4}. To show this we use the fact that
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a surface inside a cell has at least 3 intersections with the edges of the cell.
Since the cell consists of 12 edges and at most one intersection of an edge and
a contour exists, the maximal number of unconnected surface parts is 4.

The segment number may be used to estimate how complicated a surface
extraction algorithm will be before picking a particular threshold. We are par-
ticularly interested in cells C' with seg(C) = 1. Since for them the contours
always consist of one connected surface part, these cells are candidates for ap-
plying enhanced surface extraction methods or for merging them with adjacent
cells (see section 3.8).

Now we give necessary and sufficient geometric conditions for a cell to have
seg(C) = 1. Again, we consider the contour of (3.8) in the cell C' = [zp,, Tp, +
1] x [ypwypo + 1] X [zPO’ZPO + 1]'

To formulate the conditions for seg(C) = 1, we need to introduce the concept
of characteristic hyperbolas. The first characteristic hyperbola h; in IR® consists
of all points with s,(x,y,2) =0 and s.(z,y,2) = 0 in (3.8). h; can be written
as rational quadratic Bézier curve described by two control vectors by, bl and
a control point b} (see [54]). We set

(—4bc)/d 0 0
by = 0 ,bi=[ 0| ,bi=[ 1/ ], w=1
0 0 1/c

where w; is the weight of b}. Then we obtain

_ by BA() + wl bl BA(1) + by B3(1)

0 w] BE(D)

In a similar way we define the characteristic hyperbola hs by s, (z,y,2z) = 0 and
sz(x,y,z) = 0. The characteristic hyperbola hj is defined by s, (z,y,z) = 0 and
sy(w,y,z) = 0. The Bézier point b? with the corresponding weight w} and the
control vectors b3, b2 describing hy are

0 0 1/a
bi=| (~4ac)/d | , bi=| 0] ,bi=| 0 , wi=1.
0 0 1/c
The hyperbola hg is described by
0 0 1/a
(—4abd)/d 0 0

If abed < 0 then hy, hy, hs intersect in two common points s; and s;. They
can be computed as
1 be 1 be
s1= ——=| ac , Sg=————= | ac |. (3.18)

vV—abed ab vV—abed ab

From (3.8) and (3.18) we obtain

—2abe 2abc

1) = e sl) = = (3.19)
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a)

r

b) 0.  d
78 v\ GIRbTS

Figure 3.14: Location of characteristic hyperbolas hi, ho, hs; a),b): abed < 0;
¢),d):abed > 0.

f | f2 fs

z P, z L7 z
X X X

Figure 3.15: The faces f1, f2, f3 of a cell.

Figures 3.14a and b illustrate this situation from two different viewpoints. If
abcd > 0 then hy, hs, hy do not have any intersections. Figures 3.14c and d
show this from different viewpoints. The degenerate case abcd = 0 is omitted
here.

To formulate conditions for seg(C) = 1, we have to classify the faces of C.
Given the cell C' = [xp,, Tpe+1] X [Upo Ypo +1] X [2pos 2po +1]; let £1 = {(z,y,2) €
CIJZ:J?pO Orx:xp0+1}’ fQZ{(xayvz) ec:y:ypo Ory:ypo+1}7 and
f5 = {(z,y,2) € C: z = zp, or z = zp, + 1}. See figure 3.15 for an illustration
of the faces.

Now we can formulate

Theorem 1 Let C = [xp,, Tpy + 1] X [Upos Upo + 1] X [2pos 2po + 1] be a cell in
the scalar field defined by (3.8). Then the condition seg(C) =1 is equivalent to
the three conditions hy Nf; =0 and ho Nfy =0 and hs N f; = 0.

Figure 3.16 illustrates the idea of the proof. Suppose hs intersects f3 as shown
in Figure 3.16a. Figure 3.16b is a magnification of the cell and hs in Figure
3.16a. We compute the intersection point of h3 and f3, and consider the contour
passing through this point. As shown in Figure 3.16b, this contour consists of
at least two surface parts. The cases that hy intersects f;, or hy intersects fs,
are treated in a similar way.

For the proof of the converse statement of theorem 1, we assume that for
a certain threshold r the contour consists of at least two unconnected surface
parts. Then we can find a face of C' which has two intersection curves with the
contour. (In the worst case we have to vary r to find such a face.) (Figure 3.16¢
shows two surface parts of the contour which produce two intersection curves
in the upper face of f3.) Then we can find a point on this face which is the



3.5. PIECEWISE TRILINEAR INTERPOLATION 45

a b) « &
'/ >

Figure 3.16: Proof idea of theorem 1.

intersection point with the corresponding characteristic hyperbola. (In Figure
3.16¢, the marked point on the upper part of f3 is the intersection with hs.)

Theorem 1 gives geometric conditions for seg(C) = 1. This means that for
a given cell C' theorem 1 can be applied to distinguish between seg(C) = 1
and seg(C) > 1. Since only for seg(C) = 1 is it certain that no ambiguities
appear for any threshold and any face of the cell, only cells with seg(C) = 1 are
candidates for accelerated isosurface extraction algorithms. Thus we did not
continue to search for geometric conditions for seg(C) = 2.

3.5.2 Graphical representation for piecewise trilinear con-
tours

After studying properties of the piecewise trilinear contour in section 3.5.1, this
section discusses algorithms to find graphical representations of the contour.
We consider three approaches for doing this:

e voxel representation
e triangular representation
e representation as parametric surfaces

Each approach is discussed separately in one of the sections 3.5.2.1 — 3.5.2.3.

3.5.2.1 Voxel representation of piecewise trilinear contours

This approach creates voxels out of the scalar field by applying piecewise tri-
linear interpolations. The voxel size is usually smaller than the size of the grid
cells C; ; 1.; it may be chosen adaptively. The voxels may be effectively rendered
by using workstations with 3D frame buffers. The dividing cubes algorithm
introduced in [126] is a representative of these approaches.

3.5.2.2 Triangular representation of piecewise trilinear contours

The representation of piecewise trilinear contours as triangular mesh is a natural
and widespread approach because most of todays graphics workstations are
highly specialized in processing large numbers of triangles.
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Figure 3.17: Cases of the Marching Cubes algorithm from [130]. A solid dot on a
vertex means a "+ classification, i.e. the scalar value at this vertex is larger the
considered threshold. Note that the cases 11 and 14 coincide due to symmetries.

Two general approaches exist to find a triangular approximation of the con-
tour. The one is to find the contour lines in parallel slices and connect the
contours of adjacent slices by applying a triangulation. Contributions to this
approach can be found in [2], [135], [106] and [9].

The other general approach to extract contours works directly on the 3D
cells. The standard algorithm here is the Marching Cubes (MC) algorithm in-
troduced in [130]. Here, for every cell the scalar values at the vertices are checked
for being smaller or larger than the picked threshold. Depending on the result
of this check, each vertex of a cell is marked as "+” or ”-”. Considering sym-
metries in the cells, 14 different configurations of the ”+” and ”-” arrangement
are possible. They are illustrated in figure 3.17. Based on this classification, the
intersections of the contour with the edges of the cells are computed by applying
linear interpolations along the edges of the cell. Finally, a triangulation which
is built out of these intersection points gives the approximation of the contour
(see figure 3.17).

Soon after the Marching Cubes algorithm was published it was realized that
it does not necessarily give topologically exact representations of the contour
([47]). In fact, it may happen that adjacent cells create different contour curves
on the face they share. In these cases the global contour has a hole in the area
of these two adjacent cells. This may appear when one face of a cell has exactly
two vertices with a 7+ classification which are located diagonally to each other.
In this case, four intersections of the contour with the edges of the face exist.
There are two ways of connecting these four intersection points. One approach
to solving these ambiguities was introduced in [139]. There it is shown that
the intersection of the contour with a face of a cell is a hyperbola. Similar to
algorithms for isoline extraction of 2D scalar data, its correct representation
can be found by checking an additional point inside the face. Depending on the
scalar value of this point the topological correct representation of the contour
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Figure 3.18: Solving ambiguities for the intersection of a trilinear contour and a cell
[139]. a) If exactly two opposite vertices have a scalar value bigger than the threshold,
exactly four intersections of the contour with the edges of the face exist. b) Depending
on the scalar value of any point in the area marked grey, the correct representation of
the contour is either ¢) or d).

curve can be found. Figure 3.18 illustrates this.

Applying this approach to all ambiguous faces of the cell, the result is up
to four closed polygons on the faces (see [139]). To get the representation of
the contours, these polygons are triangulated independently of each other. A
similar approach to solving the ambiguities on the cell faces was introduced
in [197]. Another way of preventing unwanted holes in the contour across the
cell faces is suggested in [134]. The approach reported there is faster than
[139] but does not yield topologically exact contour curves on the faces of the
cell. A survey of algorithms to treat ambiguities on the cell faces can be found
in [144]. One approach to combine a piecewise trilinear interpolation with a
tetrahedrization of the cells is introduced in [212]. There the fact is used that a
tetrahedral edge which lies on a face of a cell may have up to two intersections
with the contour. Thus more involved lookup tables than shown in figure 3.6
are introduced. They make sure that the topology of the approximation of the
contour does not depend on the particular tetrahedrization.

The extension in [139] of the Marching Cubes algorithm guarantees a topo-
logically exact representation of the contour curves on the faces of a cell. Un-
fortunately it does not guarantee a topologically exact representation of the
isosurface inside a cell 7. Consider figure 3.19 for an example.

