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Abstract

In this work we investigate the correlation between the two disciplines CAGD
and Scientific Visualization. Both are correlated to Computer Graphics but be-
came disciplines of their own and therefore developed rather independently of
each other.

It is the task of this work to analyze the interapplicability of both disciplines
to each other, to find where ideas and methods of one discipline can be applied
to the other, and vice versa.

In the first part we analyze both disciplines concerning their histories, the
present data, and their pipelines. Doing so we obtain concrete expectations on
where exactly it makes sense to search for interapplications.

Based on these expectations, part two of this work systematically investi-
gates applications of CAGD ideas and methods in Scientific Visualization. Doing
so, we do not only collect and systematize existing approaches, we also develop
a number of new techniques.

Part three of this work deals with the application of of Scientific Visualization
in the design process of curves and surfaces. Here we also provide a number of
new approaches in addition to the systematization of the existing ones.
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Matthias Kreuseler and Martin Köller for their collaboration with me which
results are partially reported in this work.

Ian Harknett deserves a special thank you for the English proofreading of this
work.

Finally I would like to thank my wife Daily Bravo Rangel. Although most
of the time of carrying out this work we were not able to stay with each other,
I always felt you on my side. Your love gave me the strength and patience to
finish this work.

Rostock, July 1st, 2001
Holger Theisel





Contents

1 Introduction 7

2 Analysis and Comparison 13
2.1 Data Comparison of Visualization and

CAGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 History of Visualization and CAGD . . . . . . . . . . . . . . . . 16

2.2.1 History of Scientific Visualization . . . . . . . . . . . . . . 16
2.2.2 History of CAGD . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Historical comparison . . . . . . . . . . . . . . . . . . . . 18

2.3 Pipelines in Visualization and CAGD . . . . . . . . . . . . . . . . 19
2.3.1 The visualization pipeline . . . . . . . . . . . . . . . . . . 20
2.3.2 The CAGD pipeline . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Conclusions from the pipelines . . . . . . . . . . . . . . . 24

2.4 Strategies for Proceeding Further . . . . . . . . . . . . . . . . . . 25

3 CAGD for Volume Visualization 27
3.1 Techniques for Volume Visualization . . . . . . . . . . . . . . . . 28
3.2 Pipeline for Isosurface Extraction . . . . . . . . . . . . . . . . . . 29
3.3 Piecewise Constant Interpolation . . . . . . . . . . . . . . . . . . 31
3.4 Piecewise Linear Interpolation . . . . . . . . . . . . . . . . . . . . 32
3.5 Piecewise Trilinear Interpolation . . . . . . . . . . . . . . . . . . 33

3.5.1 Properties of trilinear contours . . . . . . . . . . . . . . . 34
3.5.2 Graphical representation for piecewise trilinear contours . 45

3.6 Higher Order Polynomial Interpolation . . . . . . . . . . . . . . . 55
3.7 Local Reparametrization . . . . . . . . . . . . . . . . . . . . . . . 56
3.8 Interpolation of Larger Areas . . . . . . . . . . . . . . . . . . . . 62

4 CAGD for Flow Visualization 67
4.1 Properties of Vector Fields . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Classification of critical points . . . . . . . . . . . . . . . 70
4.1.2 Separatrices . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.3 Topology of a 2D vector field . . . . . . . . . . . . . . . . 73
4.1.4 Rotated and domain rotated vector fields . . . . . . . . . 74
4.1.5 Derived measures . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.6 Metrics on 2D vector fields . . . . . . . . . . . . . . . . . 76
4.1.7 Unsteady vector fields . . . . . . . . . . . . . . . . . . . . 85
4.1.8 3D vector fields . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Interpolating Flow Data . . . . . . . . . . . . . . . . . . . . . . . 93

5



6

4.2.1 Piecewise linear interpolation of 2D flow data . . . . . . . 94
4.2.2 Piecewise bilinear interpolation of 2D flow data . . . . . . 95
4.2.3 Piecewise higher order polynomial interpolation of 2D flow

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.4 Interpolation of 3D flow data . . . . . . . . . . . . . . . . 98
4.2.5 Choosing the appropriate interpolation . . . . . . . . . . . 99

4.3 Curves and Surfaces for Flow Visualization . . . . . . . . . . . . 102
4.3.1 Elementary methods . . . . . . . . . . . . . . . . . . . . . 102
4.3.2 Local methods . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.3 Global methods . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Design of Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.1 Control polygons to describe the topological skeleton . . . 113
4.4.2 Constructing a vector field from a topological skeleton . . 115
4.4.3 Simplification and compression of vector fields . . . . . . 120

5 CAGD for Multiparameter Data 125
5.1 Icon Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1.1 The ShapeVis approach . . . . . . . . . . . . . . . . . . . 128
5.1.2 Designing appropriate icons . . . . . . . . . . . . . . . . . 137

5.2 Line Representations . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.1 Higher order parallel coordinates . . . . . . . . . . . . . . 139
5.2.2 Theoretical considerations for higher order parallel coor-

dinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.3 Hierarchical Techniques . . . . . . . . . . . . . . . . . . . . . . . 153

6 CAGD for Further Data Classes 155
6.1 Scattered Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1.1 2D scattered data . . . . . . . . . . . . . . . . . . . . . . 156
6.1.2 3D scattered data . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Tensor Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3 Information Visualization . . . . . . . . . . . . . . . . . . . . . . 158

7 Scientific Visualization for CAGD 161
7.1 Visualization for Schemes of Control

Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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Chapter 1

Introduction

Modern Computer Graphics shows more and more a trend of interdisciplinary
working methods. Today’s real-life problems are of such complexity that a spe-
cialist in one discipline cannot solve them alone. Instead, teams of experts have
to work on the problems. For example, modern approaches in Data Mining con-
tain approaches of Data bases, Scientific Visualization, Modeling/Simulation,
and Statistics. Also within the field of Computer Graphics the disciplines come
closer to each other to solve complex and general problems. This collaboration
with other disciplines can be fruitful for a particular discipline, because this way
a discipline is considered in the light of other disciplines, can contribute to other
disciplines, or can apply and improve their results.

In this context it may occasionally turn out that different disciplines have
worked on similar problems and found similar solutions independently of each
other. Moreover, the application of one discipline to another one might yield
significant new results there. Thus the investigation of correlations, dependen-
cies, and mutual influence between different disciplines is a promising approach
to develop them further.

It is the purpose of this work to investigate the correlations and mutual influence
of two disciplines which are related to Computer Graphics: CAGD (Computer
Aided Geometric Design) and Scientific Visualization. We want to investigate
where to apply the ideas and methods of one discipline to the other in order to
find improvements for both disciplines.

The main purpose of Scientific Visualization is to produce visual representa-
tions of large data sets. The task is to explore data and information in such a
way as to gain understanding and inside into the data. Modern data sources like
satellites or CT (Computer Tomography) devices produce daily a high amount
of data which has to be analyzed. In fact, data sets of the size of Gigabytes or
even Terabytes are nowadays common. To explore these large data sets, visual
analysis is a promising approach. The general reason for this is the fact that the
human eye is able to recognize a high amount information in a single moment.
Scientific Visualization tries to make use of this ability by providing appropriate
visual representations of the data and leaving the interpretations of the images
to the intelligence of a human being. This way Scientific Visualization appears
in a row with other data analysis tools which mostly come from the area of

7
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a) b)

Figure 1.1: a) piecewise bicubic B-spline surface; b) visualizing one class of lines of
curvature using methods of flow visualization.

statistics. For complex problems a rather common approach is to combine a
number of analyzing tools. Since there are a lot of different kinds of data to
be visualized, and since there are a number of different goals and motivations
for applying visualization, a variety of approaches and techniques to Scientific
Visualization exist, and it is crucial to choose an appropriate one.

While Scientific Visualization is an approach to analyzing data, CAGD can
mainly be considered as an approach to creating data by design. Here the data
to be designed are curves and surfaces. Curves/surfaces and their properties
are well-known for a long time. It is the task of CAGD to find representations
of curves/surfaces which are useful for design purpose. These representations
should be

• intuitive. There should be an intuitive relation between the representation
and the curve/surface.

• simple. The designer should be confronted with as few degrees of freedom
as necessary to design the curve/surface.

• flexible. The designer should be able to design virtually every curve/
surface which he/she has in mind.

It turned out that the representations which fulfill this task best are rather
simple networks of control points which can interactively moved by the designer.
CAGD explores the theory behind these networks of control points and thus
makes designed curves/surfaces applicable to a variety of areas.

Since there are a variety of different motivations and tasks to design curves/
surfaces, there are a number of different curve/surface schemes in CAGD which
emphasize different aspects and properties of the curves/surfaces. Nevertheless,
most applications focus on a particular class of curves/ surfaces which have thus
become a quasi-standard: the class of Bézier- or B-spline curves/surfaces.

It is the purpose of this work to explore the correlations of both disciplines:
Scientific Visualization and CAGD. We want to investigate where ideas, meth-
ods and concepts of one discipline can be applied to the other, and vice versa.
Doing so we show that this approach gives new contributions to both disciplines.
To illustrate the main idea of this work, we consider two examples.

Figure 1.1a shows a piecewise bicubic B-spline surface, a standard surface
class in CAGD. To evaluate the quality of this designed surface, one way is
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a) b)

Figure 1.2: a) piecewise triangular approximation of an isosurface of a trilinear volume
data set using Marching Cubes; b) computation of the exact isosurface as trimmed
piecewise rational cubic surface.

to consider the lines of curvature1 on the surface. Although lines of curvature
on a surface give valuable information about the surface behavior, they cannot
be described in a closed form as families of parametric curves on the surfaces.
However, it can be shown that they can be interpreted as tangent curves of a
certain vector field on the surface. Hence a variety of techniques from Scientific
Visualization (in particular from flow visualization) exist and can be used to
visualized the lines of curvature for the CAGD process. Figure 1.1b shows an
example of applying a visualization technique2 which makes the behavior of the
lines of curvature visible. This is an example of how to apply a technique from
Scientific Visualization to CAGD.

To show an example of applying CAGD methods to Scientific Visualization,
consider figure 1.2. Figure 1.2a shows a common approach for an isosurface ex-
traction in volume visualization3. If this approximation is too rough, the correct
isosurface can be described as trimmed piecewise rational cubic surface. Figure
1.2b illustrates this for the example in figure 1.2a. Hence, this is an example of
applying CAGD methods to improve the results of Scientific Visualization.

Nowadays both disciplines Scientific Visualization and CAGD are rather com-
plex and heterogeneous. In both disciplines a lot of different methods and ap-
proaches have been developed. Moreover, both disciplines have collaborations
with other disciplines in science and technology. Thus it cannot be the purpose
of this work to give a complete overview over the state of the art in both dis-
ciplines. Excellent surveys exist for both disciplines ([55], [95] for CAGD, [167]
for Scientific Visualization). Instead, this work only deals with those aspects of
both disciplines where a collaboration with the other discipline makes sense.

To be able to investigate the correlations between CAGD and Scientific Vi-
sualization in a systematic way, as a first step we have to choose the points of
potential correlations between the disciplines inside themselves. To do so, we
have to answer the following specific questions:

1Lines of curvature are surface curves which have the defining property of being tangential
with one of the principal directions of the surface in every point of the curve. They form two
families of surface curves which reflect geometric properties of the surface. See [55] for details.

2The visualization technique applied here is called Integrate & Draw and is explained in
section 4.3.3.2 of this work.

3Volume visualization is a part of Scientific Visualization, as we will see later in this work.
The technique to extract the triangular approximation of the isosurface is called Marching
Cubes ([130]) which is treated in section 3.5.2.2 of this work.
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1. Which concepts and methods of CAGD are good candidates to be applied
in Scientific Visualization?

2. Which concepts and methods of Scientific Visualization can be applied to
CAGD?

To answer question 1, we see the following applications:

• Since the human eye reacts rather sensitively to slight perturbations of
curves or surfaces4, these are promising candidates to encode a high amount
of data. Scientific Visualization needs methods to encode large data sets
intuitively. Hence curves/surfaces are promising geometric objects to be
applied in Scientific Visualization.

• CAGD has gathered knowledge and experience about smooth interpola-
tion and approximation, especially for curves and surfaces. This way,
rather complicated interpolation conditions can be expressed in terms of
simple geometric correlations of control points. In Scientific Visualization
smooth interpolations and approximations which preserve certain proper-
ties play an important role. Hence we may use the knowledge of CAGD
about simple interpolation schemes to find simple and robust interpola-
tions in different parts of the visualization process.

• CAGD is basically concerned with designing data while it is the task of
Scientific Visualization to find appropriate visual representations of given
data sets. Although most of the data treated in Visualization comes from
measurement or simulation, data designed by methods similar to CAGD
are also of interest. Especially when this data has to be compared with
measured data, or if certain techniques in Scientific Visualization have to
be evaluated, the controlled design of input data – and thus the appli-
cation of ideas and concepts of CAGD – may be of interest for Scientific
Visualization.

To answer question 2, we see the following applications:

• At certain levels of the design process in CAGD, the designer has to deal
with rather large amounts of data. Based on this data the designer has to
make decisions concerning the further steps in the CAGD process. (For
example, the designer might have to choose some parameters or decide
if a complete redesign of parts of the curve/surface is necessary.) Hence
it might be worth trying to find a visualization of the present data and
current results of the design process in order to prepare and choose the
next design steps.

In order to investigate the applicability of CAGD methods in Scientific Visual-
ization and vice versa, the rest of this work is divided into three parts. Part one
analyzes CAGD and Scientific Visualization in the light of possible applications
to each other. This part consists of chapter 2. Based on the results of this
analysis, part two treats the applications of CAGD methods in Scientific Visu-
alization. This part consists of the chapters 3–6. Finally part three treats the

4This is a fact which can be confirmed by any owner of a car: he/she will detect a small
bump in the surface of a car immediately, even if it is a very small one!
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applications of Scientific Visualization in CAGD. This part consists of chapter 7 .

Exploring the interapplicability of CAGD and Scientific Visualization, this work
intends both to collect and systematize existing methods and to present new
approaches of applying one discipline to the other. Since it turned out that a
rather high number of interapplications already exists, this work has to incorpo-
rate two styles of presentation. The collection and systematization of existing
methods is done in a survey-like style where readers are referred to the original
papers for details. On the other hand, detailed descriptions are given for new
approaches which are suggested by the author, and some of which are previously
unpublished.
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Chapter 2

Analysis and Comparison of
Visualization and CAGD

In recent years both Scientific Visualization and CAGD have become rather
complex and consist of a variety of different aspects and facets. In order to
apply one discipline to the other, this complexity of the disciplines has to be
reduced to those parts where an exchange and an application of the ideas of
one discipline to the other gives hope for fruitful results. In other words: we
have to analyze both disciplines concerning to their applicability to the other
discipline. Doing this we formulate expectations about where the applications
may succeed. These expectations yield the guide for the particular investigations
of the applicability of the two discipline to each other.

In order to analyze CAGD and Scientific Visualization, and their correlations
to each other, we compare both disciplines from three points of view. We com-
pare the data which is considered in both disciplines (section 2.1), we compare
the historical development of both disciplines (section 2.2), and we compare the
pipelines of both the Visualization and CAGD processes (section 2.3).

2.1 Data Comparison of Visualization and
CAGD

Scientific Visualization is concerned with a lot of different kinds of data. Hence
there are a large number of approaches to describing and classifying this data.
In CAGD, an explicit classification of the present data does not have the high
importance it does in Scientific Visualization. So we use the following strategy
in that section: among the existing approaches for a data description and clas-
sification in Scientific Visualization, we choose an appropriate one and try to
describe the data which is present in CAGD in terms of this data classification.

To describe the data in Scientific Visualization, a number of schemes exist
which emphasize different aspects of the data. Most of them agree in the as-
sumption that the data consists of a number of values which are measured in a
certain space. Hence the data in Scientific Visualization is mainly characterized
by describing and classifying the values and the space where the values were
obtained.

13
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[17] considers the data as m-dimensional data on a k-dimensional grid using
the notation Lkm. This way k gives the dimensionality of the grid where the
data is measured while m counts the number of values which are measured
at a grid point. This approach to describing the data mainly focuses on an
exact description of the underlying grid but does not allow us to give a further
characterization of the present data types in a grid point.

In [210] a specification of scientific data is introduced which has been kept
as simple as possible while still describing the most important properties of the
data set. In fact, [210] only counts the dimensionality of the dimensions of the
observation space and the number of measured values in a point of this space.
This specification of scientific data was originally done to describe a particular
subclass of scientific data (called multiparameter data, see chapter 5), but its
ideas can generalized to describe general scientific data sets as well.

[70] introduces a data specification which focuses on an exhaustive and com-
plete description of the data. There too, the underlying space and the data at
the grid points of this space are specified, but a lot of additional and detailed
information about the data set is given as well. The result is a quite complete
and exact description of a data set. Unfortunately, the specification tends to
become too complex and cluttered.

The specification we want to use here for our purposes comes from [23] and
is a useful compromise between a compact and a complete description of the
data. [23] considers scientific data to be a map from a certain domain into a
certain range of values using the notation ER

D. Both the domain D and the
range of values R are then specified in detail. To describe D, [23] describes
the dimensionality and the regions of validity for a measured data point. Three
cases are distinguished: the data values are only valid at the observation points
(written ER

n ), the data values are valid in certain areas around the observation
point (written ER

[n]), or the domain is an enumerated set (written ER
{n}). In

these notations, n describes the dimensionality of the domain.
To describe the range of values R, [23] distinguishes between the data types

point (P ), scalar (S), vector (V ), and tensor (T ). It describes E2S 1V3
D a data

set where 2 scalar values and a 3D vector are measured at the points of the
domain.

The description of [23] gives a compact description of both domain and range
of values. The main disadvantage is the fact that the structure and the con-
nectivity of the domain are not considered. Usually the data lies on a certain
grid in the domain. To take this into consideration, we give additional verbal
descriptions of the grid characteristics to the data specification of [23] when
necessary.

Since its very beginning, Scientific Visualization has focused on a number of
different data classes where the research and application of these data classes
became quite independent of each other. The most important data classes in
Scientific Visualization are:

• volume data: ES
[3] – (treated in chapter 3 of this work);

• 2D flow data: EV2
[2] – (treated in chapter 4);

• 3D flow data: EV3
[3] – (treated in chapter 4);
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• multiparameter data: EmS
n with m ≥ 2 – (treated in chapter 5);

• 2D scattered data: ES
[2] with no connectivity of the sample points in the

domain – (treated in section 6.1.1);

• 3D scattered data: EP
[3] with no connectivity of the sample points in the

domain – (treated in section 6.1.2);

• 3D second order tensor data: ET3,3

[3] – (treated in section 6.2).

Although virtually all combinations of the specification of domain and range of
value are thinkable, the combinations collected above are the most relevant for
Scientific Visualization.

In order to compare the data of Scientific Visualization and CAGD, we now
try to insert the data which CAGD deals with into the data specification of
[23]. We obtain:

• 2D parametric curves: EV2
[1] . The points of a 1-dimensional domain are

mapped to 2D vectors which are interpreted as locus vectors.

• 3D parametric curves: EV3
[1] . The points of a 1-dimensional domain are

mapped to 3D locus vectors.

• Parametric surfaces: EV3
[2] . The points of a 2-dimensional domain are

mapped to 3D locus vectors.

• Control polygons of 2D curves: EP
2 and ES

{1}. E
P
2 describes a set of points

in 2D where a linear connectivity is additionally assumed. ES
{1} describes

the parameterization.

• Control polygons of 3D curves: EP
3 and E2S

{1}. E
P
3 describes a set of points

in 3D where a certain regular connectivity (linear, triangular, rectangular)
is additionally assumed. E2S

{1} describes the parameterization for a rect-
angular control point scheme. (If the scheme of control points has a liner
connectivity, the parameterization is described by ES

{1}. For a triangular
connectivity of the control points, no parameterization may be necessary.)

Comparing this classification of CAGD data with the classification of the most
relevant data in Scientific Visualization collected above, we can see that the
CAGD data is not explicitly treated as a data class in Scientific Visualization.
This leads us to

Expectation 1 In CAGD there are currently only a few applications of Scien-
tific Visualization because the data which is dealt with in CAGD is not explicitly
considered by Scientific Visualization.

Comparing the data specifications of CAGD and Scientific Visualization again,
we can see that the data description of curves and surfaces come close to the data
description of flow data (at least closer than to the other Scientific Visualization
data classes mentioned above). For example, 3D flow data EV3

[3] and surface data

EV3
[2] only differ in one dimension of the domain. So we can formulate
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Expectation 2 Due to similarities of the treated data, most of the applications
of CAGD in Scientific Visualization can be expected in the visualization of flow
data.

2.2 History of Visualization and CAGD

In this section we want to analyze the correlation of CAGD and Scientific Vi-
sualization from a historical point of view. By analyzing and comparing both
disciplines we derive more expectations on where to apply one discipline to the
other. Section 2.2.1 outlines the history of Scientific Visualization, section 2.2.2
does so for CAGD. Section 2.2.3 compares the histories to give conclusions and
expectations on the goal of this work.

2.2.1 History of Scientific Visualization

Visualization is not a new issue. Instead, centuries ago people tried to find
appropriate visual representations of certain information. Euclid’s ”Elements”
([53]) uses drawings to represent and illustrate properties in geometry. In the
Middle Ages astronomical maps appeared which used arrow plots1 to visual-
ize prevailing winds over the oceans. Height lines were used in topographical
maps in the 18th century. Early applications of isolines include representations
of magnetic declinations on the earth surface (Halley, 1701) or investigations
of temperature gradients on the northern hemisphere (von Humboldt, 1817).
Other developments of early visualization approaches were motivated by the
arts. Artists (especially painters) were always interested in finding appropriate
visual representations of certain ideas or information. Already in 1637 Descartes
formulated ([33]): ”Imagination or visualization, and in particular the use of di-
agrams, has a crucial part to play in scientific investigations”. This statement
holds until today.

With the development of computer technology in the last century, visual-
ization was confronted with new challenges and new possibilities which shifted
visualization into a completely new quality. On the one hand the presence
of computers caused a rapid growing of the data to be processed, making it
impossible to find visual representations ”by hand”. On the other hand, the de-
velopment of computers (and especially Computer Graphics) gave opportunities
to create visual representations of larger data sets automatically by the com-
puter. Hence early developments in visualization using computers were strongly
connected to the development of Computer Graphics.

The time of birth of Scientific Visualization as a discipline of its own can
be seen in 1987. In [35] the term ”Visualization in Scientific Computing”, now
generally shortened to ”Scientific Visualization”, appeared for the first time.
The developments of the following years were characterized by ”the creation of
an industry concerned with advanced scientific workstation hardware, software
and networking. Conferences, journals, trade shows, videotapes, books, CD
ROMs and networked communication to online digital libraries now abound,
and indicate a healthy, growing research, development and technology-transfer
environment” ([45]). In these times most of the algorithms and approaches were

1Arrow plots are still a frequently applied standard technique for flow visualization - see
[167].
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developed which became standard algorithms for the visualization of particular
data classes. Examples are the Marching Cubes algorithm ([130]) for volume
data in 1987, parallel coordinates ([100]) for multiparameter data, in 1987 as
well, and Line Integral Convolution ([26]) for flow data in 19932.

Since 1990, the annual IEEE Visualization Conference has been held, which
has managed to be the currently most important conference on Scientific Visual-
ization. In Europe, the annual Eurographics Workshop on Scientific Visualiza-
tion has been established since 1990. A variety of other journals, conferences,
and workshops exist as well. Since 1987, a number of surveys and introduc-
tions to Scientific Visualization have been published. Most of them focus on
the application of Visualization to particular data classes (for instance [210] for
multiparameter data, [107] for volume data, or [152] for flow data). The reasons
for this may be twofold:

• The different data classes in Scientific Visualization require quite a differ-
ent treatment. In fact, inside the discipline ”Scientific Visualization” the
developments for the different data classes are rather independent of each
other.

• A new discipline needs some years to gather the most important ap-
proaches, to find agreements in the community about important concepts
and classifications. The discipline needs to collect material to be system-
atized. Only once this is done, do surveys or textbooks about the whole
discipline have the chance to be widely accepted.

However, the first textbook about the whole discipline of Scientific Visualization
seems to be [167] which appeared 13 years after Scientific Visualization was born
as a discipline of its own. It gives a broad introduction into into all relevant
aspects and data classes of visualization.

In recent years Scientific Visualization focuses on the application on very
large data sets as well as on the steering and controlling of the visualization
process. To do so, quality criteria3 of a visualization technique have to be
introduced and the particular visualization techniques have to be evaluated
according to these criteria. The results are rule-based visualization systems
which not only enable the scientist to visualize large data sets but also help
him/her to produce appropriate and high quality visualizations.

Another trend of recent Scientific Visualization is the connection with other
research areas. Already [35] formulated: ”Visualization and Science go hand in
hand as partners”. For instance, the results of the visualization may be used to
directly control the parameters of the modeling and simulation process which
produced the data. This visualization scenario (already introduced under the
name ”interactive steering” in [85]) requires a level of computing power which is
still too high for today’s computing resources. Instead a focusing on particular
issues has to been done ([120], [200]).

One particular approach of connecting Scientific Visualization with another
discipline is treated in the work - the connection with CAGD.