One approach to overcome this problem is suggested in [138]. There the
topology of the contour inside a cell is described by the ”connectivity” of the
cell vertices: two vertices are connected if there is a curve inside the cell (or on
its boundary) which connects the vertices and does not intersect the contour.
In order to find the pairs of vertices which are connected inside the cell (i.e. the
connecting curve is not on the cell boundaries), the scalar values of the vertices
are additionally checked against the scalar value of a ”body saddle point” inside
the cell. This point is one of the points s1,s2 in (3.18). Since both points sy, so
may be located inside a cell or both points may not exist at all, the approach
in [138] does not work for any case. Also, [138] does not give any information

"The same statement applies for [212].
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d)

Figure 3.19: a) and d): two possible contours of (3.4) and (3.5) where the MC
algorithm of [130] and [139] gives the same set of closed polygons on the faces of the
cell shown in ¢); depending on certain inner points, the exact triangulation is either
b) or e).

to actually apply a topological exact triangulation.

From figure 3.19 it is obvious that in order to get a guaranteed topologically
exact representation of the contour, certain inner points of the cell have to be
incorporated into the triangulation. In the following we want to find a set of
inner points which are sufficient to get a topologically exact triangulation for
every case. To explain the main idea we start with an example. Given is the
contour shown in figure 3.20a. The MC algorithm of [130] and [139] gives the
closed polygon shown in figure 3.20b. We name the vertices of the polygon
v1,...,vg. Triangulating this polygon, the edges (va,vg) and (vs, vs) must not
be used because the solution for the ambiguities on the upper face of the cell
had excluded these edges from a valid triangulation. Here it makes sense to
define one inner point v on the contour and apply a triangulation shown in
figure 3.20d. A good candidate for v is the point on the contour which has a
contour surface normal in z-direction (see figure 3.20a).

The example of figure 3.20 gives the key to find a set of inner points which
are sufficient for a topological exact triangulation for every case. It turns out
that this set of inner points is the inner ring introduced in section 3.5.1.3. A
topologically exact Marching Cubes algorithm can be described in the following
way:

1. Create the closed polygons on the cell faces following [130] and [139]. We
obtain up to four closed polygons and call them outer rings.

2. Compute the points of the inner ring by applying (3.16) and (3.17).
3. If the inner ring is not real or if the inner ring is completely outside the cell,

then triangulate the outer rings independently of each other; otherwise
continue with 4.
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Figure 3.20: a) contour and point v with normal in z—direction on it; b) closed
polygons resulting from the MC algorithm of [130] and [139]; c) part of a wrong
triangulation of b); d) triangulation applied here; e) triangulation of d) in 3D.

4. Check the connectivity between the inner ring and each of the outer rings.
If the inner ring and one of the outer rings belong to the same contour
segment: triangulate the area between the inner ring and this outer ring.

5. If only one outer ring was connected to the inner ring, the inner ring itself
has to be triangulated.

Figure 3.21 illustrates this algorithm.

To check the connectivity between the inner ring and one outer ring, we
intersect the lines of the inner ring with the faces of the cell. If one of these
intersection points lies on the outer ring, it is connected to the inner ring. Figure
3.21c illustrates this.

Figures 3.22-3.24 show examples of the application of the topologically exact
Marching Cubes algorithm. Although we have not yet introduced how to com-
pute the exact contours shown in the figures 3.19a, 3.19b, 3.20a, 3.22, 3.23d-f,
3.24a, we have inserted the images here to provide a comparison of the exact
contours and the MC triangulations. The representation of the exact contours
is treated in section 3.5.2.3. In the examples of figures 3.22 and 3.24 the MC
algorithm of [130] and [139] fails, i.e. gives topologically wrong triangular ap-
proximations. In fact, the result for figure 3.22 would be a (topologically wrong)
triangulation similar to figure 3.19b. Also [138] does not provide a topologically
exact triangulation for figure 3.22 because it does not use any inner points for
triangulation.

Improvements of the Marching Cubes Algorithm

The Marching Cubes algorithm is popular for finding a triangular approxima-
tion of contour. Together with extensions in [139] and in this section, it is able
to triangulate any piecewise trilinear contour topologically exact. Nevertheless
there are disadvantages of the algorithm as well:
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b)

Figure 3.21: Illustration of a topologically exact MC algorithm; a) create outer rings
following [130] and [139]; b) compute inner ring; ¢) check connectivity between inner
ring and outer rings by intersecting the lines of the inner ring with all faces of the
cell; here the inner ring is connected to two outer rings; d), e) triangulate the areas
between inner ring and outer rings.

e since every cell has to be treated separately the algorithm is rather time
consuming

e the resulting triangular mesh might be too fine (see figure 3.25a% for an
example)

Several solutions have been proposed to overcome these disadvantages.

If the number of triangles is too high (i.e. the triangular mesh is too fine)
a variety of mesh reduction algorithms exist. The treatment of mesh reduction
algorithms is not the subject of this work. Contributions on that area are in
[68], [93], [166], [154] and [94].

Another popular approach to deal with large triangular meshes is to find a
multiresolution representation of the mesh (see [52] and [75] for examples). Since
this approach also does not make use of CAGD applications, it is not treated in
this work. Note that both mesh reduction algorithms and multiresolution rep-
resentations of triangular meshes are in general not only for MC triangulations
but for arbitrary triangular meshes.

One approach to reducing the number of triangles directly in the MC algo-
rithm is the discrete MC approach in [133]. There only the midpoints of the
cell edges are used to build the triangulation. This way a number of triangles
from the original MC algorithm may collapse to bigger polygons.

To speed up the MC algorithm itself, storing the data in an octree has been
proven to be useful. In [208] the volume data is stored in a modified octree
called branch-on-need octree (BONO). In each node of the octree the minimal

8The data set in this image is property of Siemens Medical Systems, Inc., Iselin, NJ
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Figure 3.22: a) Exact contour over the triangulation shown in figure 3.21d) and 3.21e);
b) exact contour over triangulation in figure 3.21d); ¢) exact contour over triangulation
in figure 3.21e). We can clearly see that inner ring is part of the contour.

and maximal scalar value for all cells represented by this node are stored. For
a certain threshold the tree is traversed top down to exclude those cells from
the MC algorithm through which the contour does not pass. Furthermore, this
approach can also be used to reduce the number of triangles produced by the
MC algorithm. This is done in [170] by merging the octree leaves in a suitable
way. An extension of the octree approach to time varying fields can be found
in [181].

Other approaches to speeding up the MC algorithm use seed cells. A seed
cell is a cell which a certain contour passes through. Starting from it, only the
adjacent cells which the contour may pass through are searched until the global
contour is completely extracted. The problem here is finding an appropriate
number of seed cells for a ceratin threshold. In [127] each cell is considered as a
2D point in a "span space” where the x-coordinate is the minimal scalar value
and the y-coordinate is the maximal scalar value of the cell. Then the seed cells
can be effectively obtained out of this span space. In [172] a grid resolution of
the span space is introduced to speed up the search for the seed cells. Other
methods which focus on finding one seed cell instead a complete set of seed
cells for a threshold can be found in [102], [103], [7], [119]. An extension of the
seed cell idea to time varying fields can be found in [171]. A case study on the
performance of the improvements of the MC algorithm can be found in [182].

Another approach to speeding up the MC algorithm and reducing the num-
ber of triangles is treated in section 3.8. Since the approach described there
uses other interpolation schemes of the volume data, it was put into a section
of its own.

3.5.2.3 Representation of piecewise trilinear contours as parametric
surfaces

Applying the Marching Cubes algorithm (or any other algorithm which gives
a triangular approximation of the contour), the resulting triangular mesh may
not only be too fine as treated in section 3.5.2.2, it may also be too coarse. This
problem appears

e with low resolution volume data

e when exploring details in high resolution volume data.



52 CHAPTER 3. CAGD FOR VOLUME VISUALIZATION

: c) l
f)
d) : ©) l t
Figure 3.23: Example of a contour with one outer ring consisting of 12 edges and the
inner ring being completely inside the cell; a) triangulation between inner ring and

outer ring; b) triangulation of inner ring; ¢) whole triangulation; d)-f) exact contours
over the triangulations a)-c).

a) b)

Figure 3.25a shows an example of a volume data set where MC gives a triangular
mesh which is too fine. Figure 3.25b shows a detail of the inner part of the
surface shown in figure 3.25a. Here the mesh is too coarse.

One way to get a finer representation of the contour is to use a more detailed
(and therefore larger) volume data set. Since this is usually not available, we
try to find better approximations of the piecewise trilinear contour than the
MC algorithm yields. In [5] a refined triangular representation of the contour is
achieved by adaptively refining the triangles of the MC algorithm.

Another promising approach for a better representation of a piecewise tri-
linear contour is representation as piecewise parametric surfaces instead of tri-
angles. Several approaches for doing this exist.

In [66], the contour is approximated by a number of bicubic patches. The
approximated surface is G° continuous across the cell boundaries. Piecewise
bicubic patches are also used in [105] to refine the results of a ” contouring-and-
connecting” approach. In [73], the contour is approximated using patches with
4, 5 or 6 boundary curves. The result is a surface which is G° continuous across
the cell boundaries as well. [84] approximates the contours by rational quadratic
triangular Bézier surface patches. This approach represents the boundary curves
of the contour on the faces of the cells exactly but yields only G° continuous
junctions of the patches both inside a cell and across the cell boundaries.

All the approaches mentioned above have something in common: each is just
another approximation of the piecewise trilinear contour. In the following we
want to find the exact representation of the trilinear contour as a piecewise para-
metric surface. We know from section 3.5.1.2 that the contour can be described
in terms of rational cubic Bézier triangles. The general idea of describing the
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Figure 3.24: a) Contour which gives two outer rings and the inner ring completely
inside the cell; b) outer rings; c) triangulation between inner ring and one outer ring;
d) triangulation between inner ring and the other outer ring; ) whole triangulation.

whole contour in a cell is to build a triangular patch over each triangle of the
MC triangulation.

Unfortunately, triangular patches of adjacent triangles may have gaps. Fig-
ure 3.10c gives an example. To overcome this problem, we use trimmed surfaces
(see [55]) of the triangular rational cubics instead of the triangular patches
themselves. This way the domain of the patches is not a triangle but a more
complex shape which is bounded by three rational cubic curves. We use the
following algorithm to compute the surface patch over an MC triangle:

Given is the triangle (a, b, ¢) which is obtained from the MC algorithm. This
means that a, b, c are on the contour.

1. Determine the projection directions gab, gbe, gea € {2, y, 2} of the bound-
ary curves.

2. Determine the projection direction gane € {z,y, 2z} of the whole triangle.

3. Project the boundaries of the triangle (a, b, ¢) in the directions defined in
step 1 onto the contour. We obtain the curves

Xab(l) = Pgu((1—t)a+tb)
Xpe(t) = Pa.((1-t)b+tc)
Xca(t) = Poea((1-t)c+ta)

on the contour. The curves Xap, Xpc, Xca are the boundary curves of the
final patch over the triangle (a, b, c).

4. Project Xap, Xbe, Xca 10 the direction gape into the plane defined by a, b, c.
We obtain the curves yab,Ybe,Yea i the plane (a,b,c) which are the
boundary curves of the domain of the final patch.



54 CHAPTER 3. CAGD FOR VOLUME VISUALIZATION

©)

Figure 3.25: a) CT head consisting of 423.963 triangles - a candidate for mesh reduc-
tion algorithms; b) detail inside the same CT head - the triangular mesh is too coarse;
¢) the contour of a triquadratically interpolated scalar field may have self- intersections
and complicated topologies.

a) b) L

a Yab(f)

Figure 3.26: Example of the algorithm for constructing a triangular patch over an
MC triangle (a,b,c); a) determine the projection directions; here we have chosen
Gab = T, be = Y, Jca = %, qabe = 2; b) project the boundaries of the triangle onto the
contour; here we obtain the boundary curves Xab(t) = pz((1 —t)a+tb), xpe(t) =
pPy((1—t)b+tc), Xca(t) = p=((1 —t)c+ta) on the contour; c) project Xab, Xbe, Xca
in z-direction onto the plane defined by the triangle (a,b,c); we obtain the planar
CUI'VES Yab, Ybe, Yca Which are the boundaries of the domain of the trimmed surface.

5. Compute the trimmed surface of the projected patch pg,, (va+vb+wc)
with u + v +w = 1. The domain of the trimmed surface is given by the
boundary curves Yapb, Ybes Yea-

Figure 3.26 illustrates an example of this algorithm.
To complete the algorithm, we have to answer two questions:
a) how to choose the projection directions
b) how to make sure that the cubic surfaces have all positive (or all negative)
weights, i.e. no zeros in the denominator functions.

To a): Given the points a = (Za, ¥a, 2a)’ and b = (21, yp, 2p)7, we choose
dab = % if [|za — Tb|| < ||ya — ybl| and ||za — Tb|| < ||za — 2b|| and a and b are
not on the same face of the MC cell, i.e. =((za =0 and zp = 0) or (zo = 1 and
xp = 1)). If the last named condition is false, the projection direction has to be
chosen between y and z.

To compute gape, we consider the normal n = (2y, yn, zn)’ of the triangle
a,b,c. We choose gabe = @ if ||zn|| > ||ynl| and [|zn|| > ||zall-
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Figure 3.27: a) two cells and the triangular approximation of a certain contour using
MC; b) the exact contour represented by a number of trimmed surfaces of rational cubic
triangular patches; c) the global G' modification of the contour without changing its
topology.

To b): To avoid zeros in the denominator functions of the rational patches,
we have to make sure that the triangular approximation of the contour obtained
by the MC algorithm is topologically equivalent to the contour itself. This is
given by the extension of the MC algorithm of [130] and [139] which is treated
in section 3.5.2.2 .

Examples of the exact representation of the trilinear contour as described
in his section can be found in in the figures 3.19a, 3.19d, 3.20a, 3.22, 3.23d-,
3.24a, 3.27b, 3.33b — 3.39b.

Another way of representing a piecewise trilinear contour exactly is a de-
scription as subdivision surface as done in [31]. Assuming a topologically exact
Marching Cubes triangulation, this approach gives similar visual results to the
parametric approach shown in this section.

3.6 Higher Order Polynomial Interpolation

The exact contour of a piecewise trilinear contour is G*° continuous inside a
certain cell but only G continuous across the cell boundaries. Figure 3.27b
gives an example where the discontinuities across the boundary face of two
cells is clearly visible. These discontinuities have a significant influence on the
final shapes as shown in figures 3.33 — 3.39. In fact, for larger data sets the
improvements from the MC triangulation (3.33a — 3.39a) to the exact contour
(3.33b — 3.39b) are only marginal.

The discontinuities of the contours of the cell boundaries are due to the fact
that the underlying interpolated piecewise trilinear scalar field is only C° con-
tinuous itself. Applying a smoother interpolation of the scalar field makes the
contours smoother as well. Unfortunately, a higher order polynomial interpola-
tion of the scalar field may destroy the topology of the contours. The contours
obtained this way may have self-intersections and complicated topologies. Fig-
ure 3.25¢ gives an example of the contour of triquadratically interpolated scalar
field. The self-intersections here indicate that standard algorithms like MC are
not applicable here. In fact, no algorithm seems to be known that correctly
deals with higher order interpolations of volume data.

In [197] a piecewise tricubic interpolation of the cells is suggested. In this way
the authors obtain a globally C! continuous scalar field (and thus G* continuous
contours). Beside the fact that piecewise tricubic interpolation is rather time
consuming, no triangulation scheme is known for this kind of scalar field.
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Figure 3.28: a) 2D bilinear scalar field in the domain of a cell; shown are isoparametric
lines of the domain and one contour curve; b) apply a regular reparametrization p(z, y)
of the domain onto itself: isoparametric lines and contour line may change their shape
but not their topology.

In [22] 3D blending functions are used to eliminate the ”overshooting effect”
of the piecewise tricubic interpolation. Here too, appropriate surface extraction
algorithms are not available.

In [8], the application of higher order interpolations was studied for 2D scalar
fields. Here bicubic interpolations of the scalar field were used. To preserve the
topology of the original scalar field, ”damped partial derivatives” were used to
restrict the interpolation parameters.

Due to the problems of higher order interpolation described above we intro-
duce another approach here to get a globally G' continuous scalar field. This
approach is described in section 3.7.

3.7 Piecewise Trilinear Interpolation with Local
Reparametrization

We continue to search for globally G! interpolations of the scalar field which
ensures that the resulting contours are G' as well. As an additional condition
we demand that the resulting contours always have the same topology as the
contours of the piecewise trilinear scalar field. This makes sure that standard
algorithms such as MC are still applicable.

We achieve this by applying a local reparametrization of the domain of each
cell. Figure 3.28 gives an example for a reparametrization in 2D.

Given is a trilinear scalar field s(z, y, z) defined by (3.4) in the domain Cpgg =
[0,1]3. The definition of a continuous one-to-one map

p: [0,1 — 0,1
(z,9,2) — p(x,y,2) = (2p(2,9,2), Yp(z,9, 2), 2p(7,y,2))
]

creates a new scalar field s, over [0, 1]3

sp(z,y,2) = s(p_l(ﬂc,y,z))-

If a point (z,y, 2) lies on the contour s(x, y, z) = r, the point p(x, y, z) lies on the
contour sp(z,y,2) = r. Thus the contours of sp(z,y,2) = r can be computed
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Figure 3.29: a) the piecewise linear curve (w, s(x))” is G° continuous; b) the curve
(p(z), s(x))T is G* continuous, it has the same shape (but another parameterization)

as the curve (z, s,(z))7.

Figure 3.30: Estimate the rise ¢; in the point = ¢; a) ¢ = 0 if (¢; — ¢;—1) and
(Ci.i,-l — Ci) have opposite sign; b) éi = C; — Ci—1 if Ci — Ci—1 = Ci+1 — Ci; C) éi =0if
Ci = C;—1 O Cij41 = C4.

X X X

in a simple way: apply the map p to all contour points of s(x,y, z) = r. Since p
is continuous and one-to-one, the contours of s and sp have the same topology
for any r.

We have to find appropriate maps p for each cell of the piecewise trilinear
scalar field which makes it globally G' continuous. This way all contours are
G' continuous as well.

We consider an 1D example to explain how to choose the maps p. (Since in
the 1D example p is a scalar function from IR to IR, we simply write p instead
of p here.) Given are the scalar values ¢; which define a piecewise linear 1D
scalar field

s(r)=(1—=t)c;+teyr with i=[z], t=a — [z].

See figure 3.29a for an illustration. The curve (x, s(z))7 is piecewise linear and
thus G° continuous. We have to find a domain reparametrization p(z) in such
a way that the curve (p(x),s(x))T is G' continuous, and p(i) = 4, and p is
continuous and one-to-one. Figure 3.29b illustrates this.

To define p, we first have to estimate the tangent directions of the curve
(p(z),s(z))T at the junction points z = i. Let ¢; be the estimated rise of s at
x = i. We estimate ¢; by

== _Cf:ﬁ(;i_*f =< for (c; — ¢im1)(Cip1 — ) = 0
G = (3.20)

0 else.

Figure 3.30 illustrates special cases of this formula.
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Figure 3.31: Auxiliary functions of formulas (3.21) for defining p(t); the functions
p1(t), pa(t) are reparametrization of parabola segments; pa(t), ps(t) are cubic func-
tions.

Considering the interval [i,4 + 1], and using a local parameter ¢ € [0, 1] in it,
we obtain:

_ e L _s© o s()
s@)=0-t) ¢ +tcitr , Cl_p(o , CHl_p(l)'

=

This gives the following conditions for the monotonous function p(¢) in
te0,1]:
Cit1 — G

POI=0. =1 50 = sy = e

)

¢ Cit1
Since p(0) and p(1) can attain any value between 0 and +oo, p(t) cannot be
described by a polynomial function of a fixed degree.