2All these techniques are treated in detail later in this work.
3[167] introduces and explains the quality criteria expressivity, effectiveness, and suitability.
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2.2.2 History of CAGD

Similar to Scientific Visualization, the roots of CAGD go back to Euclid and
Descartes. Most of the bases of CAGD came from differential geometry and
approximation theory. In fact, curves and surfaces have been a well-researched
issue for a long time. With the appearance of computers, ”only” their applica-
bility to the design had to be discovered.

In the 50’s computers were used to drive numerical controlled milling ma-
chines in automotive and aircraft industry. Also in shipbuilding people got
interested in finding curve/surface schemes for the design. For this, a number
of schemes have been tried.

In 1959 and 1963, de Casteljau ([40], [41]) and Bézier developed indepen-
dently of each other the concept of Bézier curves and surfaces (which is strongly
related to the de Casteljau algorithm). This scheme might be the most impor-
tant development of the whole discipline. Nowadays the overwhelming majority
of applications in CAGD are based on these concepts. Another approach that
gained a rather high popularity were Coons patches ([34]) and Gordon surfaces.

B-spline curves and surfaces were introduced as design tools by de Boor
([39]) and Cox ([36]). Their extension to NURBS (non-uniform rational B-
splines) builds nowadays the quasi-standard for free-form curves and surfaces.
Apart of this, a variety of other spline curve schemes have been tried which were
mainly motivated by approximation-theoretical approaches, i.e. they were the
solutions of certain minimization problems.

The year 1974 can be considered to be the date of birth of CAGD as a
discipline of its own. In a conference at the University of Utah the concept
”CAGD” was used for the first time ([10]). In the following years the classic
concepts of CAGD were applied in a variety of areas, such as CAD, geoscience,
molecule design, pharmacy, architecture or simple word-processing. Of course,
car and aircraft design was still a main application area of CAGD.

The first textbooks which cover the most relevant issues of the whole disci-
pline appeared in 1988 ([55]) and 1989 ([95]), hence 14 and 15 years after CAGD
was considered as a discipline of its own. Both textbooks have been updated
and still set the standard in CAGD textbooks. Other textbooks which focus
on certain aspects of CAGD are [150], [54], [158], [56] and [1] . A variety of
conferences was held on CAGD. CAGD has its own journal at Elsevier.

In recent years CAGD has sought new application areas in science and indus-
try. In addition, research into a number of unsolved problems is being carried
out. Current research in CAGD includes the investigation of new curve/surface
classes with special properties as well as research on still unsolved theoretical
problems.

2.2.3 Historical comparison

Comparing the historical development of CAGD and Scientific Visualization,
we can find a number of similarities:

• Both disciplines have roots which go back centuries; their development
was mainly driven by the challenges of applying these roots to computer
technology.
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• The development of both disciplines is highly correlated to the develop-
ment of Computer Graphics. In fact, in their early stages both disciplines
were treated as parts of Computer Graphics before becoming disciplines
of their own.

• In both disciplines the development of the most important algorithms
was done quite soon after their ”time of birth”. On the other hand, in
both disciplines it took more than 10 years until the first comprehensive
textbooks appeared.

• Both disciplines are currently in a stage of systematization, search for new
applications and for connections with other disciplines.

These points mentioned above give some of the motivations for the research
described in this work.

However, the historical development of CAGD and Scientific Visualization also
has a significant difference:

• CAGD is the older discipline. It was founded more than 10 years be-
fore Scientific Visualization. When Visualization started its fast-growing
developments in the 80’s, most of the relevant concepts and methods of
CAGD were already present and could be included. Reversely, most of
the CAGD algorithms had to be developed without the tools of Scientific
Visualization in mind.

The reason for this difference might be the fact that Scientific Visualization in
general makes higher demands on the resources of a computer. In fact, many
of the classical CAGD algorithms work on rather slow computers while visu-
alization problems deal with large data sets and thus need high-end machines.
Hence the development of Visualization had to wait until computers reached a
suitable level of power.

From the historical difference between CAGD and Visualization we can obtain
the following

Expectation 3 Since CAGD was already well-researched when Scientific Vi-
sualization came up, we can expect a broad application of CAGD methods in
Visualization. Also new applications of CAGD in Visualization can be expected.

Considering the application of Visualization in CAGD, we get the following

Expectation 4 Since most of the relevant CAGD algorithms were developed in
a time when Scientific Visualization was not present yet, we expect only a small
number of applications of Scientific Visualization in CAGD. On the other hand,
this gives the chance that a redevelopment of classical CAGD problems with
Visualization in mind may give improvements of the classical CAGD algorithms.

2.3 Pipelines in Visualization and CAGD

In Computer Graphics it is a common approach to describe the processes in
terms of pipelines. This way a systematic treatment of the data and processes
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Figure 2.1: The visualization pipeline.

is possible (despite the fact that there are some applications which only run
outside the pipelining concepts). Hence pipelines can be considered as a tool
which gives a unified approach to most of the data and processes. Examples
of pipelines in classical Computer Graphics are the rendering pipeline and the
viewing pipeline ([59], [50], [51]).

Since both CAGD and Scientific Visualization have strong correlations to
Computer Graphics, a logical question is to ask for their pipelines. We do
so in the following sections 2.3.1 and 2.3.2. Section 2.3.3 summarizes which
conclusions for the task of this work can be taken from the treatment of the
pipelines.

2.3.1 The visualization pipeline

The visualization pipeline is a concept for a unified approach to Scientific Vi-
sualization which is widely accepted in the visualization community. Although
there are argues about details of it, there is an agreement about the general
structure of the visualization pipeline.

Figure 2.1 shows the visualization pipeline we want to use here. This pipeline
is similar to the commonly accepted pipelines in [78] and [167]. The first step
of the visualization pipeline, data acquisition, can also be considered as a pre-
step of the pipeline. There is a variety of possibilities where the data to be
visualized comes from. The data may be obtained by measurement or observa-
tion. Examples of this is data which was sent from satellites, or medical data
from CT (Computer Tomography) devices. On the other hand, the data can be
obtained by modeling and simulating certain processes. Examples of this are
climate simulation models. However, for the following steps in the visualization
pipeline it does not matter where the data to be visualized comes from. What
matters is the fact that the data sets are usually rather large. For smaller data
sets a visual analysis might not be necessary at all.
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The result of the data acquisition step is raw data which goes into the next step
of the visualization pipeline: the filtering step. It is the purpose of this step
to modify the data to prepare it for the next steps. The filtering step might
contain operations for data completion, data reduction, filtering, smoothing or
extracting metadata out of the raw data. Data completion may be applied for
incomplete data (i.e. if the data values are not available for all grid points). To
do so, simple interpolations (nearest neighbor, (bi/tri)linear) may be applied.
Since in this step only values for particular grid points have to be found, more
involved interpolation schemes which consider a certain smoothness of the data
are usually not necessary here.

Data reduction is necessary if the data set is either too large to be processed
by the visualization system, or if the data set contains strong redundancies.
This reduction may be done interactively by applying selection or projection
algorithms, or it may be done (semi)automatically by applying statistical ap-
proaches to detect redundancies and areas of high information.

Filtering and smoothing operations may be applied to the raw data in order
to remove the noise which comes from measuring the data. To do so, operations
such as Gaussian filters or Laplacian smoothing may be applied.

Metadata collects information about the current data set. It may contain
quantitative and qualitative statements about the data. This data may be used
to steer and control the following steps of the visualization pipeline.

After applying the filtering step to the data, the filtered data goes to the map-
ping step of the visualization pipeline. This step is actually the core of the
visualization pipeline. The filtered data has to be mapped to geometric primi-
tives and their drawing attributes. Since a variety of primitives is possible, care
has to be taken to choose them in such a way that the information in the filtered
data is represented in an appropriate way.

In the rendering step of the visualization pipeline, the geometric primitives
have to be mapped onto the 2D screen. This issue is not a specific problem in
visualization. Instead, standard approaches of Computer Graphics ([59]) can
be applied here. The resulting image / sequence of images can now be visually
analyzed by the scientist.

As we can see in figure 2.1, the visualization pipeline is an iterative process.
Analyzing the resulting images, the scientist may decide to go back in the visu-
alization pipeline and change parameters in one of the upper steps. This way
the new visualization may give better results to the scientist who can repeat
these iterative steps as often as necessary. Of course, iterations to higher levels
are possible at virtually every step of the visualization pipeline.

The visualization pipeline in figure 2.1 serves as a model for general scien-
tific data. For particular data classes, special pipelines have been introduced
(see chapters 3–5). These pipelines differ in certain details but have a globally
similar structure to the general pipeline of figure 2.1.

Considering the amount of data which is present in the visualization pipeline,
we can make the following statement: the further the visualization pipeline is
processed, the less data is present. This is justified by the fact that the original
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large amount of raw data has to be decreased as much as necessary to place
it onto the screen. Of course, this global statement is only a trend and has
exceptions. For instance a data completion in the filtering step may increase
the amount of data temporarily.

2.3.2 The CAGD pipeline

Since CAGD has some of its foundations in Computer Graphics, it is a rather
natural step to bring the processes which belong to CAGD into a pipeline.
Modern CAGD consists of a variety of problems, approaches, processes, and
open questions; the ordering of them in a pipeline seems to be useful but not
done yet. It is the purpose of this section to introduce a pipeline where we
insert the most relevant processes of CAGD in a systematic way. We are aware
that not all CAGD processes can be included in such a pipeline, but this is a
problem of other pipelines as well.

There is another reason to try to put the CAGD process into a pipeline: it
makes CAGD comparable to the visualization pipeline. Hence, from comparing
the CAGD pipeline and the visualization pipeline we might derive more expec-
tations on how to apply visualization to CAGD, and vice versa.

Figure 2.2 shows the CAGD pipeline we want to consider here. The pipeline
starts with some input data. This input data may be rather vague and not
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formalized. The designer may have an idea of the curve/surface to be designed
in mind, or he/she may have a rough hand drawing of the desired shape. The
input data may also be a set of measured points to be interpolated or approxi-
mated later.

In the next step of the CAGD pipeline, the designer has to specify the task of the
curve/surface to be designed. So he/she has to determine if the curve/surface
should interpolate or approximate the input data, or to fit certain points/curves
of the input data. It might also happen that – if no data points came as input
data – no particular task of the resulting curve/surface has to be specified.

In the next step the designer has to select the curve/surface type to be used.
He/she can choose between Bézier curves/surfaces, Bézier-spline curves/sur-
faces, B-spline curves/surfaces, Coons patches, or other curve and surface
schemes. It has also to be decided if, for a polynomial curve/surface, a ra-
tional or non-rational version is used. In the surface case, it has also to be
decided if triangular or tensorproduct surfaces are used. For special input data
and special tasks, surfaces of general topology (n-sided patches) or other surface
concepts like Gregory patches ([71]) may also be considered.

Obviously, the decision for an appropriate curve/surface type is crucial for
the success of the design process, but it is not trivial at all. A number of as-
pects influence this decision, like the input data, the specified task, and also the
question which curves/surfaces are available for the design system to be used.

Once the type of the curves/surface to be used is specified, further requests
of the curves/surfaces to be designed have to specified in the next step. For in-
stance for piecewise polynomial curves/surfaces, a certain global continuity may
be requested. Another request to the curve/surface may be the preservation of
convexity properties, or the minimization of a certain energy functional.

In the next step of the CAGD pipeline, global degrees of freedom have to be
determined. The kind of these degrees of freedom depend on the decisions
made above. For Bézier- and B-spline curves, the degree of freedom to be de-
termined are parameterization and the end conditions of the curve. For tensor
product Bézier- and B-spline surfaces, the twist vectors additionally have to be
fixed.

The next step of the CAGD pipeline is the core of the design process. After
all the decisions above have been made, the designer can interactively move the
control points until an appropriate curve/surface appears on screen. Depending
on the chosen curve/surface scheme, the control points to be moved might be
Bézier points (for Bézier- or Bézier-spline curves/surfaces), de Boor points (for
B-spline curves/surfaces), or Farin points (for rational curves/surfaces). The
result of this step is a first version of the curve/surface which has to be evalu-
ated in the next step of the visualization pipeline.

In the curve/surface interrogation part of the CAGD pipeline the curve/sur-
face is checked for any undesired behavior which is not visible at first glance.
Typical methods for curve/surface interrogation are curvature plots, isophotes,
or reflection lines. The results of curve/surface interrogation methods are the
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parts of the curve/surface where a redesign is necessary.

In the last step of the CAGD pipeline, a curve/surface fairing is done. Au-
tomatic methods are applied to move the control points by minimal amounts to
increase the fairness of the surface while keeping the general shape. Curve/ sur-
face fairing methods may be based on curve/surface interrogation algorithms,
or they may focus on obtaining certain higher continuities of the curve/surface.

As we can see in figure 2.2, the CAGD pipeline, too, describes an iterative
process. After every step of the pipeline, the designer may go back to earlier
steps of the pipeline to apply a redesign there. In figure 2.2, this is illustrated
by the upward arrows on the right-hand side of the boxes.

In the CAGD pipeline not all parts have to be processed. For instance,
it is possible to omit the part ”select curve/surface type” and go directly to
the part ”specify further requests of curve/surface”. If rather strong requests
are formulated here (for instance to minimize certain integrals), the type of
the curve/surface can be derived directly from this. For example, many spline
functions have been developed to minimize certain functionals.

Another example of omitting parts of the CAGD pipeline are variational
design approaches in curve and surface modeling ([80], [20], [72], [24]). There the
curve/surface type and rather strong further requests (minimizing functionals)
are defined in such a way that the curve/surface is already uniquely defined. In
this case, no further degrees of freedom have to be determined and no control
points have to be moved.

The fact that parts of the CAGD pipeline can be left out is illustrated by
the downward arrows on the left-hand side of the boxes in figure 2.2.

Considering the amount of data which has to be dealt with in the CAGD
pipeline, we can make the following statement: the amount of data increases
from the top to the bottom of the pipeline. This is not surprising because the
design process starts with almost nothing and ends in curves/surfaces which are
rather complex geometric objects. As in the case of the visualization pipeline,
this statement is a global one. Local variation are possible.

2.3.3 Conclusions from the pipelines

In this section we evaluate the pipelines for visualization and CAGD in such a
way that we get more detailed information about the question where to apply
CAGD methods for visualization, and vice versa. Before doing so, we have to
mention that the two pipelines were introduced at different levels of abstraction.
The visualization pipeline was introduced in a quite rough level of detail. In
fact, more detailed visualization pipelines have been introduced especially for
particular data classes. The CAGD pipeline here was newly suggested in this
work and thus needed a more detailed description. Despite of the different levels
of abstraction of the two pipelines, we do a comparison of them in the following.

As shown in figure 2.1, visualization is especially useful for rather large in-
put data sets. Since in the CAGD pipeline the amount of data is growing when
approaching the lower parts of the pipeline, we can formulate the following
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Expectation 5 Most applications of Scientific Visualization in CAGD can be
expected in the lower parts of the CAGD pipeline.

Indeed, as we will see later in chapter 7, the main applications of Scientific
Visualization are in the part ”move control points” and ”curve/surface interro-
gation” of the CAGD pipeline.

Asking the reverse question, where CAGD methods can be applied in the
visualization pipeline, a similar statement to expectation 5 is not possible. This
is due to the fact that we defined the application of CAGD in a rather general
way: we considered both a simple usage of curves/surfaces and for instance
the application of interpolation methods as CAGD applications. Hence we can
formulate the following

Expectation 6 Applications of CAGD methods can be found in almost all parts
of the visualization pipeline.

Later we will apply CAGD methods for data acquisition, for filtering, and for
the mapping step. Only the rendering step was left untouched because there
standard methods of Computer Graphics apply, and no specific visualization
background is necessary.

2.4 Strategies for Proceeding Further

After analyzing CAGD and Scientific Visualization concerning data, history and
pipelines, we obtain the following strategies for proceeding further:

Concerning expectations 3 and 4, the treatment of applications of CAGD in
Scientific Visualization is larger than the treatment of applications of Scientific
Visualization Visualization in CAGD. Hence the application of CAGD in Sci-
entific Visualization is treated in the four chapters 3–6 while for the treatment
of the application of Scientific Visualization in CAGD only the one chapter 7 is
reserved.

Following the trend in Scientific Visualization to focus on particular data
classes, we split the treatment of applying CAGD to Scientific Visualization to
the different data classes in Scientific Visualization. Hence the application of
CAGD for volume data is treated in chapter 3, for flow data in chapter 4, for
multiparameter data in chapter 5, and for the remaining data classes in chapter
6.

Concerning expectation 2, chapter 4 can be expected to be the largest.
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Chapter 3

CAGD for Volume
Visualization

Volume data is one of the most important data classes in scientific visualization.
The main applications of volume visualization are in medicine, meteorology
and other areas of natural science. Volume data may come from computer
tomography (CT) devices, or from raster electron microscopes.

The volume data we consider here consists of single scalar values on a regular
3D grid. The grid is given by two points xmin = (xmin, ymin, zmin)T , xmax =
(xmax, ymax, zmax)T and the grid resolutions nx, ny, nz in x−, y− and z−
direction. Then the grid points can be computed as

xi,j,k =


nx−i
nx

xmin + i
nx
xmax

ny−j
ny

ymin + j
ny
ymax

nz−k
nz

zmin + k
nz
zmax

 for
i = 0, ..., nx
j = 0, ..., ny
k = 0, ..., nz

. (3.1)

Research has also been done on volume data on curvilinear or irregular grids
[176]. Since most of volume data comes on regular grids we restrict ourselves
to the treatment of this type of grid. Here we also assume that the grid is
normalized, i.e. xmin = (0, 0, 0)T , xmax = (nx, ny, nz)T . This can always be
achieved by applying an appropriate translation and scaling to the original grid.
For the normalized grid we obtain

xi,j,k =

 i
j
k

 for
i = 0, ..., nx
j = 0, ..., ny
k = 0, ..., nz

. (3.2)

Given a regular normalized grid xi,j,k, the volume data is simply described by a
3D array ci,j,k of scalar values. It means that at the grid point xi,j,k the scalar
value ci,j,k was measured or computed. Concerning the data classification of
[23], volume data can be described as ES

[3].
Before visualizing a volume data set given by xi,j,k and ci,j,k, it has to be

converted into a scalar field

s : [xmin, xmax]× [ymin, ymax]× [zmin, zmax] → IR

27
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by applying an interpolation between the grid points. This means that s has to
be chosen in such a way that

s(xi,j,k) = ci,j,k for
i = 0, ..., nx
j = 0, ..., ny
k = 0, ..., nz

.

The choice of an appropriate interpolation influences the behavior of the scalar
field and thus the whole visualization process. Various ways of interpolating
volume data are discussed in sections 3.3 – 3.8.

A variety of techniques have been developed to visualize volume data or the
scalar fields derived from them. It is not the purpose of this work to survey
existing techniques of volume visualization. Instead, here we try to find out for
which classes of techniques in volume visualization approaches of CAGD may
be applied. Surveys on volume visualization can be found in [107] and [167].

3.1 Techniques for Volume Visualization

The general approaches to visualize volume data can be classified into three
groups:

• decomposition methods

• direct volume rendering

• isosurface extraction.

Decomposition methods visualize certain subsets of the scalar field. These sub-
sets may be slices, particular points of the scalar field, or small geometric objects.
A representative of the last-named subset is the vanishing cubes method ([143],
[83]). Also in [143] a slicing approach is introduced which represents the data of
certain slices as height surfaces. Given a point
xp = (xp, yp, zp)T in the volume, three bivariate scalar fields sx, sy, sz can be
defined out of s by

sx(y, z) = s(xp, y, z)
sy(x, z) = s(x, yp, z)
sz(x, y) = s(x, y, zp).

These scalar fields can be visualized using color coding or as height fields over
their domain planes. Figure 3.1 gives an illustration of this.

Decomposition methods focus on simple geometric shapes such as planes or
tiny cubes. More complicated shapes such as curves or surfaces are not consid-
ered in this group of visualization techniques. Also the choice of a particular
interpolation between the grid points is of less importance here because decom-
position methods usually use discrete shapes. This is the reason that further
CAGD applications of decomposition methods are not known (except for the
example in figure 3.1 ).

To visualize the volume data set using direct volume rendering, either ray
casting or cell projection methods are used. In the ray casting approach, for
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Figure 3.1: 2D slices for a point of interest in the volume; its three 2D scalar fields
are visualized as height fields; the point of interest can be moved interactively (from
[143]).

each pixel a ray is sent through the volume. Along the ray the contributions of
the points in the scalar field are sampled. This means that the value for a pixel
is a certain average of the scalar values along the ray. The ray casting approach
can also be used to visualize isosurfaces. In this case an intersection of the
ray with a particular isosurface has to be computed. See [147] for a discussion
of this. This pixelwise representation of isosurfaces may be handled in real
time on high-end graphics workstations. However, this representation is view
dependent; the change of the view point requires a complete recomputation
of the representation. An alternative is a surface oriented representation of
the isosurface either as a triangular mesh or as parametric surfaces. These
approaches, which are candidates for applying CAGD methods, are discussed
in the sections 3.2 – 3.8.

Using cell projection for direct volume rendering, each cell is semitranspar-
ently projected to the screen. This way the final color of a pixel consists of
an average of a number of projected cells. See [209] for a survey of direct vol-
ume rendering methods. Direct volume rendering is of particular usefulness
when analyzing the whole scalar field. Particular surfaces are less emphasized
here. (Even in the case of ray casting an isosurface, the result is a pixelwise
description.) Also the question of what kind of interpolation to use plays a less
important role because the scalar values are sampled at discrete points. Thus
applications of CAGD methods to improve direct volume visualization are not
known.

The majority of applications of CAGD methods can be expected for the
extraction of isosurfaces for volume data. Here the graphical objects to be
analyzed are representations of isosurfaces for a given threshold. Thus the
remaining part of this chapter focuses on the question of how to apply CAGD
methods to deal with isosurfaces of volume data.

3.2 Pipeline for Isosurface Extraction of Volume
Data

Figure 3.2 shows the pipeline for the process of isosurface extraction for volume
data. We recognize the three steps (filtering, mapping, rendering) of the usual
visualization pipeline (see section 2.3.1).
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Figure 3.2: Pipeline for isosurface extraction of volume data.

As the first step of the mapping process, an appropriate interpolation be-
tween the grid points has to be chosen. This process transforms the volume data
into a piecewise interpolated scalar field. Note that this step is done before a
particular threshold is chosen. 1

The scalar field and a picked threshold give an implicit description of the
isosurface (contour). It consists of all points in the scalar field which attain the
chosen scalar value. It is the task of the next step of the pipeline to convert this
implicit description of the surface into an explicit representation. This explicit
representation is finally sent to the rendering process.

In [76] and [65] extensions of isosurface extractions algorithms are treated
by considering interval sets. Interval sets are given by the definition of two
thresholds and consist of all points in the scalar field which have a scalar value
between the two thresholds. In this work we restrict ourselves to isosurfaces
because surfaces are classical objects treated in CAGD.

The choice of a particular interpolation of the volume data has a great influ-
ence on the rest of the mapping process for isosurface extraction. The following
kinds of interpolation between the grid points are possible:

1If the volume data set is incomplete (i.e. the scalar values at certain grid points are
unknown) a data completion has to be performed as part of the filtering step (see [167]).
In this case the unknown values are obtained by interpolation of the values at adjacent grid
points. We want to distinguish between this kind of interpolation in the filtering process and
the interpolation in the mapping process. The interpolation in the filtering process computes
additional scalar values at a finite number of grid points while the interpolation in the mapping
step applies to the whole volume.
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Figure 3.3: a) voxel Vi,j,k; b) cell Ci,j,k.

• piecewise constant interpolation

• piecewise linear interpolation

• piecewise trilinear interpolation

• piecewise higher order polynomial interpolation

• piecewise trilinear interpolation with local reparametrization

• piecewise trilinear interpolation over larger areas

We want to study each of these kinds of interpolation to explore where CAGD
methods can be applied. To do this we reserve one of the sections 3.3 – 3.8
for each kind of interpolation. Sections 3.3 – 3.8 are organized in the following
way: first we study the nature of the isosurface for the particular interpolation,
then ways of their explicit graphical representation are discussed. Here it is our
particular interest to study if an effective description as a parametric surface is
possible.

3.3 Piecewise Constant Interpolation

For doing a piecewise constant interpolation of the volume data, a Dirichlet
tessellation of the grid points (see [55]) is applied. All points inside the Dirichlet
cell of a certain grid point xi,j,k get the scalar value ci,j,k. For a regular grid, the
Dirichlet cells around the grid point xi,j,k form a box with its center in xi,j,k.
This box is called a voxel Vi,j,k. Figure 3.3a gives an illustration. 2

An ”isosurface” of a piecewise constant scalar field consists of a number of
voxels - all voxels with its scalar value within a certain tolerance to the picked
threshold. To find a graphical representation of this set of voxels, they may
be sent directly to the renderer, or they may be transferred to a triangular
representation. Representatives of the last-named strategy are the cuberilles
introduced in [89]. Figure 3.4 shows an example of a conversion of voxel data
into a triangular mesh.

2Sometimes a voxel is not defined as shown in figure 3.3a but as shown in figure 3.3b. In
this case all points inside the box have the constant scalar value ci,j,k of one particular vertex
xi,j,k. The properties and results of both voxel definitions coincide.
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a) b)

Figure 3.4: Transforming voxel data (a) to a triangular mesh (b) (from [132]).

� �

� �

Figure 3.5: Two ways of subdividing a cell into 5 tetrahedra.

If the voxels are large, both representations (voxel and triangular) look rather
rough. In this case better interpolations of the volume data should be applied
(see sections 3.4 – 3.8). For smaller voxels both representations may give opti-
cally good results. In this case it depends on the specialization of the graphical
workstation if voxel data or triangular data should be chosen for representation.

Due to the discrete nature of a piecewise constant interpolation, approaches
to apply parametric surfaces for piecewise constant volume data are not known.

3.4 Piecewise Linear Interpolation

To obtain a piecewise linear interpolation of the volume data we consider cells
in the volume data. The cell Ci,j,k is a box defined by the eight grid points
xi,j,k, xi+1,j,k, xi,j+1,k, xi+1,j+1,k, xi,j,k+1, xi+1,j,k+1, xi,j+1,k+1, xi+1,j+1,k+1

obtained from (3.1):

Ci,j,k = [xi, xi+1] × [yj , yj+1] × [zk, zk+1]. (3.3)

Figure 3.3b gives an illustration. To apply a piecewise linear interpolation, each
cell has to be subdivided into a number of tetrahedra. Several approaches exist
for doing this. Figure 3.5 shows two different ways to subdivide a cell into 5
tetrahedra. Subdivisions into 6 or 24 tetrahedra are applied as well (see [142]).

For computing the scalar value of a point x inside a certain tetrahedron we
apply a linear interpolation of the scalar values in the vertices of the tetrahe-
dron. This way the scalar value at x is a weighted sum of the scalar values



3.5. PIECEWISE TRILINEAR INTERPOLATION 33

Figure 3.6: Two cases of the marching tetrahedra algorithm.

at the vertices where the weights are obtained by computing the barycentric
coordinates of x relative to the tetrahedron vertices.

An isosurface of a piecewise linear interpolated scalar field inside a tetrahe-
dron is always plane. Thus it is a natural approach to represent the contour
of a piecewise linear scalar field as a triangular mesh. One algorithm which
computes the isosurface for all tetrahedra of a scalar field is the marching tetra-
hedra algorithm ([37]). For each tetrahedron, the scalar values at the vertices
are checked to see if they are larger or smaller than the picked threshold. If all
four values are smaller (or larger) than the threshold, the isosurface does not
pass the tetrahedron. In all other cases the exact isosurface can be computed by
obtaining the intersections of the isosurface and the edges of the tetrahedron.
To do this, linear interpolations of the vertices along the edges are applied. Here
two cases are possible, which are illustrated in figure 3.6. An improvement of
the marching tetrahedra algorithm is introduced in [174]. There, data structures
are built to prevent tetrahedra where the isosurface does not pass through from
being processed by the algorithm.

The marching tetrahedra algorithm computes the isosurface of a piecewise
linear scalar field exactly. It was originally developed to overcome the ambigu-
ities of the Marching Cubes algorithm (described in section 3.5.2.2). In fact,
once the grid is tetrahedrized, only the simple cases shown in figure 3.6 appear.
The problem is the choice of a particular tetrahedrization of the cells. This de-
cision has to be done independently of the particular data but has an influence
on the shape of the isosurface. This means that the ambiguities from which the
Marching Cubes algorithm suffers exist for the marching tetrahedra algorithm
as well. They are only shifted into the selection of an appropriate tetrahedriza-
tion. This is one reason why in most cases a trilinear interpolation is preferred
to a piecewise linear interpolation. Another reason is that a tetrahedrization of
the cells usually produces a higher number of triangles.

Since an isosurface of a piecewise linear scalar field is piecewise plane, the
piecewise triangular representation is optimal; no further CAGD applications
for this kind of interpolation are known.

3.5 Piecewise Trilinear Interpolation

As in the case of piecewise linear interpolation, the volume is subdivided into
cells by applying (3.3). In each cell a local trilinear interpolation of the scalar
values in the vertices is carried out to get the scalar values inside the cell.

To study properties of the piecewise trilinear interpolation, we consider the
cell C000 = [0, 1]3 of a regular normalized grid given by (3.2). Then the scalar
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Figure 3.7: Translating the coordinate system of the cell C000.

field in C000 can be written as

s(x, y, z) = (1− x)(1− y)(1− z) c000 + (1− x)(1− y) z c001
+ (1− x) y (1− z) c010 + (1− x) y z c011
+ x (1− y)(1− z) c100 + x (1− y) z c101
+ x y (1− z) c110 + x y z c111 (3.4)

where cijk (i, j, k ∈ {0, 1}) are the scalar values in the vertices (i, j, k)T of C000.
A contour (isosurface) is given by specifying a threshold r; it consists of all
points (x, y, z)T with

s(x, y, z) = r. (3.5)

The trilinear interpolation is widely used and has a variety of applications.
Section 3.5.1 gives a collection of properties of trilinear contours. These proper-
ties are used to survey and improve algorithms for extracting trilinear contours
in section 3.5.2.

3.5.1 Properties of trilinear contours

The contours of a trilinear scalar field can be studied in two general ways.

1. We analyze the contour of a particular threshold defined by (3.4) and
(3.5). This analysis can be done for a contour either in a cell or in the
domain IR3.

2. We analyze all contours passing through the cell Ci,j,k to get global state-
ments about the cell itself.

The following sections give characteristics of both methods of analysis.

3.5.1.1 Connectivity of a contour

Here we consider the contour of (3.4) and (3.5) not only in the cell Ci,j,k but in
the domain IR3. In general, the contour consists of a number of surface parts
which are not necessarily connected to each other. It is the purpose of this
section to study how many unconnected surface parts the contour of (3.4) and
(3.5) consists of. This gives a classification of all contours of (3.4) and (3.5). To
do this, we apply a translation of the coordinate system as shown in Figure 3.7.
This translation is defined by the scalar values ci,j,k (i, j, k ∈ {0, 1}) at the grid
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points (i, j, k)T . Choosing

p = c001 + c010 + c100 + c111 − c000 − c011 − c101 − c110

p0 =

 xp0

yp0

zp0

 =
1
p
·
 c000 + c011 − c001 − c010
c000 + c101 − c001 − c100
c000 + c110 − c010 − c100

 , (3.6)

equation (3.4) can be written in the form

s(x, y, z) = a x+ b y + c z + d x y z + e (3.7)

with

a =
(c111 − c011) · (c100 − c000)− (c110 − c010) · (c101 − c001)

p

b =
(c111 − c101) · (c010 − c000)− (c110 − c100) · (c011 − c001)

p

c =
(c111 − c110) · (c001 − c000)− (c101 − c100) · (c011 − c010)

p

d = p,

and e is a certain constant. Thus, we only have to analyze the contours of

s(x, y, z) = a x+ b y + c z + d x y z = r = const (3.8)

in IR3. A classification of (3.8) can be achieved by rewriting it as a height field

z(x, y) =
r − a x− b y
c+ d x y

(3.9)

and comparing the zeros of the numerator and denominator function. The zeros
of the numerator function form a line in the x− y−plane, whereas the zeros of
the denominator function give a hyperbola. Studying their interplay gives the
following classification:

• case 1: a b c d < 0:

– case 1.1: r2 > − 4 a b c
d : (3.9) gives 3 unconnected surface parts 3

– case 1.2: r2 ≤ − 4 a b c
d : (3.9) gives 2 unconnected surface parts 4

• case 2: a b c d > 0: (3.9) consists of 1 connected part

• case 3: a b c d = 0, d �= 0:

– case 3.1: r �= 0 :
3In this case the line r − a x − b y = 0 does not intersect the hyperbola c+ d x y = 0. This

denominator hyperbola of (3.9) divides the x − y− plane into three parts which correspond
to the three unconnected surface parts of (3.9).

4In this case the line r − a x − b y = 0 intersects one branch of the hyperbola c + d x y = 0
twice. For these intersection points (x1, y1) and (x2, y2) we obtain a x1+b y1+c z+d x1 y1 z = r
and a x2+b y2+c z+d x2 y2 z = r for any z. This means that the lines (x1, y1, z) and (x2, y2, z)
for z ∈ IR are on the contour defined by (3.8). Thus the height surface of (3.9) consists of two
parts.
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1.1 1.2 2.

3.1.1 3.1.2 3.1.3

3.2.1 3.2.2 3.2.3

Figure 3.8: Classification of the contours of (3.8) in IR3.

∗ case 3.1.1: a b �= 0, c = 0: (3.9) gives 2 unconnected surface
parts

∗ case 3.1.2: a �= 0, b = c = 0: (3.9) gives 3 unconnected surface
parts

∗ case 3.1.3: a = b = c = 0: (3.9) gives 4 unconnected surface
parts

– case 3.2: r = 0 :

∗ case 3.2.1: a b �= 0, c = 0: (3.9) gives 3 unconnected surface
parts

∗ case 3.2.2: a �= 0, b = c = 0: (3.9) gives 3 parts intersecting each
other

∗ case 3.2.3: a = b = c = 0: (3.9) gives 3 perpendicular planes.

Figure 3.8 gives illustrations of these cases.
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Figure 3.9: a) projections px(a), py(a), pz(a) of a point a onto the contour in x−, y−
and z−direction; b) projection pz(t) of the line segment (1−t)a+tb onto the contour
is a rational cubic curve; c) configuration for computing the control points of pz(t).

3.5.1.2 Bézier representation of the contour

As already mentioned in [84], the contour defined by (3.4) and (3.5) is a rational
cubic surface 5. In this section we want to find a representation of it as a
triangular rational cubic Bézier surface.

Given a point a = (xa, ya, za)T , we compute the intersection of a ray starting
from a and the contour defined by (3.4) and (3.5). In general this computation
ends in the solution of a cubic equation. For the special case that the ray is
parallel to one of the coordinate axes, the problem simplifies to the solution of a
linear equation: let px(a) be the intersection of the ray a+λ · (1, 0, 0)T with the
contour defined by (3.4) and (3.5). Furthermore, let py(a) be the intersection
of the ray a+λ · (0, 1, 0)T with the contour, and let pz(a) be the intersection of
the ray a+ λ · (0, 0, 1)T with the contour. Then we obtain from (3.4) and (3.5):

px(a) =


r − c000 (1− ya)(1− za)− c001 (1− ya) za

− c010 ya (1− za)− c011 ya za
(c100 − c000)(1− ya)(1− za) + (c101 − c001)(1− ya) za

+(c110 − c010) ya (1− za) + (c111 − c011) ya za
, ya , za


T

py(a) =

xa ,

r − c000 (1− xa)(1− za)− c100 xa (1− za)
− c001 (1− xa) za − c101 xa za

(c010 − c000)(1− xa)(1− za) + (c110 − c100)xa (1− za)
+ (c011 − c001)(1− xa) za + (c111 − c101)xa za

, za


T

pz(a) =

xa , ya ,

r − c000 (1− xa)(1− ya)− c010 (1− xa) ya
− c100 xa (1− ya)− c110 xa ya

(c001 − c000)(1− xa)(1− ya) + (c011 − c010)(1− xa) ya
+(c101 − c100)xa (1− ya) + (c111 − c110)xa ya


T

.

We call px(a), py(a), pz(a) the projections of a onto the contour in x−, y− and
z−direction. This means that we can construct three points on the contour for
a given point a in a simple way. Figure 3.9a gives an illustration.

5After mentioning that the contour of (3.4) and (3.5) is a rational cubic, [84] approximates
it by a number of rational quadratic surfaces. This was motivated by the fact that the
intersections of the contours with the faces of a cell are hyperbolas and therefore exactly
describable by rational quadratic curves.



38 CHAPTER 3. CAGD FOR VOLUME VISUALIZATION

Given a point a, there is one and only one contour defined by (3.4) through
it. We can compute its (unnormalized) normal vector n(a) in a by

n(a) = grad(s(xa, ya, za)) = (sx(xa, ya, za), sy(xa, ya, za), sz(xa, ya, za))T

(3.10)
where sx, sy, sz are the partial derivatives of s defined in (3.4).

Now we construct curves on the contour by projecting line segments onto it.
Given is the line segment x(t) = (1− t)a+ tb. Then the curves

px(t) = px(x(t)) , py(t) = py(x(t)) , pz(t) = pz(x(t)) (3.11)

are obtained by projecting each point of x(t) onto the contour in x−, y−, or
z−direction . Figure 3.9b gives an illustration for pz(t).

It is a straightforward exercise in algebra to show that the curves
px(t), py(t), pz(t) on the contour defined by (3.4) and (3.5) are rational cubics.
The curve pz(t) can be expressed as

pz(t) =
∑3

i=0 wi biB
3
i (t)∑3

i=0 wiB
3
i (t)

(3.12)

where B3
i (t) are the Bernstein polynomials (see [55]) and

w0 = zn(pz(a)) , w1 =
4
3
zn(pz( a+b

2 )) −
1
3
zn(pz(b))

w3 = zn(pz(b)) , w2 =
4
3
zn(pz( a+b

2 )) −
1
3
zn(pz(a))

b0 = pz(a) , b3 = pz(b) (3.13)

b1 =

 (1− w0
3w1

)xb0 +
w0
3w1

xb3

(1− w0
3w1

) yb0 +
w0
3w1

yb3

(1 + w3
3w1

) zpz( a+b
2 ) − w3

3w1
zb3



b2 =

 w3
3w2

xb0 + (1− w3
3w2

)xb3
w3
3w2

yb0 + (1− w3
3w2

) yb3

(1 + w0
3w2

) zpz( a+b
2 ) − w0

3w2
zb0

 .

Figure 3.9c gives an illustration of the components used in (3.13). The curves
px(t), py(t) can be computed as rational cubics in a similar way.

Now we extend the concept of curves on the contour to parametric surfaces
on the contour defined by (3.4) and (3.5). Given is a triangle

x(u, v, w) = ua+ v b+ w c (3.14)

in barycentric coordinates of the vertices a,b, c, i.e. u + v + w = 1. Then
px(x(u, v, w)), py(x(u, v, w)), pz(x(u, v, w)) are the projections of x onto the
contour defined by (3.4) and (3.5). Figure 3.10a gives an illustration for
pz(x(u, v, w)).

The surfaces px(x(u, v, w)), py(x(u, v, w)), pz(x(u, v, w)) are rational cu-
bics. For example, pz(x(u, v, w)) can be described as a rational Bézier triangle
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Figure 3.10: a) pz(x(u, v, w)) is obtained by projecting every point of x(u, v, w) =
ua + v b + w c into z−direction onto the contour defined by (3.4) and (3.5); b)
pz(x(u, v, w)) is a rational cubic surface; c) two adjacent triangles projected in different
directions: the resulting contour patches may have gaps.

(see [55])

pz(x(u, v, w)) =

∑
i+j+k=3 wijk bijk B

3
ijk(u, v, w)∑

i+j+k=3 wijk B
3
ijk(u, v, w)

(3.15)

where the Bézier points and their weights on the boundary curves can be com-
puted as in (3.13) above, and

w111 =
w201 + w102 + w021 + w012 + w120 + w210

4
− w300 + w030 + w003

6

xb111 =
(
w012 + w021

4w111
− w030 + w003

12w111

)
xa

+
(
w102 + w201

4w111
− w300 + w003

12w111

)
xb

+
(
w120 + w210

4w111
− w300 + w030

12w111

)
xc

yb111 =
(
w012 + w021

4w111
− w030 + w003

12w111

)
ya

+
(
w102 + w201

4w111
− w300 + w003

12w111

)
yb

+
(
w120 + w210

4w111
− w300 + w030

12w111

)
yc

zb111 =
w210 zb210 + w201 zb201 + w120 zb120

4w111

+
w021 zb021 + w012 zb012 + w102 zb102

4w111

− w300 zpz(a) + w030 zpz(b) + w003 zpz(c)

12w111
.

Figure 3.10b gives an illustration. The surfaces px(x), py(x) can be described
in a similar way.
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In this section we have shown that a contour of (3.4) and (3.5) can be
described as rational cubic Bézier triangles. To make this description usable to
Computer Graphics, more problems have to be solved:

• we have to choose the triangles (a,b, c) to be projected

• we have to choose the projection direction for each triangle

• we have to eliminate gaps between the patches which happen by projecting
adjacent triangles in different directions (see figure 3.10c for an example)

• we have to make sure that the weights of the rational cubic surfaces do
not have alternating signs

These problems will be discussed in section 3.5.2.3 .

3.5.1.3 Special points on the contour - the inner ring

In this section we want to study special points on the contour defined by (3.4)
and (3.5). These points will later be useful to find suitable triangulations of the
contour. The points we consider are all points on the contour where the surface
normal points either in x−, y− or z−direction.

Given a contour defined by (3.4) and (3.5), there are at most two points
x0, x1 on the contour with a normal in x-direction. Similarly, there are at most
two points y0, y1 on the contour with a normal in y-direction, and there are at
most two points z0, z1 on the contour with a normal in z-direction. These six
points can be computed as

x0 =

 xm − xp
√
δ

ym + yp
√
δ

zm + zp
√
δ

 , x1 =

 xm + xp
√
δ

ym − yp
√
δ

zm − zp
√
δ


y0 =

 xm + xp
√
δ

ym − yp
√
δ

zm + zp
√
δ

 , y1 =

 xm − xp
√
δ

ym + yp
√
δ

zm − zp
√
δ

 (3.16)

z0 =

 xm + xp
√
δ

ym + yp
√
δ

zm − zp
√
δ

 , z1 =

 xm − xp
√
δ

ym − yp
√
δ

zm + zp
√
δ


with

xm =

(c111 − c011)(r − c000)− (c110 − c010)(r − c001)
+ (c100 − c000)(r − c011)− (c101 − c001)(r − c010)

2 ((c111 − c011)(c100 − c000)− (c110 − c010)(c101 − c001))

ym =

(c111 − c101)(r − c000)− (c110 − c100)(r − c001)
+ (c010 − c000)(r − c101)− (c011 − c001)(r − c100)

2 ((c111 − c101)(c010 − c000)− (c110 − c100)(c011 − c001))

zm =

(c111 − c110)(r − c000)− (c101 − c100)(r − c010)
+ (c001 − c000)(r − c110)− (c011 − c010)(r − c100)

2 ((c111 − c110)(c001 − c000)− (c101 − c100)(c011 − c010))
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z1 y0

yz
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Figure 3.11: The points (x0,y1, z0,x1,y0, z1) on the contour which have normals
either in x−, y−, or z−direction form a closed polygon on the edges of a box - the
inner ring; this inner ring lies completely on the contour.

xp =
1

2 ((c111 − c011)(c100 − c000)− (c110 − c010)(c101 − c001))

yp =
1

2 ((c111 − c101)(c010 − c000)− (c110 − c100)(c011 − c001))

zp =
1

2 ((c111 − c110)(c001 − c000)− (c101 − c100)(c011 − c010))

δ = α r2 + β r + γ
(3.17)

α = (−c111 + c110 + c101 − c100 − c001 + c000 + c011 − c010)2

β = 2 (c001 c110 + c011 c100 + c101 c010 + c111 c000)
·(c111 + c000 + c101 + c110 + c100 + c010 + c011 + c001)

− 4 ( c000 c111 (c111 + c000) + c001 c110 (c110 + c001)
+ c010 c101 (c101 + c010) + c011 c100 (c100 + c011) )

− 4 (c000 c110 c101 + c000 c011 c110 + c000 c011 c101 + c110 c101 c011)
− 4 (c111 c001 c010 + c111 c100 c001 + c010 c100 c111 + c001 c010 c100)

γ = − (c001 c110 + c011 c100 + c101 c010 + c111 c000)2

+2 (c2111 c
2
000 + c

2
101 c

2
010 + c

2
001 c

2
110 + c

2
011 c

2
100)

+ 4 (c000 c110 c101 c011 + c010 c100 c111 c001).

Depending on the value δ, all these six points are either real points on the
contour, or all have imaginary values. If they are real (i.e. if δ > 0), then the
closed polygon (x0,y1, z0,x1,y0, z1) lies on the edges of a box. Note that this
polygon lies completely on the contour6. We call this closed polygon the inner
ring of the contour. Figure 3.11 gives an illustration.

6To show this, compute s(x, y, z) using (3.4) for (x, y, z)T = (1−t)x0+ty1. It is a straight-
forward exercise in algebra to show that s(x, y, z) = r for any t ∈ IR. This means that the line
through x0,y1 lies on the contour. The remaining lines of the polygon (x0,y1, z0,x1,y0, z1)
are treated in a similar way.
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r=0.1 r=0.3 r=0.5
r=0.7

r=0.9

Figure 3.12: Contours of a cell C with seg(C) = 1: any contour in C consists of at
most one connected surface part.

r=0.05 r=0.1 r=0.2 r=0.3 r=0.4

r=0.9r=0.8r=0.7r=0.6r=0.5

Figure 3.13: Contours of a cell C with seg(C) = 4: for r = 0.2 the contour consists
of 4 unconnected surface parts.

3.5.1.4 Segment number of a cell

In this section we study all contours of (3.4) in the cell C000 following [191]. We
are especially interested in the connectivity of the contours in the cell. Unfor-
tunately the results of section 3.5.1.1 are not directly applicable here because
one connected surface part may intersect C000 more than once.

To study all contours of (3.4) in C000 we apply – as in section 3.5.1.1 – the
translation (3.6) of the local coordinate system and have to study the contours
of (3.8) in the cell C = [xp0 , xp0 + 1]× [yp0 , yp0 + 1]× [zp0 , zp0 + 1].

Varying the threshold r in (3.8), the contours change. So does the number
of unconnected surface parts of the contour. We define

Definition 1 Given the trilinear scalar field s(x, y, z) = a x+ b y+ c z+ d x y z
in the domain of the cell C = [xp0 , xp0 + 1] × [yp0 , yp0 + 1] × [zp0 , zp0 + 1],
the segment number seg(C) of C is the maximal number of unconnected surface
parts of the contour s(x, y, z) = r =const in C for any threshold r.

Figure 3.12 gives an example of a cell with seg(C) = 1. Changing the value of
r, the isosurface ”moves” through the cell. It consists of at most one connected
part for any r.

Figure 3.13 shows a cell with seg(C) = 4: for a particular threshold the
contour consists of four unconnected parts.

The segment number is a threshold-independent characterization of a cell
C. For any C we get seg(C) ∈ {1, 2, 3, 4}. To show this we use the fact that
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a surface inside a cell has at least 3 intersections with the edges of the cell.
Since the cell consists of 12 edges and at most one intersection of an edge and
a contour exists, the maximal number of unconnected surface parts is 4.

The segment number may be used to estimate how complicated a surface
extraction algorithm will be before picking a particular threshold. We are par-
ticularly interested in cells C with seg(C) = 1. Since for them the contours
always consist of one connected surface part, these cells are candidates for ap-
plying enhanced surface extraction methods or for merging them with adjacent
cells (see section 3.8).

Now we give necessary and sufficient geometric conditions for a cell to have
seg(C) = 1. Again, we consider the contour of (3.8) in the cell C = [xp0 , xp0 +
1]× [yp0 , yp0 + 1]× [zp0 , zp0 + 1].

To formulate the conditions for seg(C) = 1, we need to introduce the concept
of characteristic hyperbolas. The first characteristic hyperbola h1 in IR3 consists
of all points with sy(x, y, z) = 0 and sz(x, y, z) = 0 in (3.8). h1 can be written
as rational quadratic Bézier curve described by two control vectors b1

0, b
1
2 and

a control point b1
1 (see [54]). We set

b1
0 =

 (−4 b c)/d
0
0

 , b1
1 =

 0
0
0

 , b1
2 =

 0
1/b
1/c

 , w1
1 = 1

where w1
1 is the weight of b1

1. Then we obtain

h1(t) =
b1

0B
2
0(t) + w

1
1 b

1
1B

2
1(t) + b

1
2B

2
2(t)

w1
1 B

2
1(t)

.

In a similar way we define the characteristic hyperbola h2 by sx(x, y, z) = 0 and
sz(x, y, z) = 0. The characteristic hyperbola h3 is defined by sx(x, y, z) = 0 and
sy(x, y, z) = 0. The Bézier point b2

1 with the corresponding weight w2
1 and the

control vectors b2
0,b

2
2 describing h2 are

b2
0 =

 0
(−4 a c)/d

0

 , b2
1 =

 0
0
0

 , b2
2 =

 1/a
0
1/c

 , w2
1 = 1.

The hyperbola h3 is described by

b3
0 =

 0
0

(−4 a b)/d

 , b3
1 =

 0
0
0

 , b3
2 =

 1/a
1/b
0

 , w3
1 = 1.

If a b c d < 0 then h1,h2,h3 intersect in two common points s1 and s2. They
can be computed as

s1 =
−1√−a b c d

 b c
a c
a b

 , s2 =
1√−a b c d

 b c
a c
a b

 . (3.18)

From (3.8) and (3.18) we obtain

s(s1) =
−2 a b c√−a b c d , s(s2) =

2 a b c√−a b c d . (3.19)
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a) b) c) d)

Figure 3.14: Location of characteristic hyperbolas h1,h2,h3; a),b): a b c d < 0;
c),d):a b c d > 0.
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Figure 3.15: The faces f1, f2, f3 of a cell.