We construct a monotonous reparametrization function p(t) out of four aux-

iliary functions p;(t), p2(t), p4(t), ps(t). These functions are illustrated in figure
3.31. The function p;(t) is obtained by reparametrizing the parabola defined

1
by the Bézier points by = < 8 >,b% = < %1 ),b% = ( 015 ) This gives

p1(t) = yi(z1 71 (t)) with < Zi((g > =27 , bl B?(t). Moving z} between 0.5

and 1, p; (1) ranges between 1 and +oc. The function py(t) = S°0_ y? B3(t) is
a cubic with y3 = 0,97 = 0,93 = 0.5. Moving 335 between 1/6 and 0.5, pa(1)
ranges between 1 and 0. Furthermore we have p;(0) = p2(0) = 0.

While p;(t) and p2(t) are used to control the rise of p at ¢t = 1, the functions
pa(t) and ps(t) are used to control the rise at t = 0. The function py(t) is
a reparametrization of the parabola za(t) ) = Y2, b B2(t) with b} =

Ya(t)

OV o= (71 ) = ) whichg t) = ya(wa=1(t)). Movi

o) "1™ 0.5 y D2 — 0.5 gives p4( ) - y4(l‘4 ( )) Ooving
21 between 0 and 0.5, p4(0) ranges between +oo and 1. The function ps(t) =
Z?:o y? B3(t) is a cubic with y§ = 0,45 = 0.5,y3 = 0.5. Moving y? between 0
and 1/3, p5(0) ranges between 0 and 1. Furthermore we have p4(1) = p5(1) = 0.

Now we can model the function p(¢) with p(0) = 0 and p(1) = 1 and given
values for p(0) and p(1) between 0 and 400 as a linear combination of p;(t),

pa(t), pa(t), ps(t):
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pi(t) i(l?pu)wa2p<1>>2+4tp<1><1p<1>>>2

8 (1-p(1))

) = 3P0 — 1)+ 5

_ (t) for p(1)>1
pslf) = { z;(t) for ggp(l) <1

) = 2t p(0) (1 — p(0)) + (1 — 2p(0)) (1 — /1T — 4t p(0) (1 — p(0)) )
B - 500
(3.21)

ps(t) = t(1—-)*p(0) + §t2 (1—t)+ %tS

_ (t) for p(0) >1
pelt) = { Z:(t) for gg p(0) <1
p(t) = p3(t)+pe(t).

Note that p;(t), p4(t) are reparametrization of a parabola segment while po(t),
ps(t) are cubic functions. Also note that

1 1
lim p(t)==t> lim H=1—-V1—-t— -t
p(l)zlpl( ) =3 p(l):+wp1( ) 5
1 1
lim pa(t)=t—=t> lim t)=Vt— =t
]_)(0):1174( ) 9 13(0):+<>op4( ) 5

Now we can apply this reparametrization to the 3D cells:
Given is a scalar field defined by (3.4) in the domain Cpop = [0, 1]3. To find
p(z,y,2) = (zp(z,y,2), Yp(2,y,2), 2p(2,y,2) ), we consider the functions

COz(yaz) = S(an7 Z) 3 clm(y7 Z) = S(l7y7 Z)
C*lz(yaz) = S(_]-vyaz) ) CQx(yaZ) = S(2,y72)

where c_1,, and ¢y, are computed of the scalars adjacent to the cell considered
here. The rise ¢y, (y,z) on the cell face z = 0 in z-direction is estimated by
(3.20) using the values c_1,(y, 2), 0. (¥, 2), c1(y, 2). In a similar way, the rise
C14(y,2) on the cell face x = 1 in z-direction is estimated by (3.20) using
the values ¢y, (v, 2), c14(y, 2), c2,(y, z). Then zp(x,y, 2) can be computed using
(3.21) with

t=x p(O):C'oz(y,Z) ’ p(l):élz(yvz) ’ p(t):xp(xv%z)-

Figure 3.32 gives an illustration. The reparametrization in y— and z—direction,
yp(x,y, z) and zp(x,y, z), are computed in a similar way.

The reparametrization introduced above is applied locally to all cells of the
data volume. The global reparametrization p(z,y, z) obtained this way gives a
globally G scalar field sp(x,y, z). Thus all contours of s, are G! as well. See
figure 3.27c for an example.

Also note that sp preserves linearity: if s is linear in a certain cell (i.e. if the
contours of s in this cell are plane segments), sp is linear in this cell as well.
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Figure 3.32: The reparametrization xp(z,y,2) in z-direction is computed using co,,
and ci,. Co, is estimated by c_1,, cos, c1, while 1, is estimated by coy, €14, C24-

a) b) ¢)

Figure 3.33: Scalar field s(z,y,2) = x? + 3> + 2% , sampled by a 3 x 3 x 3 grid in
the domain [—1,1]*, 7 = 0.9; a) Marching cubes; b) exact contours; c) globally G*
contours.

The isosurface extraction algorithm for the scalar field sp is simple. We
apply an isosurface extraction algorithm in s and apply p to all points of the
contour.

Results:

We applied the algorithms to construct the exact contour of (3.4) and (3.5)
(described in section 3.5.2.3) as well as its G''-reparametrization (described in
section 3.7) both to theoretical and practical data sets.

One result was already shown in figure 3.27. Figure 3.27a shows the MC
triangulation of two adjacent cells for a certain threshold. Figure 3.27b shows
its exact contour while figure 3.27c shows the result of the G reparametrization.
We can clearly see the higher continuity of the contour in figure 3.27c.

Figure 3.33 shows the scalar field s(x,y, z) = 22 +%y?+ 22 which is sampled by
a 3x3x 3 grid in the domain [—1, 1]3. Obviously the contours of s are concentric
spheres. Figure 3.33a shows the result of the MC algorithm for » = 0.9: the
sphere is approximated by 8 triangles. Figure 3.33b shows the exact contours
of the piecewise trilinear interpolation. Although this shape comes closer to
a sphere, we can still see discontinuities of the surface across the faces of the
cell. Figure 3.33c shows the G reparametrization of the exact contour of figure
3.33b. Note that this is not an exact sphere although it almost looks like one.

Figure 3.34 shows a 5 x 5 x 5 hexahedral grid with random scalar values
between 0 and 1 at the grid points, and » = 0.5. Figure 3.34a shows the result
of the topologically exact Marching Cubes algorithm where the triangles inside
a cell are Phong shaded. Figure 3.34b shows the exact contour of the scalar field.
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Figure 3.34: 5 x5 x 5 random volume data set; a) Marching cubes; b) exact contours;
c) globally G contours.

Figure 3.35: Downsampled data set of figure 3.25a ; a) Marching cubes; b) exact
contours; ¢) globally G contours.

We can clearly see the discontinuities of the surface across the cell faces. These
discontinuities disappear in the G'! reparametrization shown in figure 3.34c.

Figure 3.35 shows a downsampled version of the data set of figure 3.25a.
Originally consisting of 256 x 256 x 109 grid points, this version has only a
51 x 51 x 35 grid resolution. The result of the MC algorithm shown in figure
3.35a consists of 93.636 triangles and shows clearly a "staircase effect” due
to the low sample rate. The exact contour in figure 3.35b shows hardly any
visual differences to figure 3.35a. The G! reparametrization of figure 3.35¢
looks smoother but still has the ”staircase effects”. In fact, figure 3.35¢ seems
to emphasize the ”staircase effects” more than 3.35a and 3.35b. This due to the
fact that the ”staircase effect” appears at locations of rapidly changing gradients
of the scalar field. Figure 3.36 gives an illustration.

Figures 3.37 and 3.38 show inner details of the data set shown in figure 3.25a.
There are only few visual differences between the MC results (figures 3.37a,
3.38a) and the exact contours (figures 3.37b, 3.38b). The G reparametrizations
(figures 3.37c, 3.38¢) look significantly smoother.

Figure 3.39 shows a magnified detail of figure 3.38. Again the G' contour
(figure 3.39¢) looks smoother than the exact contour (figure 3.39b) and its MC
approximation (figure 3.39a).

We conclude that in most cases the exact contour of a piecewise trilinear
scalar field gives only slight visual improvements against the MC approximation
if the MC triangles are rendered using Phong shading. The G' contour gives
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Figure 3.36: ”Staircase effect”: grid points marked with solid points have isovalue of
1, grid points marked with hollow points have isovalue of 0; relative to cells containing
only scalar values of either 0 or 1, the gradient of the scalar field changes rapidly
in cells which contain both vertices with 0 and 1 scalar values; a) piecewise linear
approximation of isoline; b) the G* reparametrization smooths out the isosurface but
does not eliminate the ”staircase effect”.

% %%

Figure 3.37: Inner detail of the data set of figure 3.25a; a) Marching cubes; b) exact
contours; ¢) globally G contours.

improved visual results for low resolution volume data.

Even if the G' reparametrization looks smoother, it is not able to remove
the ”staircase effects” in volume data (see figure 3.35). This is due to the fact
that this effect appears at regions with high changes of the gradient of the scalar
field, i.e. it is due to second order information of the scalar field. Since the G!
reparametrization deals only with first order information, it cannot handle the
"staircase effect”.

The computation of the exact contours and their G' reparametrization is
not useful for any volume data. In fact, the number of triangles produced by
the Marching Cubes algorithm must not be too high because the exact contour
increases the final number of triangles. Also, smoothness should be one of the
desired quality criteria of the isosurfaces. This is the case for the example data
set figure 3.35, 3.37-3.39 but may not appear for other data sets.

3.8 Piecewise Trilinear Interpolation of
Larger Areas

In section 3.5.2.2 we treated algorithms to speed up the Marching Cubes al-
gorithm and decrease the number of resulting triangles. The approaches intro-
duced in this section have essentially the same goal. In contrary to the methods
in section 3.5.2.2; this is achieved by applying different interpolation schemes of
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a) i b) | ¢) [
Figure 3.38: Inner detail of the data set of figure 3.25a; a) Marching cubes; b) exact
contours; ¢) globally G' contours.

a) , b) ’ 9) ;
Figure 3.39: Detail of figure 3.38; a) Marching cubes; b) exact contours; c) globally
G contours.

the volume data before starting an isosurface extraction algorithm.

The main idea is to apply interpolations not on the cells but on certain larger
areas.

One solution is to apply an adaptive tetrahedrization of the scalar field as
introduced in [82] and [161]. There the scalar field is converted into an irregu-
lar tetrahedral grid. Different splitting criteria are discussed. The application
of standard isosurface extraction algorithms like marching tetrahedra gives a
coarser triangular representation of the scalar field than in the Marching Cubes
case. Unfortunately, for the isosurface extraction on irregular tetrahedral grids,
cracks in the approximated contour may appear. They can be prevented by a
simultaneous subdivision of adjacent cells ([82]) or by using tetrahedral coons
volumes instead of linearly interpolated tetrahedra ([92]).

In [136] and [179] a ”splitting box algorithm” is introduced which performs
the Marching Cubes algorithm not on the grid cells but on parallelepipedal
collections of cells called boxes. Since a box generally consists of more than
one cell, the number of boxes is smaller than the number of cells. Thus the
application of the Marching Cubes algorithm to the boxes instead to the cells
may give fewer triangles in a shorter time.

In [136] and [179] the structure of boxes was built top-down. Beginning with
the whole scalar field as one box, bisections of the boxes were applied until a
certain criterion was fulfilled or the cell level was reached. The bisection criterion
there is a check that the isosurface computed in the box does not differ more
than a cell distance from the isosurface computed by the cell-by-cell algorithm.
Thus the subdivision criterion used there is threshold dependent. Changing the
threshold, the structure of boxes has to be completely rebuilt. In [136] and
[179] the performance of the splitting box algorithm is compared to the classical
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Figure 3.40: a) Trilinear interpolation in each cell for the MC algorithm; b) collect
cells to bricks may speed up the MC algorithm.

a) = b) ) c)
] ) A

Figure 3.41: a) two cells and their contours for a certain threshold; b) merging the
cells from a) and applying MC to the new brick gives a contour with the same topology
as in a); ¢) monotony conditions for two cells to be mergeable.

Marching Cube algorithm. Unfortunately, no comparison was made with the
improvements of the Marching Cubes algorithm discussed in section 3.5.2.2.

In [118] we introduced a similar approach to [136] and [179]. There the
box structure is built bottom-up: cells are merged to boxes (called ”bricks” in
[118]). The merging criterion used there is threshold independent. Thus the
brick structure is built in a preprocessing step and can be reused after changing
the threshold. Figure 3.40 gives an illustration of a brick structure.

In [118] we allow a number of cells to be merged to a brick if the topology
of the contour in the original cells and the brick coincides for every threshold.
Figure 3.41a and b gives an example.

To give a geometric condition for two cells to be mergeable, we give the
following

Theorem 2 Let s1(z,y,2) be the piecewise trilinear scalar field defined in the
domain D =[0,2] x [0,1] x [0,1] as illustrated in figure 3.42a. Furthermore, let
so(x,y, z) be the trilinear scalar field defined in D as illustrated in figure 3.42c.
Then the contours of s1 and sy have the same topology for any threshold if the
following condition is satisfied:

(co0o < €100 < €200) A (coo1 < 101 < €201)
A (co10 < c110 < €210) A (co11 < c111 < ¢211). (3.22)

Proof: We have to find a reparametrization r(z,y, z) of D which transforms the
piecewise trilinear field of figure 3.42a into the scalar field illustrated in figure
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Figure 3.42: a) scalar field s1(x,y, 2); b) s1(r~*(z,y,2)); ¢) s2(x,y, 2).

3.42b. Then we have to show that this scalar field coincides with the field so
shown in figure 3.42c. Introducing the auxiliary functions

co(y,2) = (1 —=y)(1—=2)cooo +y(1 — 2)cor0 + (1 — y)zcoo1 + yzco1n

ca(y,z) = (1—y)d—=2)cioo+y(l —2)cio+ (1 —y)zcio1 + yzeinn

co(y,2) = (1—y)(1 — 2)cao0 + y(1 — 2)ea10 + (1 — y)zc201 + Y211
cly,z) = 5 018:2) = co(y, 2) (3.23)

02(y7 Z) - CO(y7 Z)

the scalar fields s; and s, can be expressed as

sy 2) = { (1—2) co(y,2) +x-c1(y, 2) for 0<z<1
1 2—x) c1(y,2) +(x—1)-ca(y,2) for 1 <z <2
so(@,y:2) = (1= 3) o) + 5 - ea(y, ) (3.24)

It is sufficient to show that s; and s; can be transformed into each other by a
regular one-to-one reparametrization r of the domain D. We choose

I‘(z,y,z) = ($r(x,y,2),y,2)
_ x-c(y, z) for 0<z<1
w(@9,2) = { 2—2)-cly,2)+(x—1)-2 for 1< <2’ (3.25)

From (3.22) and (3.23) we get that co(y, 2) < ¢1(y,2) < ca(y, z) for any y,z €
[0,1]. This and (3.23) gives that 0 < ¢(y, z) < 2 for any y, z € [0,1]. This makes
sure that the reparametrization r defined by (3.25) is regular and one-to-one.
In particular we have r(D) = r~1(D) = D where

vl (zy,2) = (0 (2,9,2),0,2)
—z for 0 <z <c(y,z)
-1 _ c(y,z) ’
T, (T,Y,%2 - z—2-(c(y,z)— 3.26
( ) { 722;(&2)) D for c(y,z) <z <2 ( )

is the inverse function of r(x,y,z). Then (3.24) and (3.26) give

Sl(ril(ajvyv Z)) = 52<x’yv Z)

which proves the theorem.

Theorem 2 states that merging is possible when the scalar values increase
monotonously in z-direction. A similar statement can be made for monotonously
decreasing values in z-direction, and for monotonously increasing (decreasing)
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Figure 3.43: a) result of the MC algorithm; b) application of the MC algorithm
after a threshold-independent simplification of the data set described in [118] gives a
reduction of the number of triangles to 14% (from [118]).

values in y- or z-direction. Figure 3.41c illustrates the monotony condition
which allows a merging as shown in figure 3.41b.

As a generalization of theorem 2 we get the following conditions to merge a
box of cells:

Theorem 3 Let s1(z,y, z) be the piecewise trilinear scalar field which is defined
by the scalar values ¢; ji (i = by -cyley, J = JbyeesJes k = kb, ..., ke) and the
regular normalized grid x; jx = (i,7,k)Tin the domain D = [ip,ie] X [jp, je| ¥
[kp, ke]. Furthermore, let so be the trilinear scalar field defined in D by the
eight scalar values ci, j, kys Cicjykys Ciygekys Ciejerkys Cipdykes Ciegokes Cipjerkes
Ciu jo,ke- Then the contours of sg and s1 have the same topology for any threshold
r if the following conditions are satisfied:

Cij,k Ox Citl,4.k for = ib, ~”7ie - ]-7 .7 = jbu ~~~ajev k= kba "'7ke
Cij,k Oy Cij+1,k for i =1, cyley J = Jby s Je — 1, k= kba ceny ke

Cijk Oz Cijk+1 for @ =1dp,.ccsiey J = Jby s Jes kK =kpyoors ke — 1
with o4, 04,0, € {>,<}.

In [118] a number of strategies for merging cells to a brick are discussed.

The result of the MC algorithm to the merged cells is a simplified contour
which may contain cracks. After removing these cracks (as done in [118]), the
original MC contour and the simplified one always have the same topology.

Figure 3.43 shows the result of the Marching Cubes algorithm to a brick
structure built following [118]. The triangular mesh resulting from the brick
structure (including crack removal) was 14% of the number of triangles produced
by the original Marching Cubes algorithm. (The test data set used here is part
of the VTK distribution - see [165] )

In [118] there is a comparison of the performance of the brick structures to
the improved Marching Cubes approaches discussed in section 3.5.2.2. It turned
out that in most cases the algorithms in section 3.5.2.2 are superior concerning
the mesh reduction rate, visual appearance of the mesh, and computing perfor-
mance. Nevertheless [118] gives a first approach to simplifying volume data for
isosurface extraction threshold independently.



Chapter 4

CAGD for Flow
Visualization

Since the very beginning of Scientific Visualization, flow visualization has been
one of its main topics. Flow data comes from numerical simulations (CFD -
computational fluid dynamics), or from experiments and measurements.

Flow data consists of a finite number of sample points x; in the 2D or 3D
Euclidian space, and a number of velocity vectors vi (2D or 3D) where each
vector is assigned to exactly one sample point:

F={(xj,vi) €IE" xIR" :i € G and G finite} (4.1)

with n € {2,3}. The sample points x; may lie on a certain grid, or they may
be scattered in 2D (3D).

A 2D vector field on a regular grid is defined by G = {(0, ..., ng) % (0, ..., ny) }.
Figure 4.1a gives an illustration of this with n, = n, = 4. Figure 4.1b shows an
example of scattered flow data with G = {1, ...,6}.

Following the classification of scientific data in [23], flow data can be de-
scribed as E[ln‘]/ with n € {2,3}.