Figures 3.14a and b illustrate this situation from two different viewpoints. If
a b c d > 0 then h1,h2,h3 do not have any intersections. Figures 3.14c and d
show this from different viewpoints. The degenerate case a b c d = 0 is omitted
here.

To formulate conditions for seg(C) = 1, we have to classify the faces of C.
Given the cell C = [xp0 , xp0+1]×[yp0 , yp0+1]×[zp0 , zp0+1], let f1 = {(x, y, z) ∈
C : x = xp0 or x = xp0 + 1}, f2 = {(x, y, z) ∈ C : y = yp0 or y = yp0 + 1}, and
f3 = {(x, y, z) ∈ C : z = zp0 or z = zp0 + 1}. See figure 3.15 for an illustration
of the faces.

Now we can formulate

Theorem 1 Let C = [xp0 , xp0 + 1] × [yp0 , yp0 + 1] × [zp0 , zp0 + 1] be a cell in
the scalar field defined by (3.8). Then the condition seg(C) = 1 is equivalent to
the three conditions h1 ∩ f1 = ∅ and h2 ∩ f2 = ∅ and h3 ∩ f3 = ∅.
Figure 3.16 illustrates the idea of the proof. Suppose h3 intersects f3 as shown
in Figure 3.16a. Figure 3.16b is a magnification of the cell and h3 in Figure
3.16a. We compute the intersection point of h3 and f3, and consider the contour
passing through this point. As shown in Figure 3.16b, this contour consists of
at least two surface parts. The cases that h1 intersects f1, or h2 intersects f2,
are treated in a similar way.

For the proof of the converse statement of theorem 1, we assume that for
a certain threshold r the contour consists of at least two unconnected surface
parts. Then we can find a face of C which has two intersection curves with the
contour. (In the worst case we have to vary r to find such a face.) (Figure 3.16c
shows two surface parts of the contour which produce two intersection curves
in the upper face of f3.) Then we can find a point on this face which is the
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a) b) c)

Figure 3.16: Proof idea of theorem 1.

intersection point with the corresponding characteristic hyperbola. (In Figure
3.16c, the marked point on the upper part of f3 is the intersection with h3.)

Theorem 1 gives geometric conditions for seg(C) = 1. This means that for
a given cell C theorem 1 can be applied to distinguish between seg(C) = 1
and seg(C) > 1. Since only for seg(C) = 1 is it certain that no ambiguities
appear for any threshold and any face of the cell, only cells with seg(C) = 1 are
candidates for accelerated isosurface extraction algorithms. Thus we did not
continue to search for geometric conditions for seg(C) = 2.

3.5.2 Graphical representation for piecewise trilinear con-
tours

After studying properties of the piecewise trilinear contour in section 3.5.1, this
section discusses algorithms to find graphical representations of the contour.
We consider three approaches for doing this:

• voxel representation

• triangular representation

• representation as parametric surfaces

Each approach is discussed separately in one of the sections 3.5.2.1 – 3.5.2.3.

3.5.2.1 Voxel representation of piecewise trilinear contours

This approach creates voxels out of the scalar field by applying piecewise tri-
linear interpolations. The voxel size is usually smaller than the size of the grid
cells Ci,j,k; it may be chosen adaptively. The voxels may be effectively rendered
by using workstations with 3D frame buffers. The dividing cubes algorithm
introduced in [126] is a representative of these approaches.

3.5.2.2 Triangular representation of piecewise trilinear contours

The representation of piecewise trilinear contours as triangular mesh is a natural
and widespread approach because most of todays graphics workstations are
highly specialized in processing large numbers of triangles.
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Figure 3.17: Cases of the Marching Cubes algorithm from [130]. A solid dot on a
vertex means a ”+” classification, i.e. the scalar value at this vertex is larger the
considered threshold. Note that the cases 11 and 14 coincide due to symmetries.

Two general approaches exist to find a triangular approximation of the con-
tour. The one is to find the contour lines in parallel slices and connect the
contours of adjacent slices by applying a triangulation. Contributions to this
approach can be found in [2], [135], [106] and [9].

The other general approach to extract contours works directly on the 3D
cells. The standard algorithm here is the Marching Cubes (MC) algorithm in-
troduced in [130]. Here, for every cell the scalar values at the vertices are checked
for being smaller or larger than the picked threshold. Depending on the result
of this check, each vertex of a cell is marked as ”+” or ”-”. Considering sym-
metries in the cells, 14 different configurations of the ”+” and ”-” arrangement
are possible. They are illustrated in figure 3.17. Based on this classification, the
intersections of the contour with the edges of the cells are computed by applying
linear interpolations along the edges of the cell. Finally, a triangulation which
is built out of these intersection points gives the approximation of the contour
(see figure 3.17).

Soon after the Marching Cubes algorithm was published it was realized that
it does not necessarily give topologically exact representations of the contour
([47]). In fact, it may happen that adjacent cells create different contour curves
on the face they share. In these cases the global contour has a hole in the area
of these two adjacent cells. This may appear when one face of a cell has exactly
two vertices with a ”+” classification which are located diagonally to each other.
In this case, four intersections of the contour with the edges of the face exist.
There are two ways of connecting these four intersection points. One approach
to solving these ambiguities was introduced in [139]. There it is shown that
the intersection of the contour with a face of a cell is a hyperbola. Similar to
algorithms for isoline extraction of 2D scalar data, its correct representation
can be found by checking an additional point inside the face. Depending on the
scalar value of this point the topological correct representation of the contour
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Figure 3.18: Solving ambiguities for the intersection of a trilinear contour and a cell
[139]. a) If exactly two opposite vertices have a scalar value bigger than the threshold,
exactly four intersections of the contour with the edges of the face exist. b) Depending
on the scalar value of any point in the area marked grey, the correct representation of
the contour is either c) or d).

curve can be found. Figure 3.18 illustrates this.
Applying this approach to all ambiguous faces of the cell, the result is up

to four closed polygons on the faces (see [139]). To get the representation of
the contours, these polygons are triangulated independently of each other. A
similar approach to solving the ambiguities on the cell faces was introduced
in [197]. Another way of preventing unwanted holes in the contour across the
cell faces is suggested in [134]. The approach reported there is faster than
[139] but does not yield topologically exact contour curves on the faces of the
cell. A survey of algorithms to treat ambiguities on the cell faces can be found
in [144]. One approach to combine a piecewise trilinear interpolation with a
tetrahedrization of the cells is introduced in [212]. There the fact is used that a
tetrahedral edge which lies on a face of a cell may have up to two intersections
with the contour. Thus more involved lookup tables than shown in figure 3.6
are introduced. They make sure that the topology of the approximation of the
contour does not depend on the particular tetrahedrization.

The extension in [139] of the Marching Cubes algorithm guarantees a topo-
logically exact representation of the contour curves on the faces of a cell. Un-
fortunately it does not guarantee a topologically exact representation of the
isosurface inside a cell 7. Consider figure 3.19 for an example.

One approach to overcome this problem is suggested in [138]. There the
topology of the contour inside a cell is described by the ”connectivity” of the
cell vertices: two vertices are connected if there is a curve inside the cell (or on
its boundary) which connects the vertices and does not intersect the contour.
In order to find the pairs of vertices which are connected inside the cell (i.e. the
connecting curve is not on the cell boundaries), the scalar values of the vertices
are additionally checked against the scalar value of a ”body saddle point” inside
the cell. This point is one of the points s1, s2 in (3.18). Since both points s1, s2
may be located inside a cell or both points may not exist at all, the approach
in [138] does not work for any case. Also, [138] does not give any information

7The same statement applies for [212].
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a)

b)

c)

d)

e)

Figure 3.19: a) and d): two possible contours of (3.4) and (3.5) where the MC
algorithm of [130] and [139] gives the same set of closed polygons on the faces of the
cell shown in c); depending on certain inner points, the exact triangulation is either
b) or e).

to actually apply a topological exact triangulation.
From figure 3.19 it is obvious that in order to get a guaranteed topologically

exact representation of the contour, certain inner points of the cell have to be
incorporated into the triangulation. In the following we want to find a set of
inner points which are sufficient to get a topologically exact triangulation for
every case. To explain the main idea we start with an example. Given is the
contour shown in figure 3.20a. The MC algorithm of [130] and [139] gives the
closed polygon shown in figure 3.20b. We name the vertices of the polygon
v1, ...,v6. Triangulating this polygon, the edges (v2,v6) and (v3,v5) must not
be used because the solution for the ambiguities on the upper face of the cell
had excluded these edges from a valid triangulation. Here it makes sense to
define one inner point v on the contour and apply a triangulation shown in
figure 3.20d. A good candidate for v is the point on the contour which has a
contour surface normal in z-direction (see figure 3.20a).

The example of figure 3.20 gives the key to find a set of inner points which
are sufficient for a topological exact triangulation for every case. It turns out
that this set of inner points is the inner ring introduced in section 3.5.1.3. A
topologically exact Marching Cubes algorithm can be described in the following
way:

1. Create the closed polygons on the cell faces following [130] and [139]. We
obtain up to four closed polygons and call them outer rings.

2. Compute the points of the inner ring by applying (3.16) and (3.17).

3. If the inner ring is not real or if the inner ring is completely outside the cell,
then triangulate the outer rings independently of each other; otherwise
continue with 4.
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Figure 3.20: a) contour and point v with normal in z−direction on it; b) closed
polygons resulting from the MC algorithm of [130] and [139]; c) part of a wrong
triangulation of b); d) triangulation applied here; e) triangulation of d) in 3D.

4. Check the connectivity between the inner ring and each of the outer rings.
If the inner ring and one of the outer rings belong to the same contour
segment: triangulate the area between the inner ring and this outer ring.

5. If only one outer ring was connected to the inner ring, the inner ring itself
has to be triangulated.

Figure 3.21 illustrates this algorithm.
To check the connectivity between the inner ring and one outer ring, we

intersect the lines of the inner ring with the faces of the cell. If one of these
intersection points lies on the outer ring, it is connected to the inner ring. Figure
3.21c illustrates this.

Figures 3.22-3.24 show examples of the application of the topologically exact
Marching Cubes algorithm. Although we have not yet introduced how to com-
pute the exact contours shown in the figures 3.19a, 3.19b, 3.20a, 3.22, 3.23d–f,
3.24a, we have inserted the images here to provide a comparison of the exact
contours and the MC triangulations. The representation of the exact contours
is treated in section 3.5.2.3. In the examples of figures 3.22 and 3.24 the MC
algorithm of [130] and [139] fails, i.e. gives topologically wrong triangular ap-
proximations. In fact, the result for figure 3.22 would be a (topologically wrong)
triangulation similar to figure 3.19b. Also [138] does not provide a topologically
exact triangulation for figure 3.22 because it does not use any inner points for
triangulation.

Improvements of the Marching Cubes Algorithm
The Marching Cubes algorithm is popular for finding a triangular approxima-
tion of contour. Together with extensions in [139] and in this section, it is able
to triangulate any piecewise trilinear contour topologically exact. Nevertheless
there are disadvantages of the algorithm as well:
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a) b)

c)
d) e)

Figure 3.21: Illustration of a topologically exact MC algorithm; a) create outer rings
following [130] and [139]; b) compute inner ring; c) check connectivity between inner
ring and outer rings by intersecting the lines of the inner ring with all faces of the
cell; here the inner ring is connected to two outer rings; d), e) triangulate the areas
between inner ring and outer rings.

• since every cell has to be treated separately the algorithm is rather time
consuming

• the resulting triangular mesh might be too fine (see figure 3.25a8 for an
example)

Several solutions have been proposed to overcome these disadvantages.
If the number of triangles is too high (i.e. the triangular mesh is too fine)

a variety of mesh reduction algorithms exist. The treatment of mesh reduction
algorithms is not the subject of this work. Contributions on that area are in
[68], [93], [166], [154] and [94].

Another popular approach to deal with large triangular meshes is to find a
multiresolution representation of the mesh (see [52] and [75] for examples). Since
this approach also does not make use of CAGD applications, it is not treated in
this work. Note that both mesh reduction algorithms and multiresolution rep-
resentations of triangular meshes are in general not only for MC triangulations
but for arbitrary triangular meshes.

One approach to reducing the number of triangles directly in the MC algo-
rithm is the discrete MC approach in [133]. There only the midpoints of the
cell edges are used to build the triangulation. This way a number of triangles
from the original MC algorithm may collapse to bigger polygons.

To speed up the MC algorithm itself, storing the data in an octree has been
proven to be useful. In [208] the volume data is stored in a modified octree
called branch-on-need octree (BONO). In each node of the octree the minimal

8The data set in this image is property of Siemens Medical Systems, Inc., Iselin, NJ
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Figure 3.22: a) Exact contour over the triangulation shown in figure 3.21d) and 3.21e);
b) exact contour over triangulation in figure 3.21d); c) exact contour over triangulation
in figure 3.21e). We can clearly see that inner ring is part of the contour.

and maximal scalar value for all cells represented by this node are stored. For
a certain threshold the tree is traversed top down to exclude those cells from
the MC algorithm through which the contour does not pass. Furthermore, this
approach can also be used to reduce the number of triangles produced by the
MC algorithm. This is done in [170] by merging the octree leaves in a suitable
way. An extension of the octree approach to time varying fields can be found
in [181].

Other approaches to speeding up the MC algorithm use seed cells. A seed
cell is a cell which a certain contour passes through. Starting from it, only the
adjacent cells which the contour may pass through are searched until the global
contour is completely extracted. The problem here is finding an appropriate
number of seed cells for a ceratin threshold. In [127] each cell is considered as a
2D point in a ”span space” where the x-coordinate is the minimal scalar value
and the y-coordinate is the maximal scalar value of the cell. Then the seed cells
can be effectively obtained out of this span space. In [172] a grid resolution of
the span space is introduced to speed up the search for the seed cells. Other
methods which focus on finding one seed cell instead a complete set of seed
cells for a threshold can be found in [102], [103], [7], [119]. An extension of the
seed cell idea to time varying fields can be found in [171]. A case study on the
performance of the improvements of the MC algorithm can be found in [182].

Another approach to speeding up the MC algorithm and reducing the num-
ber of triangles is treated in section 3.8. Since the approach described there
uses other interpolation schemes of the volume data, it was put into a section
of its own.

3.5.2.3 Representation of piecewise trilinear contours as parametric
surfaces

Applying the Marching Cubes algorithm (or any other algorithm which gives
a triangular approximation of the contour), the resulting triangular mesh may
not only be too fine as treated in section 3.5.2.2, it may also be too coarse. This
problem appears

• with low resolution volume data

• when exploring details in high resolution volume data.
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Figure 3.23: Example of a contour with one outer ring consisting of 12 edges and the
inner ring being completely inside the cell; a) triangulation between inner ring and
outer ring; b) triangulation of inner ring; c) whole triangulation; d)-f) exact contours
over the triangulations a)-c).

Figure 3.25a shows an example of a volume data set where MC gives a triangular
mesh which is too fine. Figure 3.25b shows a detail of the inner part of the
surface shown in figure 3.25a. Here the mesh is too coarse.

One way to get a finer representation of the contour is to use a more detailed
(and therefore larger) volume data set. Since this is usually not available, we
try to find better approximations of the piecewise trilinear contour than the
MC algorithm yields. In [5] a refined triangular representation of the contour is
achieved by adaptively refining the triangles of the MC algorithm.

Another promising approach for a better representation of a piecewise tri-
linear contour is representation as piecewise parametric surfaces instead of tri-
angles. Several approaches for doing this exist.

In [66], the contour is approximated by a number of bicubic patches. The
approximated surface is G0 continuous across the cell boundaries. Piecewise
bicubic patches are also used in [105] to refine the results of a ”contouring-and-
connecting” approach. In [73], the contour is approximated using patches with
4, 5 or 6 boundary curves. The result is a surface which is G0 continuous across
the cell boundaries as well. [84] approximates the contours by rational quadratic
triangular Bézier surface patches. This approach represents the boundary curves
of the contour on the faces of the cells exactly but yields only G0 continuous
junctions of the patches both inside a cell and across the cell boundaries.

All the approaches mentioned above have something in common: each is just
another approximation of the piecewise trilinear contour. In the following we
want to find the exact representation of the trilinear contour as a piecewise para-
metric surface. We know from section 3.5.1.2 that the contour can be described
in terms of rational cubic Bézier triangles. The general idea of describing the
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Figure 3.24: a) Contour which gives two outer rings and the inner ring completely
inside the cell; b) outer rings; c) triangulation between inner ring and one outer ring;
d) triangulation between inner ring and the other outer ring; e) whole triangulation.

whole contour in a cell is to build a triangular patch over each triangle of the
MC triangulation.

Unfortunately, triangular patches of adjacent triangles may have gaps. Fig-
ure 3.10c gives an example. To overcome this problem, we use trimmed surfaces
(see [55]) of the triangular rational cubics instead of the triangular patches
themselves. This way the domain of the patches is not a triangle but a more
complex shape which is bounded by three rational cubic curves. We use the
following algorithm to compute the surface patch over an MC triangle:

Given is the triangle (a,b, c) which is obtained from the MC algorithm. This
means that a,b, c are on the contour.

1. Determine the projection directions qab, qbc, qca ∈ {x, y, z} of the bound-
ary curves.

2. Determine the projection direction qabc ∈ {x, y, z} of the whole triangle.

3. Project the boundaries of the triangle (a,b, c) in the directions defined in
step 1 onto the contour. We obtain the curves

xab(t) = pqab((1− t)a+ tb)
xbc(t) = pqbc

((1− t)b+ t c)
xca(t) = pqca((1− t) c+ ta)

on the contour. The curves xab,xbc,xca are the boundary curves of the
final patch over the triangle (a,b, c).

4. Project xab,xbc,xca in the direction qabc into the plane defined by a,b, c.
We obtain the curves yab,ybc,yca in the plane (a,b, c) which are the
boundary curves of the domain of the final patch.
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a) b) c)

Figure 3.25: a) CT head consisting of 423.963 triangles - a candidate for mesh reduc-
tion algorithms; b) detail inside the same CT head - the triangular mesh is too coarse;
c) the contour of a triquadratically interpolated scalar field may have self- intersections
and complicated topologies.
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Figure 3.26: Example of the algorithm for constructing a triangular patch over an
MC triangle (a,b, c); a) determine the projection directions; here we have chosen
qab = x, qbc = y, qca = z, qabc = z; b) project the boundaries of the triangle onto the
contour; here we obtain the boundary curves xab(t) = px((1 − t)a + tb), xbc(t) =
py((1− t)b+ t c), xca(t) = pz((1− t) c+ ta) on the contour; c) project xab,xbc,xca

in z-direction onto the plane defined by the triangle (a,b, c); we obtain the planar
curves yab,ybc,yca which are the boundaries of the domain of the trimmed surface.

5. Compute the trimmed surface of the projected patch pqabc
(ua+v b+w c)

with u + v + w = 1. The domain of the trimmed surface is given by the
boundary curves yab,ybc,yca.

Figure 3.26 illustrates an example of this algorithm.
To complete the algorithm, we have to answer two questions:

a) how to choose the projection directions
b) how to make sure that the cubic surfaces have all positive (or all negative)
weights, i.e. no zeros in the denominator functions.

To a): Given the points a = (xa, ya, za)T and b = (xb, yb, zb)T , we choose
qab = x if ‖xa − xb‖ < ‖ya − yb‖ and ‖xa − xb‖ < ‖za − zb‖ and a and b are
not on the same face of the MC cell, i.e. ¬((xa = 0 and xb = 0) or (xa = 1 and
xb = 1)). If the last named condition is false, the projection direction has to be
chosen between y and z.

To compute qabc, we consider the normal n = (xn, yn, zn)T of the triangle
a,b, c. We choose qabc = x if ‖xn‖ > ‖yn‖ and ‖xn‖ > ‖zn‖.
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a) b) c)

Figure 3.27: a) two cells and the triangular approximation of a certain contour using
MC; b) the exact contour represented by a number of trimmed surfaces of rational cubic
triangular patches; c) the global G1 modification of the contour without changing its
topology.

To b): To avoid zeros in the denominator functions of the rational patches,
we have to make sure that the triangular approximation of the contour obtained
by the MC algorithm is topologically equivalent to the contour itself. This is
given by the extension of the MC algorithm of [130] and [139] which is treated
in section 3.5.2.2 .

Examples of the exact representation of the trilinear contour as described
in his section can be found in in the figures 3.19a, 3.19d, 3.20a, 3.22, 3.23d–f,
3.24a, 3.27b, 3.33b – 3.39b.

Another way of representing a piecewise trilinear contour exactly is a de-
scription as subdivision surface as done in [31]. Assuming a topologically exact
Marching Cubes triangulation, this approach gives similar visual results to the
parametric approach shown in this section.

3.6 Higher Order Polynomial Interpolation

The exact contour of a piecewise trilinear contour is G∞ continuous inside a
certain cell but only G0 continuous across the cell boundaries. Figure 3.27b
gives an example where the discontinuities across the boundary face of two
cells is clearly visible. These discontinuities have a significant influence on the
final shapes as shown in figures 3.33 – 3.39. In fact, for larger data sets the
improvements from the MC triangulation (3.33a – 3.39a) to the exact contour
(3.33b – 3.39b) are only marginal.

The discontinuities of the contours of the cell boundaries are due to the fact
that the underlying interpolated piecewise trilinear scalar field is only C0 con-
tinuous itself. Applying a smoother interpolation of the scalar field makes the
contours smoother as well. Unfortunately, a higher order polynomial interpola-
tion of the scalar field may destroy the topology of the contours. The contours
obtained this way may have self-intersections and complicated topologies. Fig-
ure 3.25c gives an example of the contour of triquadratically interpolated scalar
field. The self-intersections here indicate that standard algorithms like MC are
not applicable here. In fact, no algorithm seems to be known that correctly
deals with higher order interpolations of volume data.

In [197] a piecewise tricubic interpolation of the cells is suggested. In this way
the authors obtain a globally C1 continuous scalar field (and thus G1 continuous
contours). Beside the fact that piecewise tricubic interpolation is rather time
consuming, no triangulation scheme is known for this kind of scalar field.
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Figure 3.28: a) 2D bilinear scalar field in the domain of a cell; shown are isoparametric
lines of the domain and one contour curve; b) apply a regular reparametrization p(x, y)
of the domain onto itself: isoparametric lines and contour line may change their shape
but not their topology.

In [22] 3D blending functions are used to eliminate the ”overshooting effect”
of the piecewise tricubic interpolation. Here too, appropriate surface extraction
algorithms are not available.

In [8], the application of higher order interpolations was studied for 2D scalar
fields. Here bicubic interpolations of the scalar field were used. To preserve the
topology of the original scalar field, ”damped partial derivatives” were used to
restrict the interpolation parameters.

Due to the problems of higher order interpolation described above we intro-
duce another approach here to get a globally G1 continuous scalar field. This
approach is described in section 3.7.

3.7 Piecewise Trilinear Interpolation with Local
Reparametrization

We continue to search for globally G1 interpolations of the scalar field which
ensures that the resulting contours are G1 as well. As an additional condition
we demand that the resulting contours always have the same topology as the
contours of the piecewise trilinear scalar field. This makes sure that standard
algorithms such as MC are still applicable.

We achieve this by applying a local reparametrization of the domain of each
cell. Figure 3.28 gives an example for a reparametrization in 2D.

Given is a trilinear scalar field s(x, y, z) defined by (3.4) in the domain C000 =
[0, 1]3. The definition of a continuous one-to-one map

p : [0, 1]3 → [0, 1]3

(x, y, z) → p(x, y, z) = (xp(x, y, z), yp(x, y, z), zp(x, y, z))

creates a new scalar field sp over [0, 1]3:

sp(x, y, z) = s(p−1(x, y, z)).

If a point (x, y, z) lies on the contour s(x, y, z) = r, the point p(x, y, z) lies on the
contour sp(x, y, z) = r. Thus the contours of sp(x, y, z) = r can be computed
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Figure 3.29: a) the piecewise linear curve (x, s(x))T is G0 continuous; b) the curve
(p(x), s(x))T is G1 continuous, it has the same shape (but another parameterization)
as the curve (x, sp(x))
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Figure 3.30: Estimate the rise ċi in the point x = i; a) ċi = 0 if (ci − ci−1) and
(ci+1 − ci) have opposite sign; b) ċi = ci − ci−1 if ci − ci−1 = ci+1 − ci; c) ċi = 0 if
ci = ci−1 or ci+1 = ci.

in a simple way: apply the map p to all contour points of s(x, y, z) = r. Since p
is continuous and one-to-one, the contours of s and sp have the same topology
for any r.

We have to find appropriate maps p for each cell of the piecewise trilinear
scalar field which makes it globally G1 continuous. This way all contours are
G1 continuous as well.

We consider an 1D example to explain how to choose the maps p. (Since in
the 1D example p is a scalar function from IR to IR, we simply write p instead
of p here.) Given are the scalar values ci which define a piecewise linear 1D
scalar field

s(x) = (1− t) ci + t ci+1 with i = [x] , t = x− [x].

See figure 3.29a for an illustration. The curve (x, s(x))T is piecewise linear and
thus G0 continuous. We have to find a domain reparametrization p(x) in such
a way that the curve (p(x), s(x))T is G1 continuous, and p(i) = i, and p is
continuous and one-to-one. Figure 3.29b illustrates this.

To define p, we first have to estimate the tangent directions of the curve
(p(x), s(x))T at the junction points x = i. Let ċi be the estimated rise of s at
x = i. We estimate ċi by

ċi =


2 (ci − ci−1)(ci+1 − ci)

ci+1 + ci−1
for (ci − ci−1)(ci+1 − ci) ≥ 0

0 else.
(3.20)

Figure 3.30 illustrates special cases of this formula.
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p t2( )

p t4( ) p t5( )

Figure 3.31: Auxiliary functions of formulas (3.21) for defining p(t); the functions
p1(t), p4(t) are reparametrization of parabola segments; p2(t), p5(t) are cubic func-
tions.

Considering the interval [i, i+1], and using a local parameter t ∈ [0, 1] in it,
we obtain:

s(t) = (1− t) ci + t ci+1 , ċi =
ṡ(0)
ṗ(0)

, ċi+1 =
ṡ(1)
ṗ(1)

.

This gives the following conditions for the monotonous function p(t) in
t ∈ [0, 1]:

p(0) = 0 , p(1) = 1 , ṗ(0) =
ci+1 − ci

ċi
, ṗ(1) =

ci+1 − ci
ċi+1

.

Since ṗ(0) and ṗ(1) can attain any value between 0 and +∞, p(t) cannot be
described by a polynomial function of a fixed degree.

We construct a monotonous reparametrization function p(t) out of four aux-
iliary functions p1(t), p2(t), p4(t), p5(t). These functions are illustrated in figure
3.31. The function p1(t) is obtained by reparametrizing the parabola defined

by the Bézier points b1
0 =

(
0
0

)
,b1

1 =
(
x1

1

0

)
,b1

2 =
(

1
0.5

)
. This gives

p1(t) = y1(x1
−1(t)) with

(
x1(t)
y1(t)

)
=

∑2
i=0 b

1
i B

2
i (t). Moving x1

1 between 0.5

and 1, ṗ1(1) ranges between 1 and +∞. The function p2(t) =
∑3

i=0 y
2
i B

3
i (t) is

a cubic with y2
0 = 0, y2

1 = 0, y2
3 = 0.5. Moving y2

2 between 1/6 and 0.5, ṗ2(1)
ranges between 1 and 0. Furthermore we have ṗ1(0) = ṗ2(0) = 0.

While p1(t) and p2(t) are used to control the rise of p at t = 1, the functions
p4(t) and p5(t) are used to control the rise at t = 0. The function p4(t) is

a reparametrization of the parabola
(
x4(t)
y4(t)

)
=

∑2
i=0 b

4
i B

2
i (t) with b4

0 =(
0
0

)
, b4

1 =
(
x4

1

0.5

)
, b4

2 =
(

1
0.5

)
which gives p4(t) = y4(x4

−1(t)). Moving

x4
1 between 0 and 0.5, ṗ4(0) ranges between +∞ and 1. The function p5(t) =∑3
i=0 y

5
i B

3
i (t) is a cubic with y5

0 = 0, y5
2 = 0.5, y5

3 = 0.5. Moving y5
1 between 0

and 1/3, ṗ5(0) ranges between 0 and 1. Furthermore we have ṗ4(1) = ṗ5(1) = 0.
Now we can model the function p(t) with p(0) = 0 and p(1) = 1 and given

values for ṗ(0) and ṗ(1) between 0 and +∞ as a linear combination of p1(t),
p2(t), p4(t), p5(t):
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p1(t) =
1
8

(
1− 2 ṗ(1) +

√
(1− 2 ṗ(1) )2 + 4 t ṗ(1) (1− ṗ(1) )

(1− ṗ(1) )

)2

p2(t) = 3 t2 (1− t) (1
2
− 1

3
ṗ(1) ) +

1
2
t3

p3(t) =
{
p1(t) for ṗ(1) > 1
p2(t) for 0 ≤ ṗ(1) ≤ 1

p4(t) =
2 t ṗ(0) (1− ṗ(0)) + (1− 2 ṗ(0)) (1− √

1− 4 t ṗ(0) (1− ṗ(0)) )
4 (1− ṗ(0))2

(3.21)

p5(t) = t (1− t)2 ṗ(0) + 3
2
t2 (1− t) + 1

2
t3

p6(t) =
{
p4(t) for ṗ(0) > 1
p5(t) for 0 ≤ ṗ(0) ≤ 1

p(t) = p3(t) + p6(t).

Note that p1(t), p4(t) are reparametrization of a parabola segment while p2(t),
p5(t) are cubic functions. Also note that

lim
ṗ(1)=1

p1(t) =
1
2
t2 , lim

ṗ(1)=+∞
p1(t) = 1−√

1− t− 1
2
t

lim
ṗ(0)=1

p4(t) = t− 1
2
t2 , lim

ṗ(0)=+∞
p4(t) =

√
t− 1

2
t.

Now we can apply this reparametrization to the 3D cells:
Given is a scalar field defined by (3.4) in the domain C000 = [0, 1]3. To find

p(x, y, z) = (xp(x, y, z), yp(x, y, z), zp(x, y, z) ), we consider the functions

c0x(y, z) = s(0, y, z) , c1x(y, z) = s(1, y, z)
c−1x(y, z) = s(−1, y, z) , c2x(y, z) = s(2, y, z)

where c−1x and c2x are computed of the scalars adjacent to the cell considered
here. The rise ċ0x(y, z) on the cell face x = 0 in x-direction is estimated by
(3.20) using the values c−1x(y, z), c0x(y, z), c1x(y, z). In a similar way, the rise
ċ1x(y, z) on the cell face x = 1 in x-direction is estimated by (3.20) using
the values c0x(y, z), c1x(y, z), c2x(y, z). Then xp(x, y, z) can be computed using
(3.21) with

t = x , ṗ(0) = ċ0x(y, z) , ṗ(1) = ċ1x(y, z) , p(t) = xp(x, y, z).

Figure 3.32 gives an illustration. The reparametrization in y− and z−direction,
yp(x, y, z) and zp(x, y, z), are computed in a similar way.

The reparametrization introduced above is applied locally to all cells of the
data volume. The global reparametrization p(x, y, z) obtained this way gives a
globally G1 scalar field sp(x, y, z). Thus all contours of sp are G1 as well. See
figure 3.27c for an example.

Also note that sp preserves linearity: if s is linear in a certain cell (i.e. if the
contours of s in this cell are plane segments), sp is linear in this cell as well.
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Figure 3.32: The reparametrization xp(x, y, z) in x-direction is computed using ċ0x

and ċ1x. ċ0x is estimated by c−1x, c0x, c1x while ċ1x is estimated by c0x, c1x, c2x.

Figure 3.33: Scalar field s(x, y, z) = x2 + y2 + z2 , sampled by a 3 × 3 × 3 grid in
the domain [−1, 1]3, r = 0.9; a) Marching cubes; b) exact contours; c) globally G1

contours.

The isosurface extraction algorithm for the scalar field sp is simple. We
apply an isosurface extraction algorithm in s and apply p to all points of the
contour.

Results:
We applied the algorithms to construct the exact contour of (3.4) and (3.5)
(described in section 3.5.2.3) as well as its G1-reparametrization (described in
section 3.7) both to theoretical and practical data sets.

One result was already shown in figure 3.27. Figure 3.27a shows the MC
triangulation of two adjacent cells for a certain threshold. Figure 3.27b shows
its exact contour while figure 3.27c shows the result of the G1 reparametrization.
We can clearly see the higher continuity of the contour in figure 3.27c.

Figure 3.33 shows the scalar field s(x, y, z) = x2+y2+z2 which is sampled by
a 3×3×3 grid in the domain [−1, 1]3. Obviously the contours of s are concentric
spheres. Figure 3.33a shows the result of the MC algorithm for r = 0.9: the
sphere is approximated by 8 triangles. Figure 3.33b shows the exact contours
of the piecewise trilinear interpolation. Although this shape comes closer to
a sphere, we can still see discontinuities of the surface across the faces of the
cell. Figure 3.33c shows the G1 reparametrization of the exact contour of figure
3.33b. Note that this is not an exact sphere although it almost looks like one.

Figure 3.34 shows a 5 × 5 × 5 hexahedral grid with random scalar values
between 0 and 1 at the grid points, and r = 0.5. Figure 3.34a shows the result
of the topologically exact Marching Cubes algorithm where the triangles inside
a cell are Phong shaded. Figure 3.34b shows the exact contour of the scalar field.
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Figure 3.34: 5×5×5 random volume data set; a) Marching cubes; b) exact contours;
c) globally G1 contours.

Figure 3.35: Downsampled data set of figure 3.25a ; a) Marching cubes; b) exact
contours; c) globally G1 contours.

We can clearly see the discontinuities of the surface across the cell faces. These
discontinuities disappear in the G1 reparametrization shown in figure 3.34c.

Figure 3.35 shows a downsampled version of the data set of figure 3.25a.
Originally consisting of 256 × 256 × 109 grid points, this version has only a
51 × 51 × 35 grid resolution. The result of the MC algorithm shown in figure
3.35a consists of 93.636 triangles and shows clearly a ”staircase effect” due
to the low sample rate. The exact contour in figure 3.35b shows hardly any
visual differences to figure 3.35a. The G1 reparametrization of figure 3.35c
looks smoother but still has the ”staircase effects”. In fact, figure 3.35c seems
to emphasize the ”staircase effects” more than 3.35a and 3.35b. This due to the
fact that the ”staircase effect” appears at locations of rapidly changing gradients
of the scalar field. Figure 3.36 gives an illustration.

Figures 3.37 and 3.38 show inner details of the data set shown in figure 3.25a.
There are only few visual differences between the MC results (figures 3.37a,
3.38a) and the exact contours (figures 3.37b, 3.38b). The G1 reparametrizations
(figures 3.37c, 3.38c) look significantly smoother.

Figure 3.39 shows a magnified detail of figure 3.38. Again the G1 contour
(figure 3.39c) looks smoother than the exact contour (figure 3.39b) and its MC
approximation (figure 3.39a).

We conclude that in most cases the exact contour of a piecewise trilinear
scalar field gives only slight visual improvements against the MC approximation
if the MC triangles are rendered using Phong shading. The G1 contour gives
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b)a)

Figure 3.36: ”Staircase effect”: grid points marked with solid points have isovalue of
1, grid points marked with hollow points have isovalue of 0; relative to cells containing
only scalar values of either 0 or 1, the gradient of the scalar field changes rapidly
in cells which contain both vertices with 0 and 1 scalar values; a) piecewise linear
approximation of isoline; b) the G1 reparametrization smooths out the isosurface but
does not eliminate the ”staircase effect”.

a) b) c)

Figure 3.37: Inner detail of the data set of figure 3.25a; a) Marching cubes; b) exact
contours; c) globally G1 contours.

improved visual results for low resolution volume data.
Even if the G1 reparametrization looks smoother, it is not able to remove

the ”staircase effects” in volume data (see figure 3.35). This is due to the fact
that this effect appears at regions with high changes of the gradient of the scalar
field, i.e. it is due to second order information of the scalar field. Since the G1

reparametrization deals only with first order information, it cannot handle the
”staircase effect”.

The computation of the exact contours and their G1 reparametrization is
not useful for any volume data. In fact, the number of triangles produced by
the Marching Cubes algorithm must not be too high because the exact contour
increases the final number of triangles. Also, smoothness should be one of the
desired quality criteria of the isosurfaces. This is the case for the example data
set figure 3.35, 3.37-3.39 but may not appear for other data sets.

3.8 Piecewise Trilinear Interpolation of
Larger Areas

In section 3.5.2.2 we treated algorithms to speed up the Marching Cubes al-
gorithm and decrease the number of resulting triangles. The approaches intro-
duced in this section have essentially the same goal. In contrary to the methods
in section 3.5.2.2, this is achieved by applying different interpolation schemes of
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Figure 3.38: Inner detail of the data set of figure 3.25a; a) Marching cubes; b) exact
contours; c) globally G1 contours.

Figure 3.39: Detail of figure 3.38; a) Marching cubes; b) exact contours; c) globally
G1 contours.

the volume data before starting an isosurface extraction algorithm.
The main idea is to apply interpolations not on the cells but on certain larger

areas.
One solution is to apply an adaptive tetrahedrization of the scalar field as

introduced in [82] and [161]. There the scalar field is converted into an irregu-
lar tetrahedral grid. Different splitting criteria are discussed. The application
of standard isosurface extraction algorithms like marching tetrahedra gives a
coarser triangular representation of the scalar field than in the Marching Cubes
case. Unfortunately, for the isosurface extraction on irregular tetrahedral grids,
cracks in the approximated contour may appear. They can be prevented by a
simultaneous subdivision of adjacent cells ([82]) or by using tetrahedral coons
volumes instead of linearly interpolated tetrahedra ([92]).

In [136] and [179] a ”splitting box algorithm” is introduced which performs
the Marching Cubes algorithm not on the grid cells but on parallelepipedal
collections of cells called boxes. Since a box generally consists of more than
one cell, the number of boxes is smaller than the number of cells. Thus the
application of the Marching Cubes algorithm to the boxes instead to the cells
may give fewer triangles in a shorter time.

In [136] and [179] the structure of boxes was built top-down. Beginning with
the whole scalar field as one box, bisections of the boxes were applied until a
certain criterion was fulfilled or the cell level was reached. The bisection criterion
there is a check that the isosurface computed in the box does not differ more
than a cell distance from the isosurface computed by the cell-by-cell algorithm.
Thus the subdivision criterion used there is threshold dependent. Changing the
threshold, the structure of boxes has to be completely rebuilt. In [136] and
[179] the performance of the splitting box algorithm is compared to the classical
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b)a)

Figure 3.40: a) Trilinear interpolation in each cell for the MC algorithm; b) collect
cells to bricks may speed up the MC algorithm.

a) c)b)

Figure 3.41: a) two cells and their contours for a certain threshold; b) merging the
cells from a) and applying MC to the new brick gives a contour with the same topology
as in a); c) monotony conditions for two cells to be mergeable.

Marching Cube algorithm. Unfortunately, no comparison was made with the
improvements of the Marching Cubes algorithm discussed in section 3.5.2.2.

In [118] we introduced a similar approach to [136] and [179]. There the
box structure is built bottom-up: cells are merged to boxes (called ”bricks” in
[118]). The merging criterion used there is threshold independent. Thus the
brick structure is built in a preprocessing step and can be reused after changing
the threshold. Figure 3.40 gives an illustration of a brick structure.

In [118] we allow a number of cells to be merged to a brick if the topology
of the contour in the original cells and the brick coincides for every threshold.
Figure 3.41a and b gives an example.

To give a geometric condition for two cells to be mergeable, we give the
following

Theorem 2 Let s1(x, y, z) be the piecewise trilinear scalar field defined in the
domain D = [0, 2]× [0, 1]× [0, 1] as illustrated in figure 3.42a. Furthermore, let
s2(x, y, z) be the trilinear scalar field defined in D as illustrated in figure 3.42c.
Then the contours of s1 and s2 have the same topology for any threshold if the
following condition is satisfied:

(c000 < c100 < c200) ∧ (c001 < c101 < c201)
∧ (c010 < c110 < c210) ∧ (c011 < c111 < c211). (3.22)

Proof: We have to find a reparametrization r(x, y, z) of D which transforms the
piecewise trilinear field of figure 3.42a into the scalar field illustrated in figure
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Figure 3.42: a) scalar field s1(x, y, z); b) s1(r
−1(x, y, z)); c) s2(x, y, z).

3.42b. Then we have to show that this scalar field coincides with the field s2
shown in figure 3.42c. Introducing the auxiliary functions

c0(y, z) = (1− y)(1− z)c000 + y(1− z)c010 + (1− y)zc001 + yzc011
c1(y, z) = (1− y)(1− z)c100 + y(1− z)c110 + (1− y)zc101 + yzc111
c2(y, z) = (1− y)(1− z)c200 + y(1− z)c210 + (1− y)zc201 + yzc211
c(y, z) = 2

c1(y, z)− c0(y, z)
c2(y, z)− c0(y, z) (3.23)

the scalar fields s1 and s2 can be expressed as

s1(x, y, z) =
{

(1− x) · c0(y, z) + x · c1(y, z) for 0 ≤ x ≤ 1
(2− x) · c1(y, z) + (x− 1) · c2(y, z) for 1 ≤ x ≤ 2

s2(x, y, z) = (1− x

2
) · c0(u, z) + x

2
· c2(y, z). (3.24)

It is sufficient to show that s1 and s2 can be transformed into each other by a
regular one-to-one reparametrization r of the domain D. We choose

r(x, y, z) = (xr(x, y, z), y, z)

xr(x, y, z) =
{
x · c(y, z) for 0 ≤ x ≤ 1
(2− x) · c(y, z) + (x− 1) · 2 for 1 ≤ x ≤ 2 . (3.25)

From (3.22) and (3.23) we get that c0(y, z) < c1(y, z) < c2(y, z) for any y, z ∈
[0, 1]. This and (3.23) gives that 0 < c(y, z) < 2 for any y, z ∈ [0, 1]. This makes
sure that the reparametrization r defined by (3.25) is regular and one-to-one.
In particular we have r(D) = r−1(D) = D where

r−1(x, y, z) = (x−1
r (x, y, z), y, z)

x−1
r (x, y, z) =

{
x

c(y,z) for 0 ≤ x ≤ c(y, z)
x−2·(c(y,z)−1)

2−c(y,z) for c(y, z) ≤ x ≤ 2
(3.26)

is the inverse function of r(x, y, z). Then (3.24) and (3.26) give

s1(r−1(x, y, z)) = s2(x, y, z)

which proves the theorem.
Theorem 2 states that merging is possible when the scalar values increase

monotonously in x-direction. A similar statement can be made for monotonously
decreasing values in x-direction, and for monotonously increasing (decreasing)
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,

a) b)

Figure 3.43: a) result of the MC algorithm; b) application of the MC algorithm
after a threshold-independent simplification of the data set described in [118] gives a
reduction of the number of triangles to 14% (from [118]).

values in y- or z-direction. Figure 3.41c illustrates the monotony condition
which allows a merging as shown in figure 3.41b.

As a generalization of theorem 2 we get the following conditions to merge a
box of cells:

Theorem 3 Let s1(x, y, z) be the piecewise trilinear scalar field which is defined
by the scalar values ci,j,k (i = ib, ..., ie, j = jb, ..., je, k = kb, ..., ke) and the
regular normalized grid xi,j,k = (i, j, k)T in the domain D = [ib, ie] × [jb, je] ×
[kb, ke]. Furthermore, let s2 be the trilinear scalar field defined in D by the
eight scalar values cib,jb,kb

, cie,jb,kb
, cib,je,kb

, cie,je,kb
, cib,jb,ke

, cie,jb,ke
, cib,je,ke

,
cie,je,ke

. Then the contours of s0 and s1 have the same topology for any threshold
r if the following conditions are satisfied:

ci,j,k ◦x ci+1,j,k for i = ib, ..., ie − 1, j = jb, ..., je, k = kb, ..., ke

ci,j,k ◦y ci,j+1,k for i = ib, ..., ie, j = jb, ..., je − 1, k = kb, ..., ke

ci,j,k ◦z ci,j,k+1 for i = ib, ..., ie, j = jb, ..., je, k = kb, ..., ke − 1

with ◦x, ◦y, ◦z ∈ {>,<}.
In [118] a number of strategies for merging cells to a brick are discussed.
The result of the MC algorithm to the merged cells is a simplified contour

which may contain cracks. After removing these cracks (as done in [118]), the
original MC contour and the simplified one always have the same topology.

Figure 3.43 shows the result of the Marching Cubes algorithm to a brick
structure built following [118]. The triangular mesh resulting from the brick
structure (including crack removal) was 14% of the number of triangles produced
by the original Marching Cubes algorithm. (The test data set used here is part
of the VTK distribution - see [165] )

In [118] there is a comparison of the performance of the brick structures to
the improved Marching Cubes approaches discussed in section 3.5.2.2. It turned
out that in most cases the algorithms in section 3.5.2.2 are superior concerning
the mesh reduction rate, visual appearance of the mesh, and computing perfor-
mance. Nevertheless [118] gives a first approach to simplifying volume data for
isosurface extraction threshold independently.



Chapter 4

CAGD for Flow
Visualization

Since the very beginning of Scientific Visualization, flow visualization has been
one of its main topics. Flow data comes from numerical simulations (CFD -
computational fluid dynamics), or from experiments and measurements.

Flow data consists of a finite number of sample points xi in the 2D or 3D
Euclidian space, and a number of velocity vectors vi (2D or 3D) where each
vector is assigned to exactly one sample point:

F = {(xi,vi) ∈ IEn × IRn : i ∈ G and G finite} (4.1)

with n ∈ {2, 3}. The sample points xi may lie on a certain grid, or they may
be scattered in 2D (3D).

A 2D vector field on a regular grid is defined by G = {(0, ..., nx)×(0, ..., ny)}.
Figure 4.1a gives an illustration of this with nx = ny = 4. Figure 4.1b shows an
example of scattered flow data with G = {1, ..., 6}.

Following the classification of scientific data in [23], flow data can be de-
scribed as E1V

[n] with n ∈ {2, 3}.

The definition of flow data given in (4.1) can be generalized in some ways.

• The measurement or simulation of flow data may not only give one vector
per sample point but also additional information (scalars, vectors) in each
sample point. This additional information may be measures like pressure
or temperature. For the investigations in this chapter we focus on the
velocity vector in each point and omit the additional information.

• A flow data set may be considered as time dependent (unsteady). Here
we additionally consider a finite number nt of time steps. At each time
step a (possibly different) vector vi,it is measured or observed. Thus an
unsteady flow field can be formally described as

F = {(xi, (vi,0, ...,vi,nt
)) ∈ IEn × (IRn)nt+1 : i ∈ G and G finite} (4.2)

where n ∈ {2, 3} is the dimensionality of the flow and nt + 1 is the number
of time steps. 1

1Theoretically it is possible to also vary the location of the sample points over time. Since
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Figure 4.1: a) flow data on a regular grid; b) scattered flow data.

Figure 4.2 shows the pipeline for the process of flow visualization which we
consider here. This pipeline follows [152] but emphasizes the interpolation step
by considering it as a process of is own. This is justified by the fact that the
interpolation of the flow data is a very significant data conversion step in the
visualization process.

In figure 4.2 we recognize the usual steps of the visualization pipeline (see
section 2.3.1). The filtering step works on the raw flow data. Here noise reduc-
tion, data selection or data completion may be done. Also data conversions (for
instance the conversion of curvilinear grids to regular grids) may apply here.
Overviews on filtering operations for flow data can be found in [152], [64] and
[167].

The interpolation step of the visualization pipeline of flow data converts the
flow data defined by (4.1) into a vector field. A vector field v can be defined as

v : E → IRn (4.3)

with n ∈ {2, 3} is the dimensionality of the vector space and E ⊂ IEn is a
closed, compact subset of IEn. For converting flow data described by (4.1) into
a vector field described by (4.3), E may be chosen as the convex hull of the
sample points:

E = conv({xi : i ∈ G}). (4.4)

The interpolation process can be formulated as searching a vector field v with

v(xi) = vi for all i ∈ G. (4.5)

In the mapping step of the visualization pipeline a suitable visualization
technique for the vector field and a certain set of interpretation aims have to
be selected, and an arrangement of the parameters of the technique has to
be specified. The resulting geometric primitives are finally rendered in the
rendering step of the pipeline. A detailed description of the visualization pipeline
of flow data can be found in [152] and [167].

It is the purpose of this chapter to study the application of CAGD methods
in flow visualization. We see these applications in three ways:

practical unsteady flow data sets are defined on a fixed grid, we do not consider this extension
here.
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raw flow data

flow data
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choose interpolation
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Figure 4.2: Pipeline for flow visualization.

• The interpolation of flow data is a critical part of the visualization process
of flow data. Since interpolation issues are well studied in the CAGD
context, the results obtained there can be used to study the interpolation
problem of flow data. We do so in section 4.2.

• To visualize flow data, a number of techniques exist which are based on
the application of curves and surfaces. We study these in section 4.3.

• Similar to the design of curves and surfaces in CAGD, flow data can be
obtained not only by measurement and simulation but also by design.
We discuss the design process of flow data and its usefulness for flow
visualization in section 4.4.

Before starting to study these three applications of CAGD methods in flow
visualization, we summarize important properties of vector fields in section 4.1
to build a base for the sections 4.2-4.4.