The definition of flow data given in (4.1) can be generalized in some ways.

e The measurement or simulation of flow data may not only give one vector
per sample point but also additional information (scalars, vectors) in each
sample point. This additional information may be measures like pressure
or temperature. For the investigations in this chapter we focus on the
velocity vector in each point and omit the additional information.

e A flow data set may be considered as time dependent (unsteady). Here
we additionally consider a finite number n; of time steps. At each time
step a (possibly different) vector vi;, is measured or observed. Thus an
unsteady flow field can be formally described as

F = {(xi,(Vi,0, -, Vin,)) € E" x (R")™*! i€ G and G finite} (4.2)

where n € {2, 3} is the dimensionality of the flow and n; + 1 is the number
of time steps. !

ITheoretically it is possible to also vary the location of the sample points over time. Since

67
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Figure 4.1: a) flow data on a regular grid; b) scattered flow data.

Figure 4.2 shows the pipeline for the process of flow visualization which we
consider here. This pipeline follows [152] but emphasizes the interpolation step
by considering it as a process of is own. This is justified by the fact that the
interpolation of the flow data is a very significant data conversion step in the
visualization process.

In figure 4.2 we recognize the usual steps of the visualization pipeline (see
section 2.3.1). The filtering step works on the raw flow data. Here noise reduc-
tion, data selection or data completion may be done. Also data conversions (for
instance the conversion of curvilinear grids to regular grids) may apply here.
Overviews on filtering operations for flow data can be found in [152], [64] and
[167].

The interpolation step of the visualization pipeline of flow data converts the
flow data defined by (4.1) into a vector field. A vector field v can be defined as

v:E—R" (4.3)

with n € {2,3} is the dimensionality of the vector space and E C IE" is a
closed, compact subset of IE". For converting flow data described by (4.1) into
a vector field described by (4.3), E may be chosen as the convex hull of the
sample points:

E = conv({x; :i € G}). (4.4)
The interpolation process can be formulated as searching a vector field v with
v(xi) =v; forallie G. (4.5)

In the mapping step of the visualization pipeline a suitable visualization
technique for the vector field and a certain set of interpretation aims have to
be selected, and an arrangement of the parameters of the technique has to
be specified. The resulting geometric primitives are finally rendered in the
rendering step of the pipeline. A detailed description of the visualization pipeline
of flow data can be found in [152] and [167].

It is the purpose of this chapter to study the application of CAGD methods
in flow visualization. We see these applications in three ways:

practical unsteady flow data sets are defined on a fixed grid, we do not consider this extension
here.
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Figure 4.2: Pipeline for flow visualization.

e The interpolation of flow data is a critical part of the visualization process
of flow data. Since interpolation issues are well studied in the CAGD
context, the results obtained there can be used to study the interpolation
problem of flow data. We do so in section 4.2.

e To visualize flow data, a number of techniques exist which are based on
the application of curves and surfaces. We study these in section 4.3.

e Similar to the design of curves and surfaces in CAGD, flow data can be
obtained not only by measurement and simulation but also by design.
We discuss the design process of flow data and its usefulness for flow
visualization in section 4.4.

Before starting to study these three applications of CAGD methods in flow
visualization, we summarize important properties of vector fields in section 4.1
to build a base for the sections 4.2-4.4.

4.1 Properties of Vector Fields

Collecting properties of a vector field, we start with the simplest case: a steady
2D vector field

v: B, — TR? (4.6)
u(z,y)
T, —
en = ()
where Fs is a closed and compact subset of IE?. Furthermore we assume v to be
continuous and differentiable. Then the partial derivatives of v can be written
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as
e = (EC )= ()
win=((F00 )= ()

Higher order partials can be computed similarly. The Jacobian matriz J is a
2 x 2 matrix which is defined in every point of the domain of the vector field by

T () = ( Uz (2,y)  uy(2,y) ) (4.8)

Uw(xay) ’Uy(l‘,y)

The determinant of Jy is called Jacobian of v.

A point xg € Es is called a critical point iff v(xo) = (0,0)7 = 0 and v(x) # 0
for any x # xq in a certain neighborhood of xq.

A tangent curve s(t) of the vector field v is a curve in Fy with

5(t) = v(s(t)) (4.9)

for any ¢ of the domain of s. In (4.9), § denotes the tangent vector of s. Con-
sidering the vector field v as the velocity field of a steady flow, a tangent curve
describes the path of a massless particle set out at a certain location in the flow.
Thus the tangent curve in a steady vector field is also called stream line.

Tangent curves do not intersect each other (except for critical points of v).
Given a point in the flow, there is one and only one tangent curve through it
(except for critical points of v).

4.1.1 Classification of critical points

To classify a critical point in a 2D steady vector field, sectors of different flow
behavior around it have to be considered. Three kinds of sectors can be distin-
guished ([57]):

e In a parabolic sector either all tangent curves end, or all tangent curves
originate, in the critical point. Figure 4.3a shows an example.

e In a hyperbolic sector all tangent curves go by the critical point, except for
two tangent curves making the boundaries of the sector. One of these two
tangent curves ends in the critical point while the other one originates in
it. Figure 4.3b shows an example.

e In an elliptic sector all tangent curves originate and end in the critical
point. Figure 4.3c shows an example.

A critical point in a 2D vector field is completely classified by specifying number
and order of all sectors around it. Consider figure 4.4a% for an example. This
critical point consists of 7 sectors in the following order: hyperbolic, elliptic,
hyperbolic, elliptic, parabolic, hyperbolic, hyperbolic.

2The visualization technique used for this (and the following) illustrations is called Inte-
grateéDraw and is described in section 4.3.3.2. For now it is sufficient to mention that the
behavior of the tangent curves can be detected quite well in this visualization.
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Figure 4.3: Sectors of a critical point; a) parabolic sector; b) hyperbolic sector; c)
elliptic sector (from [205]).

b)

tangent
curve

Figure 4.4: a) general critical point; b) tangent curve separating two hyperbolic
sectors.

The different sectors are delimited by tangent curves originating or ending
in the critical point. Figure 4.4b shows such a tangent curve delimiting two
hyperbolic sectors.

Each critical point can be assigned an indez:

—ny,

index =1+ e —Mh

. (4.10)

where n. is the number of elliptic sectors and ny, is the number of hyperbolic
sectors. The index can also be interpreted as the number of counterclockwise
revolutions made by the vectors of v while traveling counterclockwise on a closed
curve around the critical point (the closed curve must be so tight to the critical
point that no other critical points are inside it).

The index can be considered as an overview of the complexity of a critical
point but does not cover the complete classification: there are critical points
with different sectors but the same index. For instance, both critical points in
figures 4.4a and 4.21 have an index of 0.

An further introduction to the classification of 2D critical points and their
indices can be found in [57].

A critical point xq in the vector field v is called a first order critical point iff
the Jacobian does not vanish in xq; otherwise the critical point is called higher
order critical point. As shown in [87] and [88], the classification of critical points
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Attracting Attracting
node focus
R1,R2<0 R1=R2<0

H=12=0 H=-12<>0

Saddle Center
point R1=R2=0
R1<0 H=-12¢0
R2>0
H=12=0
Repellint Repeliing
n%de o focus
R1,R2>0 R1=R2>0
t=2=0 1=-2<>0

Figure 4.5: Classification of first order critical points; R1, Rz denote the real parts of
the eigenvalues of the Jacobian matrix while I1, Io denotes its imaginary parts (from
87).

xo = (2o, ¥yo) in the vector field v simplifies if xq is a first order critical point.
In this case a first order Taylor expansion

N < uz(Xo)  uy(Xo) ) ) ( T —Zo ) (4.11)

vz (X0) Uy(Xo) Y — Yo

of the flow around xg is sufficient to obtain the complete classification of it.
(4.11) ensures that

T4 (x0) = Jup , (X0)- (4.12)

It turns out that for det(Jy(x¢)) < 0, the critical point xo consists of 4 hyper-
bolic sectors and therefore has an index of -1. A critical point of this classifica-
tion is called a saddle point. In this case the eigenvectors of Jy(x¢) denote the
delimiters of the hyperbolic areas around xq. For det(Jy(xg)) > 0, the critical
point x¢ consists of one parabolic sector and therefore has an index of +1.

This classification of a first order critical point xg with an index of +1 can
be refined by considering the eigenvalues of Jy(x¢). Let Ri, Ry be the real
parts of the eigenvalues of Jy(xg), and let I1, I be the imaginary parts of the
eigenvalues of Jy(xg). Then the refined classification following [87] is shown in
figure 4.5. Note that positive real parts denote a repelling behavior of the flow
while negative real parts indicate an attracting behavior. Non-zero imaginary
parts denote a circulating behavior of the flow.

4.1.2 Separatrices

Separatrices are tangent curves that divide the vector field into areas of different
flow behavior. Different types of separatrices are possible:
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Figure 4.6: Types of separatrices; a) separatrix not touching a critical point (type 2);
b) separatrix not separating different sectors in the critical points (type 3); ¢) inner
separatrix is closed curve (type 4).

1. Each tangent curve originating/ ending in the critical point and separating
two sectors there is a separatrix. Figure 4.4b illustrates a separatrix which
separates two hyperbolic sectors of a critical point.

2. Separatrices may not touch any critical point. They may go ”from in-
finity to infinity” (or from one border line of the vector field to another
one). Figure 4.6a shows a vector field which consists of two attracting foci
(see classification in [87] and figure 4.5). The separatrix between the two
critical points does not touch any of them.

3. Separatrices may originate/ end in a critical point without separating
sectors there. Figure 4.6b gives an example of this. Here we have one
repelling node (middle) and two attracting nodes (left, right). Since each
node consists of only one parabolic sector, the separatrices shown in the
figure do not separate different sectors there.

4. Separatrices may be closed curves which do not touch any critical point.
Figure 4.6¢ gives an example. Here we have two critical points: a saddle
point and an attracting focus. The outer separatrix originates and ends
in the saddle point and is therefore a separatrix of type 1. The inner
separatrix of type 4 separates a region of inflow into the attracting focus
and a region of circulation around the attracting focus.