4.1 Properties of Vector Fields

Collecting properties of a vector field, we start with the simplest case: a steady
2D vector field

v : E2 → IR2 (4.6)

(x, y) →
(
u(x, y)
v(x, y)

)
where E2 is a closed and compact subset of IE2. Furthermore we assume v to be
continuous and differentiable. Then the partial derivatives of v can be written
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as

vx(x, y) =
(

du
dx (x, y)
dv
dx (x, y)

)
=

(
ux(x, y)
vx(x, y)

)
vy(x, y) =

(
du
dy (x, y)
dv
dy (x, y)

)
=

(
uy(x, y)
vy(x, y)

)
. (4.7)

Higher order partials can be computed similarly. The Jacobian matrix Jv is a
2× 2 matrix which is defined in every point of the domain of the vector field by

Jv(x, y) =
(
ux(x, y) uy(x, y)
vx(x, y) vy(x, y)

)
. (4.8)

The determinant of Jv is called Jacobian of v.
A point x0 ∈ E2 is called a critical point iff v(x0) = (0, 0)T = 0 and v(x) �= 0

for any x �= x0 in a certain neighborhood of x0.
A tangent curve s(t) of the vector field v is a curve in E2 with

ṡ(t) = v(s(t)) (4.9)

for any t of the domain of s. In (4.9), ṡ denotes the tangent vector of s. Con-
sidering the vector field v as the velocity field of a steady flow, a tangent curve
describes the path of a massless particle set out at a certain location in the flow.
Thus the tangent curve in a steady vector field is also called stream line.

Tangent curves do not intersect each other (except for critical points of v).
Given a point in the flow, there is one and only one tangent curve through it
(except for critical points of v).

4.1.1 Classification of critical points

To classify a critical point in a 2D steady vector field, sectors of different flow
behavior around it have to be considered. Three kinds of sectors can be distin-
guished ([57]):

• In a parabolic sector either all tangent curves end, or all tangent curves
originate, in the critical point. Figure 4.3a shows an example.

• In a hyperbolic sector all tangent curves go by the critical point, except for
two tangent curves making the boundaries of the sector. One of these two
tangent curves ends in the critical point while the other one originates in
it. Figure 4.3b shows an example.

• In an elliptic sector all tangent curves originate and end in the critical
point. Figure 4.3c shows an example.

A critical point in a 2D vector field is completely classified by specifying number
and order of all sectors around it. Consider figure 4.4a2 for an example. This
critical point consists of 7 sectors in the following order: hyperbolic, elliptic,
hyperbolic, elliptic, parabolic, hyperbolic, hyperbolic.

2The visualization technique used for this (and the following) illustrations is called Inte-
grate&Draw and is described in section 4.3.3.2. For now it is sufficient to mention that the
behavior of the tangent curves can be detected quite well in this visualization.
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a)

c)b)

Figure 4.3: Sectors of a critical point; a) parabolic sector; b) hyperbolic sector; c)
elliptic sector (from [205]).
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Figure 4.4: a) general critical point; b) tangent curve separating two hyperbolic
sectors.

The different sectors are delimited by tangent curves originating or ending
in the critical point. Figure 4.4b shows such a tangent curve delimiting two
hyperbolic sectors.

Each critical point can be assigned an index:

index = 1 +
ne − nh

2
(4.10)

where ne is the number of elliptic sectors and nh is the number of hyperbolic
sectors. The index can also be interpreted as the number of counterclockwise
revolutions made by the vectors of v while traveling counterclockwise on a closed
curve around the critical point (the closed curve must be so tight to the critical
point that no other critical points are inside it).

The index can be considered as an overview of the complexity of a critical
point but does not cover the complete classification: there are critical points
with different sectors but the same index. For instance, both critical points in
figures 4.4a and 4.21 have an index of 0.

An further introduction to the classification of 2D critical points and their
indices can be found in [57].

A critical point x0 in the vector field v is called a first order critical point iff
the Jacobian does not vanish in x0; otherwise the critical point is called higher
order critical point. As shown in [87] and [88], the classification of critical points
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Figure 4.5: Classification of first order critical points; R1, R2 denote the real parts of
the eigenvalues of the Jacobian matrix while I1, I2 denotes its imaginary parts (from
[87]).

x0 = (x0, y0) in the vector field v simplifies if x0 is a first order critical point.
In this case a first order Taylor expansion

vT1,x0 =
(
ux(x0) uy(x0)
vx(x0) vy(x0)

)
·
(
x− x0

y − y0
)

(4.11)

of the flow around x0 is sufficient to obtain the complete classification of it.
(4.11) ensures that

Jv(x0) = JvT1,x0
(x0). (4.12)

It turns out that for det(Jv(x0)) < 0, the critical point x0 consists of 4 hyper-
bolic sectors and therefore has an index of -1. A critical point of this classifica-
tion is called a saddle point. In this case the eigenvectors of Jv(x0) denote the
delimiters of the hyperbolic areas around x0. For det(Jv(x0)) > 0, the critical
point x0 consists of one parabolic sector and therefore has an index of +1.

This classification of a first order critical point x0 with an index of +1 can
be refined by considering the eigenvalues of Jv(x0). Let R1, R2 be the real
parts of the eigenvalues of Jv(x0), and let I1, I2 be the imaginary parts of the
eigenvalues of Jv(x0). Then the refined classification following [87] is shown in
figure 4.5. Note that positive real parts denote a repelling behavior of the flow
while negative real parts indicate an attracting behavior. Non-zero imaginary
parts denote a circulating behavior of the flow.

4.1.2 Separatrices

Separatrices are tangent curves that divide the vector field into areas of different
flow behavior. Different types of separatrices are possible:
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a) b) c)

Figure 4.6: Types of separatrices; a) separatrix not touching a critical point (type 2);
b) separatrix not separating different sectors in the critical points (type 3); c) inner
separatrix is closed curve (type 4).

1. Each tangent curve originating/ ending in the critical point and separating
two sectors there is a separatrix. Figure 4.4b illustrates a separatrix which
separates two hyperbolic sectors of a critical point.

2. Separatrices may not touch any critical point. They may go ”from in-
finity to infinity” (or from one border line of the vector field to another
one). Figure 4.6a shows a vector field which consists of two attracting foci
(see classification in [87] and figure 4.5). The separatrix between the two
critical points does not touch any of them.

3. Separatrices may originate/ end in a critical point without separating
sectors there. Figure 4.6b gives an example of this. Here we have one
repelling node (middle) and two attracting nodes (left, right). Since each
node consists of only one parabolic sector, the separatrices shown in the
figure do not separate different sectors there.

4. Separatrices may be closed curves which do not touch any critical point.
Figure 4.6c gives an example. Here we have two critical points: a saddle
point and an attracting focus. The outer separatrix originates and ends
in the saddle point and is therefore a separatrix of type 1. The inner
separatrix of type 4 separates a region of inflow into the attracting focus
and a region of circulation around the attracting focus.

Separatrices of the type 1 were already treated in [87]. In [112] it was shown
that there exist more general separatrices. [195] gives an approach to extract
some of them by introducing and treating critical points at infinity. However,
the classification made above seems to cover all kinds of non-trivial separatrices
treated in [112] and [195].

4.1.3 Topology of a 2D vector field

The topology of a 2D vector field denotes one of its most important features.
It is completely described by detecting and classifying all critical points, and
finding all separatrices. The topology of a vector field describes the behavior of
the whole vector field in terms of only a small number of items. Thus it is a
useful tool for analyzing and visualizing vector fields. Vector field visualization
techniques which make use of the topology are discussed in section 4.3.2.1. The



74 CHAPTER 4. CAGD FOR FLOW VISUALIZATION

Figure 4.7: Rotated vector fields; if the solid arrows denote the vector field v, the
dashed arrows denote the vector field v[ π

4 ] (from [185]).

topology of vector fields can also be used to define distance functions of vector
fields. This will be discussed in section 4.1.6.

In the following we call a vector field topology which consist only of first
order critical points and separatrices of the type 1 a simple topology. Simple
topologies can extracted automatically using the approaches in [87].

4.1.4 Rotated and domain rotated vector fields

This section introduces two ways of obtaining a new vector field from a given
one: rotation and domain rotation. Both concepts will later be used to define
distance functions on vector fields (see section 4.1.6).

The concept of rotated vector fields was introduced in [185]. Given a vector
field v, a new vector field v[γ] can be obtained in the following way: for every
point (x, y) in the domain, the direction of v(x, y) is rotated counterclockwise
by the angle γ while the magnitude remains unchanged. Figure 4.7 gives an
illustration of v[ π

4 ].
The rotated vector field v[γ] can be computed from v by

v[γ](x, y) =
(

cos γ − sin γ
sin γ cos γ

)
· v(x, y). (4.13)

A special rotated vector field is the perpendicular vector field v⊥ of v which is
defined as

v⊥ = v[ π
2 ] =

( −v(x, y)
u(x, y)

)
. (4.14)

The rotation of a vector field keeps locations and indices of the critical points
unchanged. All other components of vector field topology may change under
rotation.

The concept of domain rotation of a vector field describes the rotation of the
domain of the vector field - including the vectors - around a critical point. This
way the tangent curves are rotated around the critical point as well.

Given the vector field v(x, y) with a critical point x0 = (x0, y0), the domain
rotated vector field v〈δ,x0〉 which is obtained by a counterclockwise domain ro-
tation around x0 by the angle δ can be written as
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a) b) c) d) e)

Figure 4.8: Domain rotated vector fields around a critical point x0; a) v = v〈0,x0〉;
b) v〈 π

8 ,x0〉; c) v〈 π
4 ,x0〉; d) v〈 3π

8 ,x0〉; e) v〈 π
2 ,x0〉.

v〈δ,x0〉 =
(

cos δ − sin δ
sin δ cos δ

)
· (4.15)

· v
(
((x, y)− (x0, y0)) ·

(
cos δ − sin δ
sin δ cos δ

)
+ (x0, y0)

)
.

Figure 4.8 shows example of domain rotated vector fields.
A domain rotation of a vector field v around the critical point x0 keeps only

the location of x0 while the locations of other critical points change. Neverthe-
less the classification of the critical points (see section 4.1.1) remains unchanged.

4.1.5 Derived measures

Given a 2D vector field, a variety of measures can be derived from it which may
be used for visualization purposes ([152], [64]):

• magnitude ‖v‖ =
√
u2 + v2

• velocity gradient ∇v = (ux, vy)T

• divergence div(v) = ∇ · v = ux + vy

where ∇ denotes the Nabla operator ∇ = ( d
dx ,

d
dy )

T . An introduction to the
concepts of ∇ and div can be found in [38].

Vector fields v with div(v) ≡ 0 are of special interest: they describe an
incompressible flow. For such a vector field, a scalar field s(x, y) can be found
in such a way that tangent curves of v coincide with the equipotential lines of
s, i.e.

v(x, y) =
( −sy(x, y)

sx(x, y)

)
(4.16)

The scalar field s is sometimes called stream function.

Another derived measure of a vector field is its curvature, which was studied
in [185]. Starting from the observation that for each point in the flow there is
exactly one tangent curve through it (except for critical points), we compute
the curvature of the tangent curve in each domain point of the vector field.

Given a (non-critical) point (x0, y0) in v, let s be the tangent curve through
(x0, y0). Furthermore, let s be parameterized in such a way that

s(t0) = (x0, y0) (4.17)
ṡ(t0) = v(s(x0, y0)). (4.18)
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(ṡ(t) denotes the tangent vector of s(t)). Then we can compute the second
derivative vector s̈ of s at t0 by applying the chain rule to (4.18):

s̈(t0) = (u · vx + v · vy)(x0, y0). (4.19)

Now we can easily compute the signed curvature of s in (x0, y0):

κ(t0) =
det [ṡ(t0), s̈(t0)]

‖ṡ(t0)‖3
. (4.20)

(4.18), (4.19) and (4.20) have the following consequence: in order to compute
the curvature of a tangent curve in a certain point of a vector field it is not
necessary to know the tangent curve itself. It is sufficient to know the vector
field v and its first order partials.

Inserting (4.18) and (4.19) into (4.20), we obtain a simple formula for the
curvature of the tangent curve in every point of the vector field:

κ(v) =
u · det[v,vx] + v · det[v,vy]

‖v‖3
. (4.21)

(4.21) describes a scalar field in the domain of the vector field v. This scalar
field describes the curvature of the tangent curve in every point of the domain.
In [185], this scalar field κ(v) is called the curvature of the vector field v. κ(v)
is only defined for non-critical points. It does not depend on the magnitudes
of the vectors in v. For the perpendicular vector field v⊥ we can compute its
curvature by inserting (4.14) into (4.21). This way we obtain

κ(v⊥) =
u · det[v,vy]− v · det[v,vx]

‖v‖3
. (4.22)

In section 4.3.3.3 the application of the curvature of vector fields for visual-
ization is discussed.

4.1.6 Metrics on 2D vector fields

In this section we study distance functions on vector fields. This issue recently
became evident for the assessment of compression algorithms for vector fields.
To evaluate a compression algorithm, the distance between the original and the
compressed vector field has to be considered.

One approach for a distance function on vector fields is to consider the local
deviation of direction and magnitude of the flow vectors in a certain number
of sample points. The vector field compression algorithms in [86] and [183] are
based on this approach. These distance functions give a fast comparison of
vector fields but do not take their topologies into consideration. In fact, two
vector fields with a significant different topology (and therefore different flow
behavior) may have a short distance to each other.

A first approach to find a distance function which is based on the topology
of vector fields is introduced in [122]. Here the critical points of the vector
fields to be compared are detected and matched: for each critical point in the
first vector field a corresponding critical point in the second vector field has to
be found, and vice versa. Then the distances between all corresponding critical
points are compared: their summation gives the distance of the two vector fields.
This way the computation of the distance of two vector fields is reduced to the
computation of the distance of critical points.
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Figure 4.9: Classification of first order critical points in (α, β) phase plane (following
[122]): RS (repelling star), RN (repelling node), D (degenerate - not a first order
critical point), S (saddle), AN (attracting node), AS (attracting star), AF (attracting
focus), C (center), RF (repelling star).

4.1.6.1 The (α, β) phase plane

The conceptional idea of how to compute the distance of two critical points in
[122] is to compute the amount of work which must be performed to transform
one critical point into the other. In [122] only first order critical points x0 in a
vector field v are considered. Based on the Jacobian matrix Jv(x0), the critical
point x0 is mapped into an (α, β) phase plane by

p = div(v)(x0) = (ux + vy)(x0)
q = det(Jv(x0))
α̂ = p (4.23)

β̂ = sign(p2 − 4q) ·
√
‖(p2 − 4q‖

α =
α̂√

α̂2 + β̂2

β =
β̂√

α̂2 + β̂2

.

This way the first order critical point x0 is mapped onto the unit circle in the
(α, β) plane.

Figure 4.9 shows the relation between the classification of first order critical
points in [87] (shown in figure 4.5) and the location in the (α, β) phase plane.
Note that the additionally introduced classes of critical points, attracting star
and repelling star, correspond to the conditions

attracting star: R1 = R2 < 0 , I1 = I2 = 0
repelling star : R1 = R2 > 0 , I1 = I2 = 0

in [87]. Then the distance of two first order critical points is simply the Euclidian
distance of their corresponding points in the (α, β) plane. This distance is called
EMD (earth mover’s distance) in [122].

The (α, β) phase plane in [122] has a number of useful properties which
correspond to the intuition of the distance of critical points:
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• Invariance under scaling of the vector field. The critical point x0 of the
vector field λ · v with λ > 0 has the same (α, β) coordinates as x0 in v.

• Invariance under domain rotation of the vector field around the critical
point. The (α, β) coordinates of the critical point x0 in the domain rotated
vector field v〈δ,x0〉 does not depend on the angle δ.

However, the (α, β) phase plane of [122] also has properties which do not corre-
spond to intuition:

• Inconsistent treatment of inverted vector fields. Given a first order critical
point x0 in a vector field v, a certain amount of work is necessary to con-
vert this critical point into the critical point of the vector field −v. Figure
4.10 shows an example of inverting a center and a repelling star. The
inverse of the center is a center as well and has therefore the same (α, β)
coordinates of (0,−1). The inversion of the repelling star (coordinates
(1, 0) in (α, β) space) is an attracting star with the (α, β) coordinates of
(−1, 0).

• Collapsing of critical points with different flow behavior (but similar topol-
ogy concerning [87]) into the same location in (α, β) space. To illustrate
this, figure 4.11 shows the critical point (0, 0) of the linear vector field

v(x, y) =
(

cos γ − sin γ
sin γ cos γ

)
·

 x

− 1−2
√
r(1−r)

1−2r y


for 18 different choices of γ and r. In particular, γ and r have been chosen
as

a) : γ = π
2 , r = 1; b) : γ = −π

2 , r = 1;
c) : γ = π

2 , r = 0.8; d) : γ = −π
2 , r = 0.8;

e) : γ = π
2 , r = 0.6; f) : γ = −π

2 , r = 0.6;

g) : γ = 0, r = 1
1+sin2 γ

; h) : γ = −π
8 , r =

1
1+sin2 γ

;
i) : γ = π

8 , r =
1

1+sin2 γ
; j) : γ = −π

4 , r =
1

1+sin2 γ
;

k) : γ = π
4 , r =

1
1+sin2 γ

; l) : γ = − 3π
8 , r =

1
1+sin2 γ

;

m) : γ = π
4 , r =

1
2 sin2 γ

; n) : γ = −π
4 , r =

1
2 sin2 γ

;
o) : γ = π

3 , r =
1

2 sin2 γ
; p) : γ = −π

3 , r =
1

2 sin2 γ
;

q) : γ = 5π
12 , r =

1
2 sin2 γ

; r) : γ = − 5π
12 , r =

1
2 sin2 γ

.

This way the critical points in figures 4.11a-f have (α, β) coordinates of
(0,−1); the critical points in figures 4.11g-l have (α, β) coordinates of
(1, 0); and the critical points in figures 4.11m-r have (α, β) coordinates of
(
√

2
2 ,−

√
2

2 ). This contradicts the observation that for instance the figures
4.11j and 4.11p are visually more similar than the figures 4.11m and 4.11p.

In [13] the approach of [122] is extended by considering not only the critical
points but also their connectivity. This way the distance of two vector fields
is not the sum of the distances of the critical points but the distance of two
graphs, in which the nodes describe the critical points, and the edges describe
the connectivity.
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a) b) c) d)

Figure 4.10: Inverted vector fields in (α, β) plane; a) center with (α, β) coordinates
(0,−1); b) inverse vector field of a) has the same (α, β) coordinates; c) repelling star
with (α, β) coordinates (1, 0); d) inverse vector field of c) has the (α, β) coordinates
(−1, 0).

a) b) c) d) e) f)

g) h) i) j) k) l)

m) n) o) p) q) r)

Figure 4.11: Different critical point with the same (α, β) coordinates; a-f: (α, β)
coordinates (0,−1); g-l: (α, β) coordinates (1, 0); m-r: (α, β) coordinates (
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2
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√
2

2
).

4.1.6.2 The (γ, r) phase plane

In this section we introduce a new metric for first order critical points which
does not have the disadvantages of the (α, β) phase plane described above. We
follow the conceptional idea of [122] that the distance of two critical points is the
amount of work which must be performed to transform one critical point into
the other. We base our approach on two concepts: the rotation of a vector field
(see section 4.1.4) and the scaling of the vector field into one direction. Both
operations perform a parameterized transformation between different critical
points and can therefore be interpreted as the amount of work to transform one
critical point into another.

The idea is to distinguish only between first order critical points which can-
not be transformed into each other by scaling and domain rotation. To do so,
we introduce the following definitions.

Given are two vector fields v and w which both have a first order critical
point in x0. The vector fields v and w are domain rotation equivalent in x0

(written (v,x0) ∼dre (w,x0)) iff their first order Taylor expansions around x0

(see (4.11)) can be transformed into each other by scaling and domain rotation,
i.e.
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(v,x0) ∼dre (w,x0) ⇐⇒ (4.24)
∃ δ ∈ [0, 2π] ∃λ > 0 : vT1,x0 = λ (wT1,x0)

〈δ,x0〉.

Furthermore we introduce the concept of normalized Jacobian: given a vector
field v with a first order critical point x0, we define the normalized Jacobian
dnorm in x0 as

dnorm(v(x0)) = 2
det(Jv)

u2
x + v2

x + u2
y + v2

y

(x0) = 2
ux vy − vx uy

u2
x + v2

x + u2
y + v2

y

(x0). (4.25)

The value dnorm can be interpreted as a scaling independent version of the
Jacobian. For any first order critical point, dnorm ranges between −1 and 1.
Furthermore, dnorm is invariant under scaling and domain rotation around x0

of the vector field. Thus dnorm is constant for domain rotation equivalent vector
fields: for two vector fields v and w with a first order critical point in x0 we get

(v,x0) ∼dre (w,x0) =⇒ dnorm(v(x0)) = dnorm(w(x0)). (4.26)

In a similar way to dnorm we introduce the normalized divergence divnorm
of the vector field v in the critical point x0 as

divnorm(v(x0)) =
div(v)√

2 (u2
x + v2

x + u2
y + v2

y)
(x0)

=
ux + vy√

2 (u2
x + v2

x + u2
y + v2

y)
(x0). (4.27)

The value divnorm can be interpreted as a scaling independent version of the
divergence. For any first order critical point, divnorm ranges between −1 and
1. Furthermore, divnorm is invariant under scaling and domain rotation around
x0 of the vector field. Thus divnorm is constant for domain rotation equivalent
vector fields: for two vector fields v and w with a first order critical point in x0

we get

(v,x0) ∼dre (w,x0) =⇒ divnorm(v(x0)) = divnorm(w(x0)). (4.28)

The phase plane we use here to classify first order critical points is the area inside
the unit circle where (γ, r) are the polar coordinates (γ ∈ [0, 2π], r ∈ [0, 1]). To
characterize this (γ, r) phase plane, we define a reference critical point for each
point of it. This is the critical point (0, 0) of the following vector field:

vγ,r(x, y) =
(

cos γ − sin γ
sin γ cos γ

)
·

 x

− 1−2
√
r(1−r)

1−2r y

 . (4.29)

vγ,r defines a vector field with a first order critical point in (0, 0) for each point
(γ, r) of the phase plane (γ ∈ [0, 2π], r ∈ [0, 1]). Figure 4.12 gives an illustration
of the reference critical points in the (γ, r) phase plane.

The system of reference critical points in the (γ, r) phase plane has the following
properties:
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Figure 4.12: Reference critical points in the (γ, r) phase plane.

• Critical points which lie on a circle r = const in the (γ, r) plane can be
transformed into each other by rotation:

vγ+α,r = vγ,r [α]. (4.30)

This follows directly from (4.29) and the definition (4.13) of rotated vector
fields.

• Critical points which lie on a ray through the origin r = 0 in the (γ, r)
plane can be transformed into each other by scaling of the y-component:

vγ,r2(x, y) = vγ,r1(x, λ y) (4.31)

with

λ =
(1− 2 r2)

(
1− 2

√
r1 (1− r1)

)
(1− 2 r1)

(
1− 2

√
r2 (1− r2)

) . (4.32)

This is a straightforward deduction from (4.29).
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Figure 4.13: a) normalized Jacobian dnorm of the reference critical points as height
field over the (γ, r) plane; b) normalized divergence divnorm of the reference critical
point as height field over the (γ, r) plane.

• The critical point in the center r = 0 of the (γ, r) plane deserves special
attention. For this point, a rotation of the corresponding vector field gives
only a domain rotated version of itself:

vγ,0 = v0,0
〈 γ

2 ,(0,0)〉. (4.33)

This follows as a straightforward exercise in algebra from (4.29) and (4.15).
This property can also be written as vγ1,0 ∼dre vγ2,0 for any γ1, γ2 ∈
[0, 2π].

• Considering the normalized Jacobian dnorm of the reference critical points
in the (γ, r) plane , we obtain

dnorm(vγ,r(0, 0)) = 2 r − 1. (4.34)

This follows from (4.25) and (4.29). Figure 4.13a illustrates the normalized
Jacobian of the reference critical point as a height field over the (γ, r)
plane.

• Considering the normalized divergence divnorm of the reference critical
points in the (γ, r) plane, we obtain

divnorm(vγ,r(0, 0)) =
√
r · cos γ. (4.35)

This follows from (4.27) and (4.29). Figure 4.13b illustrates the normalized
divergence of the reference critical point as a height field over the (γ, r)
plane.

• The normalized divergence of the perpendicular vector field of vγ,r is

divnorm(vγ,r⊥(0, 0)) = divnorm(vγ+ π
2 ,r

(0, 0)) = −√
r · sin γ. (4.36)

This follows from (4.27), (4.29) and (4.14).
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• The reference critical points in the (γ, r) plane yield the following classi-
fication of first order critical points following [87] and [122]: the critical
point (0, 0) of the reference vector field vγ,r is a

– saddle point (Sa) iff (γ = π
2 and r < 1

2 ) or (γ = −π
2 and r < 1

2 ) or
r = 0,

– repelling saddle (RSa) iff −π
2 < γ <

π
2 and 0 < r < 1

2 ,
– attracting saddle (ASa) iff π

2 < γ <
3
2π and 0 < r < 1

2 ,
– degenerate (D) - not a critical point - iff r = 1

2 ,
– center 1 (C1) iff γ = π

2 and 1
2 < r ≤ 1,

– center 2 (C2) iff γ = −π
2 and 1

2 < r ≤ 1,
– repelling focus 1 (RF1) iff 0 < γ < π

2 and 1
2 < r <

1
1+sin2 γ

,

– repelling focus 2 (RF2) iff −π
2 < γ < 0 and 1

2 < r <
1

1+sin2 γ
,

– attracting focus 1 (AF1) iff π
2 < γ < π and 1

2 < r <
1

1+sin2 γ
,

– attracting focus 2 (AF2) iff π < γ < 3
2π and 1

2 < r <
1

1+sin2 γ
,

– repelling star 1 (RS1) iff 0 < γ < π
2 and r = 1

1+sin2 γ
,

– repelling star 2 (RS2) iff −π
2 < γ < 0 and r = 1

1+sin2 γ
,

– attracting star 1 (AS1) iff π
2 < γ < π and r = 1

1+sin2 γ
,

– attracting star 2 (AS2) iff π < γ < 3
2π and r = 1

1+sin2 γ
,

– repelling node (RN) iff −π
2 < γ <

π
2 and 1

1+sin2 γ
< r ≤ 1,

– attracting node (AN) iff π
2 < γ <

3
2π and 1

1+sin2 γ
< r ≤ 1.

This classification of critical points has extensions to the classifications of
[87] and [122] in the following way:

– We distinguish between three kinds of saddle points. A saddle point
(in the sense of [87] and [122]) is a first order critical point which has
both inflow and outflow. A repelling saddle (RSa) has more outflow
than inflow, i.e. a positive divergence. An attracting saddle (ASa)
has more inflow than outflow and therefore a negative divergence. A
saddle point (Sa) has a zero divergence.

– The classes of points RF, RS, C, AF, AF are each subdivided into two
subclasses 1 and 2. Subclass 1 means that in a neighborhood of the
critical point all tangent curves turn to the left, i.e. they have non-
negative curvature (see section 4.1.5). In critical points of subclass
2, all tangent curves in a neighborhood turn to the right, i.e. have
non-positive curvature.

Figure 4.14 illustrates the location of the different classes of critical points
in the (γ, r) phase plane. Note that the curve r = 1

1+sin2 γ
defining at-

tracting and repelling stars is not an ellipse.

After showing that the system of reference critical points in the (γ, r) phase
plane has a number of useful properties, we still have to show that it describes
all first order critical points uniquely (except for domain rotation and scaling).
To do so, we formulate
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Figure 4.14: Classification of critical points in the (γ, r) phase plane.

Theorem 4 Given is a vector field v(x, y) with a first order critical point at
x0 = (x0, y0). Then there exists one and only one reference critical point in
the (γ, r) phase plane which is domain rotation equivalent to v. This reference
critical point is the critical point of vγ,r with

cos γ =
ux + vy√

(ux + vy)2 + (vx − uy)2
(x0) (4.37)

sin γ =
vx − uy√

(ux + vy)2 + (vx − uy)2
(x0) (4.38)

r =
1
2
+

ux vy − vx uy
u2
x + v2

x + u2
y + v2

y

(x0). (4.39)

(4.37) and (4.38) determine γ uniquely except for the case (ux + vy)(x0) =
(vx − uy)(x0) = 0. Since in this case we obtain r = 0 from (4.39), γ is of no
importance there.
To prove theorem 4 we assume that x0 = (0, 0). This is not a restriction because
v(x, y) can be transformed to v(x − x0, y − y0) which moves the critical point
to (0, 0).

Since vγ,r has to fulfill v(0, 0) ∼dre vγ,r(0, 0), we obtain (4.39) from (4.25),
(4.26) and (4.34). Similarly, (4.37) is obtained from (4.27), (4.28) and (4.35).
(4.38) follows from (4.27), (4.28), (4.36) and (4.14). Thus the only reference
critical point which is a candidate for being domain rotation equivalent to v is
vγ,r with γ, r described by (4.37)-(4.39). To show that this reference critical
point is indeed domain rotation equivalent to v, we have to find a domain
rotation angle δ and a scaling factor λ > 0 in such a way that

λ (vT1,x0)
〈δ,x0〉 = vγ,r. (4.40)
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Choosing δ and λ as

cos (2δ) =
u2
x + v

2
x − u2

y − v2
y√

(u2
x + v2

x − u2
y − v2

y)2 + 4 (uxuy + vxvy)2
(x0) (4.41)

sin (2δ) =
−2 (uxuy + vxvy)√

(u2
x + v2

x − u2
y − v2

y)2 + 4 (uxuy + vxvy)2
(x0) (4.42)

λ =
div(vγ,r(x0))
div(v(x0))

, (4.43)

(4.40) follows from (4.15), (4.37), (4.38), (4.39), (4.41), (4.42) and (4.43) 3. If

div(v(x0)) = 0, (4.43) has to be replaced by λ = div(vγ,r
⊥(x0))

div(v⊥(x0))
which yields

(4.40) as well. Thus theorem 4 is proven.

Theorem 4 shows that the γ, r phase plane gives a continuous one-to-one
representation of all first order critical points. Thus it can be used to compute
the distance of two first order critical points by mapping them into the γ, r
phase plane and computing their Euclidian distance there.

4.1.7 Unsteady vector fields

Up to here, section 4.1 has only treated steady 2D vector fields. This section
4.1.7 is for studying properties of unsteady 2D vector fields.

In (4.2) unsteady flow data was introduced. In the visualization pipeline,
this data has to be converted to unsteady vector fields.

An unsteady 2D vector field can be described as a 3D vector field

v(x, y, t) =

 u(x, y, t)
v(x, y, t)
a(x, y, t)

 (4.44)

where
a(x, y, t) ≡ 1 , ax = ay = at ≡ 0. (4.45)

The auxiliary dimension a(x, y, t) can be interpreted as the time component of
the vector field. Since time passes at a constant rate, we have a(x, y, t) ≡ 1.
The vector field v has a critical point iff u2+v2 = 0. In the rest of section 4.1.7,
v stands only for an unsteady vector field described by (4.44).

Projecting v into the planes t = const, we obtain another description of an
unsteady 2D vector field:

vp(x, y, t) =
(
u(x, y, t)
v(x, y, t)

)
. (4.46)

For steady vector fields we have introduced the concept of tangent curves. Its
extension to unsteady vector fields splits into four classes of curves: stream
lines, streak lines, path lines, and time lines. In the following we define all these

3Ones δ and λ are specified by (4.41)–(4.43), this is just a straightforward computation for
which one can use formula manipulation programs like Mathematica or Maple.
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Figure 4.15: Stream line ls of an unsteady flow.

x

y

t t=t0

(x0,y0,t0)

l

lp

Figure 4.16: Path line lp of an unsteady flow.

curves and show (following [188]) how to compute their curvatures as a local
property.

Stream lines are the tangent curves of vp. For every time and every location
there is one and only one stream line through it (except for critical points).

Figure 4.15 shows the computation of the stream lines for the time t = t0.
We consider the tangent curves of vp at this time. We obtain the curvature
of the stream lines by computing the first and second derivative vectors of the
stream line for every point of the domain of vp:

ẋstream(x, y, t) = vp(x, y, t) (4.47)
ẍstream(x, y, t) = (u · vpx + v · vpy)(x, y, t) (4.48)

κstream(x, y, t) =
det[ẋstream, ẍstream]

‖ẋstream‖3
(x, y, t). (4.49)

Path lines are obtained by setting out a particle and tracing its path in the un-
steady vector field. Therefore, path lines are projections of the tangent curves
of v into a plane t = const. For every location and every time there is one and
only one path line through it (except for critical points).

Considering figure 4.16, the curve l is the tangent curve of v through the
point (x0, y0, t0). The curve lp is the projection of l into the plane t = t0.
The curvature of the path line through (x0, y0, t0) is the curvature of lp in this
point. To compute it, we express the first and second derivative vectors of l in
(x0, y0, t0):

ẋl = v , ẍl = u · vx + v · vy + a · vt. (4.50)
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Figure 4.17: Streak line ls of an unsteady flow.

Projecting ẋl and ẍl into the plane t = t0 and taking (4.45) into consideration
we obtain the first and second derivatives of the path line in (x0, y0, t0):

ẋpath(x, y, t) = vp(x, y, t) (4.51)
ẍpath(x, y, t) = (u · vpx + v · vpy + vpt)(x, y, t). (4.52)

Then the curvature of the path line through (x0, y0, t0) is

κpath(x, y, t) =
det[ẋpath, ẍpath]

‖ẋpath‖3
(x, y, t). (4.53)

A streak line is the location of all particles set out at one point at different
times. To illustrate this, consider figure 4.17. Suppose a particle is set out at
(x0, y0, t0). The path of the particle is the tangent curve l1 of the vector field
v. l1 might pass the location (x1, y1) at the time t1 (t0 ≤ t1). We consider two
more particles set out at (x0, y0) but a short time before and after t0, i.e. we
set out particles at (x0, y0, t0 − dt) and (x0, y0, t0 + dt). They follow the tan-
gent curves l2 and l3 of v. Suppose l2 passes the location (x2, y2) at the time
t = t1, and l3 passes the location (x3, y3) at the time t = t1. Then (x1, y1, t1),
(x2, y2, t1) and (x3, y3, t1) lie on a streak line ls through (x1, y1, t1). Converging
dt to 0, we might compute tangent direction and curvature of ls in (x1, y1, t1).

Computing the curvature of streak lines gives the following two problems:

• A streak line through (x1, y1, t1) is not uniquely defined. Another choice
of t0 might lead to another streak line through (x1, y1, t1).

• Computing a streak line through (x1, y1, t1), we have to compute the tan-
gent curve l1 of v. This is in general only possible by integrating l1
numerically - a procedure we want to avoid.

To deal with these problems there are two solutions:

1. We consider only the special case t0 = t1. This way a streak line through
(x1, y1, t1) is uniquely defined, and we do not have to trace the tangent
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Figure 4.18: Time line lt of an unsteady flow.

curves. Unfortunately, in this case the streak line through (x1, y1, t1)
coincides with the stream line through (x1, y1, t1) computed above. So
this case is of less interest.

2. Setting t0 = t1, the direction of the streak lines coincides with the direction
of the stream lines: ẋstreak = ẋstream = vp. Setting t0 = t1 − dt, the di-
rection of the streak lines might be ẋdt, which usually differs from ẋstreak.
Then we want to define the ”curvature” of streak lines as a measure of
how much the directions of ẋstreak and ẋdt differ. In other words: the
”curvature” of streak lines is a measure of how ”strongly” the directions
of the streak lines change while varying the time t0 (when the particles are
set out) around t1 (when the streak lines are considered). The choice of
the concept ”curvature” is justified in the following similarity to the usual
curvature concept of curves: The curvature of a curve can be considered
as a measure of how much the tangent direction changes while varying the
location on the curve.

To compute the ”curvature” of streak lines, we have to compute

ẍstreak = lim
dt→0

ẋstreak − ẋdt
dt

. (4.54)

From (4.54) we obtain

ẋstreak(x, y, t) = vp(x, y, t) , ẍstreak(x, y, t) =
(
ut(x, y, t)
vt(x, y, t)

)
(4.55)

and can compute the curvature of the streak lines by

κstreak(x, y, t) =
det[ẋstreak, ẍstreak]

‖ẋstreak‖3
(x, y, t). (4.56)

Time lines are obtained by setting out particles located on a line at a fixed time
and tracing them in the unsteady flow.

Consider figure 4.18. Suppose a particle is set out at (x0, y0, t0). The path
of the particle is the tangent curve l1 of v. The curve l1 might pass the location
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(x1, y1) at the time t1 (t0 ≤ t1). We consider two more particles set out at the
time t = t0: (x0 − dx, y0 − dy, t0) and (x0 + dx, y0 + dy, t0). These points and
(x0, y0, t0) are located on a straight line in the plane t = t0. Let these particles
follow the tangent curves l4 and l5 of v. Suppose l4 passes the location (x4, y4)
at the time t = t1, and l5 passes the location (x5, y5) at the time t = t1. Then
(x1, y1, t1), (x4, y4, t1) and (x5, y5, t1) lie on a time line lt through (x1, y1, t1).

The choice of a particular time line through (x1, y1, t1) depends on two pa-
rameters: the choice of t0 and the choice of the straight line in the plane t = t0.
Thus a time line through (x1, y1, t1) is not uniquely defined. We therefore can-
not compute its curvature as a local property.

Since topology has been proven to be an important feature for the analysis
and visualization of steady 2D vector fields, it seems obvious to also consider
the topology of unsteady vector fields. However, the treatment of the topology
of unsteady vector fields seems not to be defined and studied yet in the context
of scientific visualization. The reasons for that are the following:

• To classify a critical point of a steady flow, we examined the behavior of
the tangent curves around it. Due to the existence of different classes of
tangent curves for unsteady vector fields, the approach of steady vector
fields cannot be directly applied here.

• Critical points in unsteady vector fields may change their location, collapse
or appear/disappear over time. These phenomena have to be considered
in defining the topology of unsteady vector fields.

• The concept of separatrices of steady vector fields cannot be directly ex-
tended to unsteady vector fields because of the different classes of tangent
curves.

However, the definition and visualization of the topology of 2D unsteady vector
fields seems to be a challenging future research subject.

4.1.8 3D vector fields

For a 3D vector field, many of its properties can be obtained by a straight-
forward generalization of the 2D case (sections 4.1.1–4.1.7). In addition there
are some properties which appear only for 3D vector fields and do not have 2D
counterparts.

Given a 3D vector field

v : E3 → IR3 (4.57)

(x, y, z) →
 u(x, y, z)

v(x, y, z)
w(x, y, z)


where E3 is a closed and compact subset of IE3, the Jacobian matrix here is a
3× 3 matrix

Jv(x, y, z) =

 ux(x, y, z) uy(x, y, z) uz(x, y, z)
vx(x, y, z) vy(x, y, z) vz(x, y, z)
wx(x, y, z) wy(x, y, z) wz(x, y, z)

 . (4.58)
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b)a)

Figure 4.19: 3D first order critical point visualized by showing the classification of
the 2D critical points in the eigenplanes; a) type (RN,RN,RN), b) type (Sa,Sa,AN);
(from [12]).

The definition of tangent curves and critical points is similar to the 2D case.
Given any (non-critical) point in the 3D vector field, there is one and only one
tangent curve through it.

A general classification of 3D critical points, similar to the 2D case in section
4.1.1, seems not to exist because the sectors of different flow behavior (parabolic,
elliptic, hyperbolic) which define the 2D classifications do not have counterparts
in 3D. Only for the case of 3D first order critical points (i.e. critical points x0

with det(Jv(x0)) �= 0), extensions from the 2D classification of [87] exist. To
show them, the eigenvectors of Jv(x0) are computed. These vectors define
three eigenplanes which intersect each other in x0. Then the vector field in the
eigenplanes are classified as 2D vector fields. This way a first order 3D critical
point x0 is characterized by three 2D critical points in the eigenplanes of x0.
Figure 4.19a shows an example of a critical point of the type (RN,RN,RN): in
all three eigenplanes the resulting vector field has a repelling node (RN). To
visualize the three eigenplanes, a cube-like 3D icon is placed at the locations
of the critical points. Figure 4.19b shows a critical point of the type (Sa, Sa,
AN): two eigenplanes show a saddle point while the remaining eigenplane gives
an attracting node.

A classification of 3D first order critical point which is based on the eigen-
plane approach can be found in [29], [148] and [12].

The concept of separatrices of 3D vector fields also seems not to have been
used for visualization purposes. While separatrices for 2D vector fields are
certain tangent curves, separatrices for 3D vector fields are tangent surfaces
which makes their treatment far more complicated.

The concept of rotated vector fields also seems not to exist for the 3D case
because to specify a rotation in 3D we do not have to determine a rotational
center point but a center axis.

Most of the derived measures of 2D vector fields have direct extensions into
3D. In addition there are measures of 3D vector fields which do not have 2D
counterparts:

• rotation rot(v) = ∇× v =

 wy − vz
uz − wx
vx − uy


• vorticity ω = v · rot(v).
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A nice explanation of the concepts of rot(v) can be found in [38].

Similarly to the curvature of 2D vector fields, the curvature of 3D vector fields
can be computed as a local property of the vector field. Given a (non-critical)
point (x0, y0, z0) in the 3D vector field v defined by (4.57), let s be the tangent
curve through (x0, y0, z0). Furthermore, let s be parameterized in such a way
that

s(t0) = (x0, y0, z0) (4.59)
ṡ(t0) = v(s(t0)) (4.60)

where ṡ(t) denotes the tangent vector of s(t). Then we can compute the second
derivative vector s̈ of s at t0 by applying the chain rule to (4.60):

s̈(t0) = (uvx + v vy + w vz)(x0, y0, z0). (4.61)

Applying the chain rule one more time to (4.61), we can compute the third
derivative ṡ̇̇ of s as

ṡ̇̇(t0) = ( u (uvx + v vy + w vz)x + v (uvx + v vy + w vz)y
+w (uvx + v vy + w vz)z )(x0, y0, z0)

= ( u (ux vx + uvxx + vx vy + v vyx + wx vz + w vzx) (4.62)
+ v (uy vx + uvxy + vy vy + v vyy + wy vz + w vzy)
+ w (uz vx + uvxz + vz vy + v vyz + wz vz + w vzz) )(x0, y0, z0).

Then we can compute the curvature of s in (x0, y0, z0) as

κ(t0) =
‖ṡ(t0)× s̈(t0)‖

‖ṡ(t0)‖3
. (4.63)

Inserting (4.60) and (4.61) into (4.63) gives the formula for the curvature κ(v)
at any point of the vector field v. Note that (4.63) describes the curvature of a
3D curve and is therefore always non-negative.

For a 3D tangent curve we can not only compute its curvature as a local
property; its torsion (see [55]) can also be computed as local property. The
torsion at a point (x0, y0, z0) in the vector field v can be computed by inserting
(4.60), (4.61), (4.62) into

τ(t0) =
det[ṡ(t0), s̈(t0), ṡ̇̇(t0)]

‖ṡ(t0)× s̈(t0)‖2
. (4.64)

This way the torsion τ(v) of the 3D vector field v is defined as a scalar field
which describes the torsion of the tangent curve at any point of the flow.

For the 2D case we also introduced the curvature of the perpendicular vector
field. The analogue to the perpendicular vector field in 2D is normal surfaces in
3D. A normal surface of a 3D vector field is a surface with the property that for
any point on the surface the surface normal and the vector of the vector field
have the same direction. From this definition follows that for every point in the
flow there exists one and only one normal surface through it. Computing the
Gaussian curvature K(v) and the Mean curvature H(v) of the normal surface
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in every point of the vector field v, we obtain two more derived scalar fields
from a 3D vector field. For the Gaussian Curvature K(v) we obtain (see [185],
[205]):

K(v) =
k

4 · ‖v‖4
(4.65)

with

k = (4 vy wz − v2
z − w2

y − 2 vz wy)u2

+(4ux wz − 2wx uz − w2
x − u2

z) v
2

+(4ux vy − v2
x − 2 vx uy − u2

y)w
2

+(2 (uz vz + uz wy + wx vz + wx wy)− 4 (uy wz + vx wz))u v
+(2 (uy wy + vx wy + uy vz + vx vz)− 4 (vy uz + vy wx))uw
+(2 (vx uz + uy uz + vx wx + uy wx)− 4 (ux vz + ux wy)) v w.

For the Mean Curvature H(v) we obtain (see [185], [205]):

H(v) =
h

2 · ‖v‖3
(4.66)

with

h = (−vy − wz)u2 + (−ux − wz) v2 + (−ux − vy)w2

+(uy + vx)u v + (uz + wx)uw + (vz + wy) v w.

H(v) can also be written as

H(v) = −div(v̄)
2

with v̄ = v
‖v‖ is the normalized vector field of v. The application of K(v) and

H(v) for visualization purposes is discussed in section 4.3.3.4.

A first approach to defining a topology based metric on 3D vector fields can
be found in [12]. There the distance of two first order critical points is ob-
tained by computing the distances of the corresponding 2D critical points in
the eigenplanes. To compute these 2D distances, the distance approach of [122]
(described in section 4.1.6.1 of this work) was used. Approaches to incorporate
higher order topologies or connectivity information of the critical points seem
not to exist yet.

Similarly to 2D unsteady vector fields, a 3D unsteady vector field can be defined
as

vp(x, y, z, t) =

 u(x, y, z, t)
v(x, y, z, t)
w(x, y, z, t)

 . (4.67)

Also similarly to 2D unsteady vector fields, the concepts of stream lines, streak
lines, path lines and time lines can be defined. We obtain for the curvatures
κstream, κpath, κstreak of stream lines, path lines and streak lines:
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ẋstream = ẋpath = ẋstreak = v

ẍstream = uvx + v vy + w vz
ẍpath = uvx + v vy + w vz + vt
ẍstreak = vt

κstream(x, y, z, t) =
‖ẋstream × ẍstream‖

‖ẋstream‖3
(x, y, z, t)

κpath(x, y, z, t) =
‖ẋpath × ẍpath‖

‖ẋpath‖3
(x, y, z, t)

κstreak(x, y, z, t) =
‖ẋstreak × ẍstreak‖

‖ẋstreak‖3
(x, y, z, t).

However, the curvature of 3D unsteady vector field seems not to have been
applied for visualization purposes yet.

4.2 Interpolating Flow Data

It is the purpose of this section to introduce the most common interpolation
schemes for flow data and discuss their applicability for certain visualization
problems.

Interpolation is a well-studied issue in CAGD. Given a set of points in IE3,
there is a variety of approaches to construct an interpolating curve or surface
through these points. To choose a particular interpolation scheme, the following
demands may be considered for curves and surfaces:

• continuity of the interpolation
The interpolant is required to have a certain algebraic continuity (Ci) or
geometric continuity (Gi). (See [55] for an introduction on Ci and Gi

continuity)

• minimization of certain measures (bending energy, arc length, area)

• preservation of certain geometric properties (convexity, shape)

• fairness/ aesthetic look of the interpolant.

Among the existing interpolation schemes, the class of piecewise (bi)polynomial
interpolations is the most popular one. Bézier- or B-spline curves and surfaces
are applied both for sample points on a grid structure and for scattered data
points.

For flow data, principally the same schemes as for surfaces exist, but the de-
mands on the interpolant may differ. Thus also the criteria for the choice of
an appropriate interpolation scheme for flow data are different to the curve and
surface case. The demands for flow data are

• continuity of the interpolation
Here the concept of Ci continuity of the obtained vector field exists sim-
ilar to the curve and surface case. A concept of geometric continuity for
vector fields seems not to exist. Instead, a certain algebraic or geometric
continuity of the tangent curves may be demanded.
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• topology of the interpolant
A certain topology of the vector field should be preserved or obtained.

(Theoretically one might also think of interpolation schemes which minimize
certain properties, but this seems not to have been done yet in the context of
scientific visualization.)

As we will see in the following, studying the topological behavior of certain
interpolation schemes is rather complicated .In general we can make the follow-
ing statement about the interpolation of flow data: as long as only a certain
continuity of the interpolant matters, the interpolation schemes from the CAGD
context can be directly applied for flow data interpolation. If the topology of
the obtained vector field is additionally considered, new research on the appli-
cability of the interpolation scheme has to be done, since the concept of vector
field topology does not have a direct counterpart in the surface context4.

The rest of this section 4.2 is organized as follows: sections 4.2.1 and 4.2.2
introduces the most common interpolation schemes for 2D flow data: piece-
wise linear or bilinear interpolation. Section 4.2.3 discusses the application of
higher order (bi)polynomial interpolation schemes. In section 4.2.4, interpola-
tion schemes for 3D flow data are discussed. Finally, section 4.2.5 treats the
question of which interpolation scheme is appropriate for a given flow data set,
especially under consideration of topological aspects.

4.2.1 Piecewise linear interpolation of 2D flow data

A piecewise linear interpolation of a 2D vector field is the most popular inter-
polation for 2D scattered flow data. The scattered sample points of the flow
data are triangulated; inside each triangle a linear interpolation of the vectors
at its vertices is applied.

Given the sample points x1,x2,x3 with the assigned vectors v1,v2,v3, the
interpolated vector field inside the triangle x1,x2,x3 can be written in barycen-
tric coordinates as

v(x1, x2, x3) = x1 x1 + x2 x2 + x3 x3 (4.68)

with x1 + x2 + x3 = 1. Figure 4.20a gives an illustration. An introduction to
the concept of barycentric coordinates can be found in [55].

There is a one-to-one correlation between a piecewise linear interpolation
and first order critical points. A linearly interpolated vector field has up to one
non-degenerate critical point; this critical point is always a first order critical
point. Conversely, each first order critical point can be constructed from a linear
vector field.

Joining two piecewise linear vector fields along a common line, we get in
general a globally C0 interpolated vector field. Note that the tangent curves
of a C0 vector field are always C1 continuous. To show that a piecewise linear
interpolation does not generally yield higher order continuities for the vector
field or the tangent curves, consider figure 4.20c. This figure shows the curvature
plot5 of the vector field shown in figure 4.20b. The color discontinuities across

4There exist concepts of surface topology but they do not directly correlate to the topology
of vector fields.

5The curvature plot of a vector field is discussed in section 4.3.3.3. Here it is sufficient to
know that for each point of the domain of the vector field the curvature of the tangent curve
through it is computed and continuously color coded.
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x1

x3

x2

v1

v3

v2

a) c)
b)

Figure 4.20: a) linear vector field inside the triangle x1,x2,x3; b) piecewise linear
vector field consisting of two domain triangles; c) curvature plot of b) reveals that the
tangent curves in b) are not curvature continuous.

the boundaries of the domain triangles denote that the tangent curves are not
globally curvature continuous, thus also not C2 continuous. From this we can
deduce that the piecewise linear vector field shown in figure 4.20b is not C1

continuous.