Separatrices of the type 1 were already treated in [87]. In [112] it was shown
that there exist more general separatrices. [195] gives an approach to extract
some of them by introducing and treating critical points at infinity. However,
the classification made above seems to cover all kinds of non-trivial separatrices
treated in [112] and [195].

4.1.3 Topology of a 2D vector field

The topology of a 2D vector field denotes one of its most important features.
It is completely described by detecting and classifying all critical points, and
finding all separatrices. The topology of a vector field describes the behavior of
the whole vector field in terms of only a small number of items. Thus it is a
useful tool for analyzing and visualizing vector fields. Vector field visualization
techniques which make use of the topology are discussed in section 4.3.2.1. The
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Figure 4.7: Rotated vector fields; if the solid arrows denote the vector field v, the
dashed arrows denote the vector field v(T! (from [185]).

topology of vector fields can also be used to define distance functions of vector
fields. This will be discussed in section 4.1.6.

In the following we call a vector field topology which consist only of first
order critical points and separatrices of the type 1 a simple topology. Simple
topologies can extracted automatically using the approaches in [87].

4.1.4 Rotated and domain rotated vector fields

This section introduces two ways of obtaining a new vector field from a given
one: rotation and domain rotation. Both concepts will later be used to define
distance functions on vector fields (see section 4.1.6).

The concept of rotated vector fields was introduced in [185]. Given a vector
field v, a new vector field vl can be obtained in the following way: for every
point (x,y) in the domain, the direction of v(z,y) is rotated counterclockwise
by the angle « while the magnitude remains unchanged. Figure 4.7 gives an
illustration of vIil.

The rotated vector field v can be computed from v by

] _ [ cosy —siny |
v <x’y)_<sm’y COS")/ ) v(:c,y). (413)

A special rotated vector field is the perpendicular vector field v of v which is
defined as

vt = viEl = ( ~v(@,y) ) (4.14)

u(w,y)

The rotation of a vector field keeps locations and indices of the critical points
unchanged. All other components of vector field topology may change under
rotation.

The concept of domain rotation of a vector field describes the rotation of the
domain of the vector field - including the vectors - around a critical point. This
way the tangent curves are rotated around the critical point as well.

Given the vector field v(z,y) with a critical point x¢ = (20, 3o), the domain
rotated vector field v{®*0) which is obtained by a counterclockwise domain ro-
tation around xg by the angle § can be written as
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a). b). c). d. | .
Figure 4.8: Domain rotated vector fields around a critical point xo; a) v = v{®*0);
b) v{Exo), ¢) viExo), d) v(%”,xo); e) v{5x0)

(5:x0) _ cosd —sind |
Ve = (sin5 cosd (4.15)

v (@ = o) (528 ) 4 ).

sind  cosd

Figure 4.8 shows example of domain rotated vector fields.

A domain rotation of a vector field v around the critical point xg keeps only
the location of xg while the locations of other critical points change. Neverthe-
less the classification of the critical points (see section 4.1.1) remains unchanged.

4.1.5 Derived measures

Given a 2D vector field, a variety of measures can be derived from it which may
be used for visualization purposes ([152], [64]):

e magnitude ||v|| = vVu2 + v?
e velocity gradient Vv = (ug, v,)T

o divergence div(v) =V v =1u, + v,
where V denotes the Nabla operator V = (=L, %)T. An introduction to the
concepts of V and div can be found in [38].

Vector fields v with div(v) = 0 are of special interest: they describe an
incompressible flow. For such a vector field, a scalar field s(x,y) can be found

in such a way that tangent curves of v coincide with the equipotential lines of

s, ie. Vo) ( —s,(z,) ) (4.16)

s2(2,y)

The scalar field s is sometimes called stream function.

Another derived measure of a vector field is its curvature, which was studied
in [185]. Starting from the observation that for each point in the flow there is
exactly one tangent curve through it (except for critical points), we compute
the curvature of the tangent curve in each domain point of the vector field.

Given a (non-critical) point (zg,¥o) in v, let s be the tangent curve through
(20,y0). Furthermore, let s be parameterized in such a way that

s(to) = (z0,%0) (4.17)
s(to) v(s(zo,Y0))- (4.18)
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(8(t) denotes the tangent vector of s(t)). Then we can compute the second
derivative vector § of s at to by applying the chain rule to (4.18):

8(to) = (u- vy + v - vy) (%o, Yo)- (4.19)
Now we can easily compute the signed curvature of s in (zg, yo):

_ det [s(to), 8(to)]
K00 = —egp

(4.18), (4.19) and (4.20) have the following consequence: in order to compute
the curvature of a tangent curve in a certain point of a vector field it is not
necessary to know the tangent curve itself. It is sufficient to know the vector
field v and its first order partials.

Inserting (4.18) and (4.19) into (4.20), we obtain a simple formula for the
curvature of the tangent curve in every point of the vector field:

(4.20)

u - det[v,vy] + v - det[v, v,]
[[v®

(4.21) describes a scalar field in the domain of the vector field v. This scalar
field describes the curvature of the tangent curve in every point of the domain.
In [185], this scalar field x(v) is called the curvature of the vector field v. k(v)
is only defined for non-critical points. It does not depend on the magnitudes
of the vectors in v. For the perpendicular vector field v we can compute its
curvature by inserting (4.14) into (4.21). This way we obtain

k(v) =

(4.21)

1y = u - det[v,v,] — v - det[v, v,] (4.22)
[[v]?
In section 4.3.3.3 the application of the curvature of vector fields for visual-
ization is discussed.

k(v

4.1.6 Metrics on 2D vector fields

In this section we study distance functions on vector fields. This issue recently
became evident for the assessment of compression algorithms for vector fields.
To evaluate a compression algorithm, the distance between the original and the
compressed vector field has to be considered.

One approach for a distance function on vector fields is to consider the local
deviation of direction and magnitude of the flow vectors in a certain number
of sample points. The vector field compression algorithms in [86] and [183] are
based on this approach. These distance functions give a fast comparison of
vector fields but do not take their topologies into consideration. In fact, two
vector fields with a significant different topology (and therefore different flow
behavior) may have a short distance to each other.

A first approach to find a distance function which is based on the topology
of vector fields is introduced in [122]. Here the critical points of the vector
fields to be compared are detected and matched: for each critical point in the
first vector field a corresponding critical point in the second vector field has to
be found, and vice versa. Then the distances between all corresponding critical
points are compared: their summation gives the distance of the two vector fields.
This way the computation of the distance of two vector fields is reduced to the
computation of the distance of critical points.
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Figure 4.9: Classification of first order critical points in (o, 3) phase plane (following
[122]): RS (repelling star), RN (repelling node), D (degenerate - not a first order
critical point), S (saddle), AN (attracting node), AS (attracting star), AF (attracting
focus), C (center), RF (repelling star).

4.1.6.1 The (a,3) phase plane

The conceptional idea of how to compute the distance of two critical points in
[122] is to compute the amount of work which must be performed to transform
one critical point into the other. In [122] only first order critical points xg in a
vector field v are considered. Based on the Jacobian matrix Jy(xo), the critical
point x( is mapped into an (a, §) phase plane by

p = div(v)(x0) = (uz + vy)(%0)

q = det(Jy(x0))

& = p (4.23)
3 = sign(zf—ﬁlq)- 1(p? — 4q]

YT e

5 - B

Jazrv

This way the first order critical point xq is mapped onto the unit circle in the
(a, ) plane.

Figure 4.9 shows the relation between the classification of first order critical
points in [87] (shown in figure 4.5) and the location in the («, ) phase plane.
Note that the additionally introduced classes of critical points, attracting star
and repelling star, correspond to the conditions

attracting star: Ry =Ry <0, [1 =1,=0
repelling star: Ry =Ro >0, 1 =1,=0

in [87]. Then the distance of two first order critical points is simply the Euclidian
distance of their corresponding points in the («, 3) plane. This distance is called
EMD (earth mover’s distance) in [122].

The (a, ) phase plane in [122] has a number of useful properties which
correspond to the intuition of the distance of critical points:
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e Invariance under scaling of the vector field. The critical point x¢ of the
vector field A - v with A > 0 has the same («, 3) coordinates as x¢ in v.

e Invariance under domain rotation of the vector field around the critical
point. The (¢, 8) coordinates of the critical point x¢ in the domain rotated
vector field v(%*0) does not depend on the angle 4.

However, the (a, 3) phase plane of [122] also has properties which do not corre-
spond to intuition:

e Inconsistent treatment of inverted vector fields. Given a first order critical
point xq in a vector field v, a certain amount of work is necessary to con-
vert this critical point into the critical point of the vector field —v. Figure
4.10 shows an example of inverting a center and a repelling star. The
inverse of the center is a center as well and has therefore the same (a, )
coordinates of (0,—1). The inversion of the repelling star (coordinates
(1,0) in (o, B) space) is an attracting star with the (o, ) coordinates of
(—1,0).

e Collapsing of critical points with different flow behavior (but similar topol-
ogy concerning [87]) into the same location in («, ) space. To illustrate
this, figure 4.11 shows the critical point (0, 0) of the linear vector field

cos —sin
Vo) = (7 ).

siny  cosvy —1_2my

1-2r

for 18 different choices of v and r. In particular, v and r have been chosen

as

. ™ AN T 1.
a):y=735,r=1 b)iy=-3,r=1

. z - . . _ _ .
C)-7—§7T_0'85 d)fy__g’fr_OS’

) = - . . _ T _ .
e): 7y 5,7 = 0.6; f)~7**§77"*0-6a

C o~ = -1 _ . = T p— 1
g)"Y*O’T*HsiiFW’ h):y= 877"*1+§iin27’
N m o N ey T
1)"7_8’7a_1+si£12’y’ ‘])'7_ g’r_l-l-SiIiZ"/’

. _ T _ . . — 97 — :
k)'7*4ar*1+sin2w )i = 8 "= Txsin?y)

T o 1. =T p=_1

Hl) =3,r= 2 sinZ~ ) n) T=TyHT = 2 sin? 7’
0):y=T r=sdit p)iy=—T = 1

Ly 30 2sin12’y’ p)+7 537 25111277

. __ b _ . — ™ =
Q) Y 1_7T_251n2'y’ 1") 7__ﬁ7r_251n2“/

This way the critical points in figures 4.11a-f have (a, 3) coordinates of
(0, —1); the critical points in figures 4.11g-1 have (a,3) coordinates of
(1,0); and the critical points in figures 4.11m-r have (a, 3) coordinates of

)
(@ —@) This contradicts the observation that for instance the figures
4.11j and 4.11p are visually more similar than the figures 4.11m and 4.11p.

In [13] the approach of [122] is extended by considering not only the critical
points but also their connectivity. This way the distance of two vector fields
is not the sum of the distances of the critical points but the distance of two
graphs, in which the nodes describe the critical points, and the edges describe
the connectivity.
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Figure 4.10: Inverted vector fields in («, 3) plane; a) center with (a, 3) coordinates
(0, —1); b) inverse vector field of a) has the same (e, 8) coordinates; c) repelling star
with (a, ) coordinates (1,0); d) inverse vector field of ¢) has the (a, 3) coordinates

m). n). 0)‘ I. q. '
Figure 4.11: Different critical point with the same («,3) coordinates; a-f: (a,f3)
coordinates (0, —1); g-1: (o, 8) coordinates (1,0); m-r: («, 3) coordinates (@, —g)

a)

4.1.6.2 The (v,r) phase plane

In this section we introduce a new metric for first order critical points which
does not have the disadvantages of the («, 3) phase plane described above. We
follow the conceptional idea of [122] that the distance of two critical points is the
amount of work which must be performed to transform one critical point into
the other. We base our approach on two concepts: the rotation of a vector field
(see section 4.1.4) and the scaling of the vector field into one direction. Both
operations perform a parameterized transformation between different critical
points and can therefore be interpreted as the amount of work to transform one
critical point into another.

The idea is to distinguish only between first order critical points which can-
not be transformed into each other by scaling and domain rotation. To do so,
we introduce the following definitions.

Given are two vector fields v and w which both have a first order critical
point in xq. The vector fields v and w are domain rotation equivalent in xg
(written (v,Xg) ~dre (W,Xq)) iff their first order Taylor expansions around xg
(see (4.11)) can be transformed into each other by scaling and domain rotation,
ie.
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(v,X0) ~dre (W,X0) < (4.24)
35€[0,27] IN>0: Vi, = N (Wrp )00,
Furthermore we introduce the concept of normalized Jacobian: given a vector
field v with a first order critical point xy, we define the normalized Jacobian
Anorm 1N X as
det(Jy)
u2 +v2 + ufl + v§

Uy Vy — Vg Uy
2 2 2 2
um+vr+uy+vy

dporm(v(Xg)) = 2 (x0) = (x0). (4.25)
The value d,o-m can be interpreted as a scaling independent version of the
Jacobian. For any first order critical point, dporm ranges between —1 and 1.
Furthermore, d,,orm is invariant under scaling and domain rotation around xg
of the vector field. Thus d,,,,y, is constant for domain rotation equivalent vector

fields: for two vector fields v and w with a first order critical point in xg we get
(v,X0) ~dre (W,X0) == dnorm(V(X0)) = dnorm(W(X0)). (4.26)

In a similar way to d,ormn Wwe introduce the normalized divergence divyorm
of the vector field v in the critical point xo as

. div(v)
divy,orm (V(x = X
(vixo)) \/2(u§+vg+u§+vg)(0)
_ e Uy (xo)- (4.27)

\/2(u§+v§+u§+vg)

The value div,orm can be interpreted as a scaling independent version of the
divergence. For any first order critical point, div,.., ranges between —1 and
1. Furthermore, div,,o,, is invariant under scaling and domain rotation around
xo of the vector field. Thus div, ey, is constant for domain rotation equivalent
vector fields: for two vector fields v and w with a first order critical point in xg
we get

(v,%X0) ~dre (W,X0) = divyorm(V(%0)) = divaerm (W(xo))- (4.28)

The phase plane we use here to classify first order critical points is the area inside
the unit circle where (v, r) are the polar coordinates (v € [0, 27],r € [0,1]). To
characterize this (v, r) phase plane, we define a reference critical point for each
point of it. This is the critical point (0,0) of the following vector field:

xT

cos —sin
V(@) = < i v (4.29)

siny  cosvy > —“me

1-27

v, defines a vector field with a first order critical point in (0, 0) for each point
(v, 7) of the phase plane (v € [0,2x],r € [0, 1]). Figure 4.12 gives an illustration
of the reference critical points in the (v, r) phase plane.

The system of reference critical points in the (v, r) phase plane has the following
properties:
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y=n/2, r=1

Figure 4.12: Reference critical points in the (v, r) phase plane.

e Critical points which lie on a circle » = const in the (v,r) plane can be
transformed into each other by rotation:

Viytar = Vy ool (4.30)

This follows directly from (4.29) and the definition (4.13) of rotated vector
fields.

e Critical points which lie on a ray through the origin » = 0 in the (v,r)
plane can be transformed into each other by scaling of the y-component:

V’Y,TQ(mvy) = V’Y,T1 (x,)\y) (431)

with

(1—27) (1 - zm)

A= (1-2m) (1—2 r2(1—r2))' (432

This is a straightforward deduction from (4.29).




82

CHAPTER 4. CAGD FOR FLOW VISUALIZATION
drorm T diviorm
a) b)
i =1

Figure 4.13: a) normalized Jacobian dnorm of the reference critical points as height
field over the (v,7) plane; b) normalized divergence divporm of the reference critical
point as height field over the (v, r) plane.

e The critical point in the center » = 0 of the (v,r) plane deserves special

attention. For this point, a rotation of the corresponding vector field gives
only a domain rotated version of itself:

Vyo = V0,0<%’(0’0)>. (433)

This follows as a straightforward exercise in algebra from (4.29) and (4.15).
This property can also be written as v, 0 ~dre Vy,,0 for any vi,v2 €
[0, 27].

Considering the normalized Jacobian d,,o.n, of the reference critical points
in the (v,7) plane , we obtain

dnorm (V. (0,0)) = 27 — 1. (4.34)

This follows from (4.25) and (4.29). Figure 4.13a illustrates the normalized
Jacobian of the reference critical point as a height field over the (v,r)
plane.

Considering the normalized divergence div,..m, of the reference critical
points in the (v, r) plane, we obtain

diviorm (Vo.(0,0)) = /1 - cos . (4.35)
This follows from (4.27) and (4.29). Figure 4.13b illustrates the normalized
divergence of the reference critical point as a height field over the (v, r)
plane.
The normalized divergence of the perpendicular vector field of v, , is

divnorm (Vo,r(0,0)) = diviorm (V442 1(0,0)) = —/7 -sinvy.  (4.36)

This follows from (4.27), (4.29) and (4.14).
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e The reference critical points in the (v, r) plane yield the following classi-
fication of first order critical points following [87] and [122]: the critical
point (0, 0) of the reference vector field v, , is a

saddle point (Sa) iff (y =% and r < 1) or (y=—3 and r < 3) or
r =20,

repelling saddle (RSa) iff -2 <y < Z and 0 <7 < 1,

attracting saddle (ASa) iff 2 <y < 3mand 0 <r <%,

degenerate (D) - not a critical point - iff r = 1,

center 1 (C1) iff y =2 and $ <r <1,
center 2 (C2) iff y = —Z and 3 <r <1,

repelling focus 1 (RF1) iff 0 <y < 5 and § <7 < m,
1
1+sin? v

repelling focus 2 (RF2) iff -5 <y <0Oand 5 <r <

[N

attracting focus 1 (AF1) iff Z <y <mand 5§ <7< m,

attracting focus 2 (AF2) iff r <y < 27 and 1 <r < m,

repelling star 1 (RS1) iff 0 <y < § and r = m,

repelling star 2 (RS2) iff —5 <~ <0 and 7 = ;o
1

attracting star 1 (AS1) iff T <y <7 and r = TemZy

attracting star 2 (AS2) iff 7 <y < 27 and r = m,

1
1+sin? v <rs<l,

1
Trem?y <T =1

repelling node (RN) iff —% <y < 7 and
attracting node (AN) iff £ <y < 27 and

This classification of critical points has extensions to the classifications of
[87] and [122] in the following way:

We distinguish between three kinds of saddle points. A saddle point
(in the sense of [87] and [122]) is a first order critical point which has
both inflow and outflow. A repelling saddle (RSa) has more outflow
than inflow, i.e. a positive divergence. An attracting saddle (ASa)
has more inflow than outflow and therefore a negative divergence. A
saddle point (Sa) has a zero divergence.

The classes of points RF, RS, C, AF, AF are each subdivided into two
subclasses 1 and 2. Subclass 1 means that in a neighborhood of the
critical point all tangent curves turn to the left, i.e. they have non-
negative curvature (see section 4.1.5). In critical points of subclass
2, all tangent curves in a neighborhood turn to the right, i.e. have
non-positive curvature.

Figure 4.14 illustrates the location of the different classes of critical points

in the (v,r) phase plane. Note that the curve r =

1 .
m deﬁnlng at-

tracting and repelling stars is not an ellipse.

After showing that the system of reference critical points in the (v,r) phase
plane has a number of useful properties, we still have to show that it describes
all first order critical points uniquely (except for domain rotation and scaling).
To do so, we formulate
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Figure 4.14: Classification of critical points in the (y,r) phase plane.

Theore