4.2.2 Piecewise bilinear interpolation of 2D flow data

A piecewise bilinear interpolation is the standard for interpolating 2D flow data
on rectangular grids: given the grid points xi,j ,xi+1,j ,xi+1,j+1,xi,j+1 and their
assigned vectors vi,j ,vi+1,j ,vi+1,j+1,vi,j+1 on a rectangular grid, the vectors
inside the rectangle xi,j ,xi+1,j ,xi+1,j+1,xi,j+1 are computed as

v(x, y) = (1− x)(1− y)xi,j + x (1− y)xi+1,j (4.69)
+ (1− x) y xi,j+1 + x y xi+1,j+1

where (x, y) ∈ [0, 1]2 are the local coordinates inside the rectangle.
To compute the critical points of a bilinear vector field, we have to solve

v(x, y) = (0, 0)T where v(x, y) is given by (4.69). This ends with solving a
quadratic equation, the solution of which gives up to two critical points. If we
obtain two distinct critical points x01,x02, it can be shown6 that

det(Jv(x01)) = −det(Jv(x02)). (4.70)

This gives that both critical points are of first order; one is a saddle while the
other has either attracting-, center-, or repelling behavior7 .

If the solutions x01,x02 of (4.69) collapse to a non-degenerate critical point,
we obtain a critical point with an index of 0, i.e. this is not a first order critical

point. Figure 4.21a shows the bilinear vector field v(x, y) =
(
x− 2 y + 10x y
x− 2 y − 5x y

)
in the domain (x, y) ∈ [−1, 1]2. This vector field has a critical point of an in-
dex 0 at (0, 0) which consists of two hyperbolic sectors. The critical point

(0, 0) of the bilinear vector field v(x, y) =
(
x+ 2 y + 10x y
x+ 2 y − 5x y

)
in the domain

6This is a straightforward computation for which a formula manipulation program like
Mathematica or Maple can be used.

7Note that (4.70) is in general not true for the normalized Jacobian defined in (4.25); i.e.
in general we have dnorm(Jv(x01)) �= −dnorm(Jv(x02)).
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a) b)
h
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Figure 4.21: a) critical point with index 0 of a bilinear vector field with two hyperbolic
sectors; b) critical point with index 0 of a bilinear vector field with two hyperbolic and
one parabolic sectors.

(x, y) ∈ [−1, 1]2 which is shown in figure 4.21b has also the index 0 but consists
of two hyperbolic and one parabolic sectors.

Joining two piecewise bilinear vector fields along a common line gives in
general a global C0 interpolant; the tangent curves of the vector field are globally
C1.

4.2.3 Piecewise higher order polynomial interpolation of
2D flow data

Given a scattered flow data set, instead of a piecewise linear interpolation on
a triangulation, a piecewise quadratic, cubic, or higher order polynomial inter-
polation may be applied. Strategies to achieve a higher order continuity of the
vector field can be directly taken from the CAGD context. For instance, to ob-
tain a globally C1 continuous vector field (with globally C2 tangent curves), a
quintic Clough-Tocher interpolant (see [11] and [55]), a quadratic Powell-Sabin
interpolant (see [153], [55], and [164] especially for vector fields), or Nielson’s
C1 interpolant (see [140], and [164] especially for vector fields) may be applied.

Unfortunately, applying higher order polynomial interpolations to scattered
vector data may create unwanted changes in the topology of the vector field:
the number of critical points may increase, and collapsing them may lead to
new higher order critical points.

A quadratic vector field may have up to four critical points. For example,
figure 4.22a shows the quadratic vector field

v(x, y) =
(

(5x− 10 y + 1)(5x− 10 y + 4)
(10x− 5 y − 1)(10x− 5 y − 4)

)
in the domain [0, 1]3. This vector field has the four critical points

(
1
5 ,

1
5

)
,
(

2
5 ,

3
5

)
,(

3
5 ,

2
5

)
,
(

4
5 ,

4
5

)
.

A cubic vector field may have up to 9 critical points. For example, figure
4.22b shows the cubic vector field

v(x, y) =
(

(14x− 40 y + 3)(14x− 40 y + 13)(14x− 40 y + 23)
(42x− 20 y − 1)(42x− 20 y − 11)(42x− 20 y − 21)

)
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a) b)

Figure 4.22: a) quadratic 2D vector field with 4 critical points; b) cubic 2D vector
field with 9 critical points.

in the domain [0, 1]3. This vector field has the 9 critical points
(

1
14 ,

1
10

)
,
(

5
14 ,

1
5

)
,(

9
14 ,

3
10

)
,
(

3
14 ,

2
5

)
,
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)
,
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5

)
,
(

5
14 ,
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)
,
(

9
14 ,

4
5

)
,
(

13
14 ,

9
10

)
.

In general, a polynomial vector field of degree n has up to n2 critical points.
Applying higher order polynomial vector fields may not only create new first

order critical points, their collapsing may also lead to the appearance of higher
order critical points.

If the flow data set is on a rectangular grid, one can apply a higher order
bipolynomial interpolation instead of the bilinear interpolation. Here similar
statements to the case of polynomial interpolation apply: the construction of
higher order continuous vector fields is well-understood while the controlled
treatment of higher order critical points is rarely investigated. Applying a bi-
quadratic interpolation, up to 8 critical points may appear. Figure 4.23a shows
the biquadratic vector field

v(x, y) =

 (x− 1
5 )(y − 2

5 )(x− 3
5 )(y − 4

5 )

(x− 2
5 )(y − 1

5 )(x− 4
5 )(y − 3

5 )


in the domain [0, 1]3. This vector field has the 8 critical points
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)
,
(

3
5 ,

1
5

)
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)
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)
,
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)
,
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4
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4
5

)
,
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)
.

A bicubic vector field may produce up to 18 critical point. Figure 4.23b
shows the bicubic vector field

v(x, y) =

 (x− 1
7 )(y − 2

7 )(x− 3
7 )(y − 4

7 )(x− 5
7 )(y − 6

7 )

(x− 2
7 )(y − 1

7 )(x− 4
7 )(y − 3

7 )(x− 6
7 )(y − 5

7 )


in the domain [0, 1]3. This vector field has the 18 critical points
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)
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)
. In general, a bipolynomial in-

terpolation of degree n produces up to 2n2 critical points.
A globally C1 or C2 continuous vector field can be achieved by applying an

interpolating Bézier- or B-spline surface approach (see [55]).
Generally we can make the following statement about higher order

(bi)polynomial interpolation: principally they are able to represent higher order
critical points, but it is non-trivial (or even impossible) to control this process.
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a) b)

Figure 4.23: a) biquadratic 2D vector field with 8 critical points; b) bicubic 2D vector
field with 18 critical points.

In fact it is rather hard to detect higher order critical points in a higher order
(bi)polynomial interpolation.

4.2.4 Interpolation of 3D flow data

For 3D scattered flow data, the standard interpolation technique is a piecewise
linear interpolation over a tetrahedrization of the sample points. Given the
sample points x1, x2, x3, x4 ∈ IE3 with the vectors v1, v2, v3, v4 ∈ IR3, the
vector field inside the tetrahedron x1, x2, x3, x4 is given by

v(x1, x2, x3, x4) = x1 v1 + x2 v2 + x3 v3 + x4 v4 (4.71)

where (x1, x2, x3, x4) are the barycentric coordinates of a location relative to
the vertices x1, x2, x3, x4, i.e. x1 + x2 + x3 + x4 = 1.

As in the 2D case, there is a one-to-one relation between linear vector fields
and first order critical points. A linear 3D vector field has up to one non-
degenerate critical point which is of first order. Conversely, every 3D first order
critical point can be constructed by a first order linear vector field.

Instead of a piecewise linear interpolation, piecewise higher order polynomial
interpolation may be applied to obtain a higher order continuity of the vector
field and its tangent curves. A quadratic vector field may have up to 8 critical
points. In general, a polynomial vector field of the degree n has up to n3 distinct
first order critical points.

For 3D flow data on a 3D rectangular grid, a piecewise trilinear interpolation
over each grid cell is the most common approach. Doing so, up to 6 distinct first
order critical points may appear inside a grid cell. For example, the trilinear
vector field

v(x, y, z) =


(x− 1

10 )(y − 2
10 )(z − 3

10 )

(x− 4
10 )(y − 5

10 )(z − 6
10 )

(x− 7
10 )(y − 8

10 )(z − 9
10 )


in the domain [0, 1]3 has the 6 critical points
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,
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7
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)
. This fact has the following

consequences:
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• Since the detection of critical points in a piecewise trilinear vector field
ends in solving polynomials of degree 6, no closed solution of this problem
exists. Instead, numerical solutions have to be applied.

• The first order critical points of a trilinear vector field may collapse to
higher order critical points.

In general, a trilinear interpolation gives a globally C0 vector field (with globally
C1 tangent curves). A higher order continuity of the vector field can be achieved
by applying a piecewise higher order tripolynomial interpolation. As in the
2D case, this increases the number of possible critical points (and therefore
the number of possible higher order critical points by collapsing the first order
critical points). In general, a tripolynomial vector field of degree n has up to
6n3 critical points.

4.2.5 Choosing the appropriate interpolation

After introducing different kinds of interpolation schemes on flow data, this
chapter treats the problem of choosing an appropriate one for a given flow data
set. The choice depends on the following aspects:

1. The desired continuity of the vector field

If a globally C0 continuous vector field is sufficient, linear or bilinear (or
trilinear) interpolations are appropriate. The desired continuity depends
on the grid resolution and on the visualization technique to be chosen. If
the grid cells have approximately pixel size, the interpolation issue does
not play an important role. In this case a piecewise (bi/tri)linear inter-
polation (or even a piecewise constant interpolation) is sufficient. If the
visualization technique to be used is based on first order approximations of
the vector field (for instance numerical integration of tangent curves, see
section 4.3.1.1), a piecewise (bi/tri)linear interpolation is also sufficient:
more accurate interpolation results will be destroyed by the visualization
process in this case.

2. Additional information about the topology of the vector field to be con-
structed

If for a given flow data set it is known that higher order critical points
appear in the flow, interpolation methods which can treat these critical
points should be applied. Such additional information about the topology
can be obtained in two ways:

• The appearance of higher order critical points may be predicted due
to symmetry reasons. For instance, the ideal flow around a ship pro-
peller consisting of 6 symmetric segments might produce a critical
point with 6 similar regions. Another example for the appearance of
higher order critical points are magnetic fields inside coils or trans-
formers (see [162]).

• Higher order critical points may be predicted by estimations on the
usual piecewise (bi)linear interpolation. If the (bi-)linear interpola-
tion contains clusters of first order critical points, it may be assumed
that the original flow has a higher order critical point in this cluster.
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a) b)

Figure 4.24: Piecewise bilinear vector field on a regular 4 × 4 grid; a) Integrate and
Draw; b) curvature plot.

3. Information about the history of the flow data

If the flow data is obtained by a numerical simulation based on a finite
element analysis, higher order critical points are already excluded in the
step of creating the flow data. Thus higher order critical points do not
have to be considered for the visual analysis. If the flow data is obtained
by measuring a real flow at certain sample points, the appearance of higher
order critical points has to be taken into consideration.

4. Computing costs

Higher order interpolations are more computing intensive than (bi)linear
interpolations. The enhancement of their application has to be weighted
against the additional computing costs.

Taking the points mentioned above into consideration, the interpolation problem
for flow data can be formulated as follows: Given a flow data set, an interpolation
of a certain demanded continuity has to be specified which is able to reproduce
topologies of a certain order in a controlled way. Furthermore, this interpolation
should not exceed a certain amount of computing cost.

Obviously, we have to find a compromise between these demands. To illus-
trate that this is not trivial, consider the flow data set on a regular 4× 4 data
set shown in figure 4.24a. The application of a piecewise bilinear interpolation
gives a globally C0 vector field with C1 tangent curves. The curvature plot of
this vector field (figure 4.24b) shows discontinuities between the grid cells. This
shows that the tangent curves are not curvature continuous, thus they are not
C2 continuous, thus the vector field is not globally C1.

To obtain a globally C1 continuous vector field, a piecewise biquadratic
interpolation may be applied, as shown in figure 4.25. The smooth curvature
plot in figure 4.25b is a (necessary) indicator that the vector field is indeed C1

continuous. Unfortunately, the biquadratic interpolation creates a number of
new critical points (figure 4.25a). In fact, the cell in the middle of the grid now
has 8 critical points while the piecewise linear interpolation did not have any
critical point.

To remove these unwanted critical points and preserve the C1 continuity of
the vector field, a piecewise bicubic interpolation may be applied, as illustrated
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a) b)

Figure 4.25: Piecewise biquadratic vector field on a regular 4 × 4 grid; a) Integrate
and Draw; b) curvature plot.

a) b)

Figure 4.26: Piecewise bicubic vector field on a regular 4 × 4 grid; a) Integrate and
Draw; b) curvature plot.

in figure 4.26. Here we can clearly see that this vector field has the same topol-
ogy as the bilinear one in figure 4.24, but the smooth curvature plot indicates
the C1 continuity.

Up to now, little research has been done on the issue of finding an appropriate
interpolation of given flow data. The first approach to use higher order poly-
nomial interpolation for a controlled representation of higher order topologies
can be found in [162] and [163]. There the polynomial vector field is described
in terms of Clifford Algebras. This way the approach is able to represent the
index of a higher order critical point exactly. The exact order of the segments
around the critical point cannot be controlled as well as the joint of the higher
order vector field with adjacent linear interpolations is not C0 continuous. So
the approach in [162] and [163] follows the strategy of focusing on an exact
representation of the index of the critical points at the expense of the global
continuity of the vector field.

The converse approach is introduced in [164]. There a higher order global
continuity of the interpolant is emphasized; for two well-known C1 interpola-
tion schemes on a triangulation, the Sabin-Powell interpolant and Nielson’s C1

interpolant, the impact of their application to the topology is studied. In [164]
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it was shown that these interpolation schemes produce better representations
for higher order critical points than a piecewise linear interpolation. However,
an exact and controlled representation is still not possible.

One approach to giving an exact and controlled representation of higher
order critical points is in [194]. There a piecewise linear interpolant is chosen
with the special property that the critical point lies on a vertex of the underlying
triangulation. Originally introduced for the simplification of vector fields, this
approach can be used to deal with higher order critical points of any topology.

Another approach to dealing with vector fields of any topology is described
in section 4.4 of this work. Here for any given topology a piecewise linear vector
field of exactly this topology is constructed. Approaches to considering general
2D topologies and a general smoothness of a vector field are still unknown.

4.3 Curves and Surfaces for Flow Visualization

Considering the pipeline for flow visualization in figure 4.2 again, we now focus
on the mapping step. In this step a suitable visualization technique for the
vector field has to be chosen.

In the past decade a variety of visualization techniques for vector fields
have been developed. It is not the purpose of this chapter to survey these
techniques; surveys of vector field visualization techniques can be found in [152]
and [167]. Instead we want to focus on techniques which use curves and surfaces
for visualization. Since curves and surfaces are able to encode higher amounts
of information, they are candidates for such large data sets like flow data and
the vector fields derived from them.

The existing visualization techniques can be divided into three classes (see
[167]): elementary methods, local methods, and global methods. Each of these
classes of methods is treated in one of the sections 4.3.1 – 4.3.3.

4.3.1 Elementary methods

Elementary methods show properties of the vector field at a number of selected
locations. The simplest representatives of these class of methods are arrow plots.
Here we treat tangent curves and stream surfaces.

4.3.1.1 Visualizing tangent curves

In section 4.1 we introduced the concept of tangent curves for vector fields.
Since they describe the path of a massless particle in a steady flow, the drawing
of a certain number of tangent curves may give an intuitive impression of the
flow. Indeed, techniques which visualize tangent curves or their properties are
widespread and common in vector field visualization. To draw tangent curves,
two problems have to be solved:

1. The tangent curves have to be integrated

2. A selection of which tangent curves to draw has to be made.

To 1.: Tangent curves are usually given in an implicit representation of (4.9).
For a visualization, an explicit representation as a parametric curve would be
optimal. Unfortunately, for sufficiently complicated vector fields, no explicit
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Figure 4.27: Stream line of a flow of a Bay area of the Baltic Sea near Greifswald
(Greifswalder Bodden); data set provided by department of Mathematics of the Uni-
versity of Rostock.

description of the tangent curves exists. In fact, an explicit representation
of the tangent curves exists only for piecewise linear vector fields. In [141] a
representation of tangent curves of a linear vector field as parametric exponential
curve is described. In section 4.4 of this work we use the fact that under certain
conditions a tangent curve of a linear vector field is a quadratic curve segment
to construct vector fields of a given topology.

If the vector field is more complicated than piecewise linear, numerical in-
tegration methods have to be applied. Here the standard method is a fourth
order Runge-Kutta method (see [167]). [64] gives a comparison of other known
integration techniques.

Numerical integration techniques of tangent curves are based on a local lower
order Taylor expansion of the vector field. Thus their numerical integration
involves a certain inaccuracy of the tangent curves. Unfortunately, these inac-
curacies are increased as the integration proceeds. Especially in areas around
higher order critical points the inaccuracies of the numerical integration meth-
ods may destroy the exact topology of these critical points. A study on the
accuracy of numerical tangent curve integration methods can be found in [129].

To 2.: Tangent curves in a vector field are dense. To visualize them, a se-
lection of the tangent curves to be visualized has to be done. Here two extreme
cases have to be avoided: if the tangent curves are too close to each other, they
tend to be not distinguishable any more. On the other hand, if the tangent
curves are too far away from each other, important information may be missed.
There are several strategies for placing an appropriate number of stream lines.
In figure 4.27, all stream lines passing the grid points of a certain rectangular
grid8 are drawn. As a result we have an overview of the flow behavior in most
parts of the flow. Nevertheless there are regions where the stream lines are too

8This grid is not necessarily the grid of the original flow data set.
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a) b) c)

Figure 4.28: a) stream surface; b) stream tube; c) stream objects; (from [180]).

dense or too coarse.
More involved tangent curve selection methods exist. In [104] an approach

is introduced to control the distance of adjacent tangent curves. In [196] the
stream line selection is guided by visual attributes.

For 3D vector fields the treatment of tangent curves works principally in the
same way. Due to ambiguous projections of the 3D curves onto the 2D screen
the problem of getting an appropriate selection of tangent curves becomes even
more important. In [213], 3D illuminated stream lines are used to enable the
user to recognize the location in space.

For unsteady vector fields, stream lines, streak lines, path lines or time lines
may be visualized. Doing so, the ideas and problems are principally the same
as for tangent curves in a steady vector field.

An approach similar to the visualization of tangent curves is particle trac-
ing. Here a tangent curve is represented by the trajectory of a small particle
over time. The problems of computing the path of the particle coincide with
the problems of computing tangent curves.

4.3.1.2 Stream surfaces, stream objects

Stream surfaces are generalizations of tangent curves in a 3D vector field. The
idea is to consider not only the path of one particle but the paths of all particles
set out on an initial curve. This curve may be a line segment (resulting in a
stream surface) or a circle (resulting in a stream tube). In a similar way, the
approach of particle tracing can be extended to stream objects by considering
the location of a particle set originally located on a certain surface over time.
Figure 4.28 gives an illustration of stream surfaces, stream tubes, and stream
objects.

Similarly to tangent curves, stream surfaces and stream objects are generally
computed by numerically integrating a certain number of tangent curves and
connecting them. If two adjacent tangent curves on a stream surface move too
far away from each other, the tracing of an additional tangent curve between
them may be started. Approaches to finding an explicit parametric description
of stream surfaces do not seem to exist in the context of scientific visualization.

4.3.2 Local methods

As elementary methods, local methods show properties of the vector field in
selected points. In addition, information from the neighborhood of the selected
points is visualized as well. From the variety of existing local techniques we treat
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a) b)

Figure 4.29: a) 2D vector field; b) topological skeleton.

the following which make use of curves/surfaces and their properties: topological
skeletons, flow ribbons, and local probes.

4.3.2.1 Visualizing the topological skeleton

In section 4.1.3 we introduced the topology of a vector field as consisting of
critical points and separatrices. Visualizing these two features of a vector field
gives a topological skeleton which allows the user to infer the behavior of the
vector field in any point. This idea was introduced in [87] and [88] to scientific
visualization. For 2D vector fields with a rather simple topology (i.e. the number
of critical points and separatrices is not too large), this method gives a very
effective and intuitive graphical representation of the vector field. However,
if the topology is more complicated, topology simplification algorithms ([43],
[194]) may be applied. Except for the computing costs and overlaying effects
in the visualization for vector fields with a rich topology, the visualization of
topological skeletons suffers from two more drawbacks:

• If the vector field contains higher order critical points, they are hardly
detectable in such a way that the correct order of the different areas of
flow behavior around a critical points is obtained. Thus the separatrices
originating and ending in this higher order critical point can generally not
be detected and visualized correctly.

• If a separatrix does not originate or end in a critical point and separate
two regions of different flow behavior there (i.e. if the separatrix is not of
type 1 - see section 4.1.2), it may be missed out by the topology extraction
step.

However, the topological skeleton has been proven to be a successful technique
for vector fields containing only first order critical points and separatrices of the
type 1 (see section 4.1.2). Figure 4.29b illustrates the topological skeleton of
the vector field shown in figure 4.29a.

Due to the still undefined concept of topology for unsteady 2D vector fields,
extensions of the concept of topological skeleton to this class of vector fields
seem not to exist.
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Figure 4.30: A local probe which represents – among other measures – the curvature
of the tangent curve in the selected locations of the vector field (from [44]).

To extend the method to 3D vector fields, [69] gives an approach to represent
the topology of a first order critical point while the concept of separatrices seems
not to have been used yet for visualization purposes.

4.3.2.2 Flow ribbons

Flow ribbons are based on tangent curves in a 3D vector field. There the tangent
curves are not visualized as line segments but as narrow ruled surfaces following
the flow. (See [55] for an introduction to ruled surfaces). This way additional
information can be coded into size and orientation of the ruled surface. One
common measure to be encoded by flow ribbons is the rotation (a vector field
- see section 4.1.8) in each point of the tangent curve. This vector defines
orientation and size of the ribbon in every point (see [96]).

Since flow ribbons are based on the integration of tangent curves, all ad-
vantages and disadvantages of tangent curves (described above) apply as well.
The rotation of the vector field can be directly computed in each point of the
tangent curve; no further numerical problems in computing the ruled surface
appear.

4.3.2.3 Probes

The idea of probes is to place certain 3D icons at selected locations of the vector
field. These icons encode local properties of the vector field in this point. These
properties may be geometric properties of curves and surfaces. [44] introduces a
local probe which encodes – among others – the curvature of the tangent curve
in the selected points. See figure 4.30 for an illustration. Probes which encode
other curve and surface properties like torsion of the tangent curve or Gaussian
and Mean curvature of the perpendicular surfaces (see section 4.1.8) are possible
as well.

4.3.3 Global methods

Global methods show the behavior of the entire vector field. Hence they do not
focus on certain locations in the vector field. The general approach is to map
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a) b) c)

d)

Figure 4.31: Examples of LIC images; a) electrostatic field of a dipole; b) flow around
a cylinder; c) electrostatic field of a Benzene molecule; d) electrostatic field of a water
molecule; data sets courtesy of Konrad-Zuse-Institut Berlin (Germany); (images from
[156]).

relevant properties of the vector field to a scalar field which can be rendered
using standard techniques.

Among the existing global methods there are a number of methods which
use curves and surfaces – directly or indirectly by visualizing their properties –
for encoding the important information on the vector field. Here we treat the
techniques LIC and Spot Noise, Integrate&Draw, and curvature plots.

4.3.3.1 LIC and Spot Noise

LIC (Line Integral Convolution, [26]) and Spot Noise ([198]) are techniques
which map a 2D vector field into a 2D scalar field which emphasizes the recog-
nition of the behavior of all tangent curves. Following the fact that the recog-
nition of tangent curves gives an intuitive visual impression of the vector field,
LIC and Spot Noise create scalar fields which show as many tangent curves as
possible without overlaying them.

The idea of Spot Noise is to transform a certain input texture in the vector
field into the direction of the flow.

LIC uses a grey-valued noisy input texture and convolutes this into the
flow direction (see [26] and [167] for details). This way the resulting texture
changes its color only slightly in flow direction while rapid changes appear in
the direction perpendicular to the flow. Although the resulting texture may
look rather blurry, it gives a good impression of the behavior of the vector field.
Figure 4.31 shows LIC images for a number of vector fields.

To apply LIC, a local numerical tangent curve integration has to be applied
for each pixel. This procedure makes LIC rather time consuming. The FAST
LIC algorithm introduced in [178] speeds up the LIC algorithm significantly.
Using the fact that most of the information computed to obtain the color of
a certain point in the vector field can be reused to compute the color of the
adjacent points into flow direction, [178] applies the convolution not pixelwise
but along the stream lines. To do so, [178] provides strategies to select tangent
curves in such a way that each pixel is covered by at least one tangent curve. If
a pixel is covered by more than one tangent curve, its final color is obtained by
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a) b) c)

d)

Figure 4.32: Examples of Integrate&Draw images show a visual improvement to the
LIC images of figure 4.31; a) electrostatic field of a dipole; b) flow around a cylinder;
c) electrostatic field of a Benzene molecule; d) electrostatic field of a water molecule;
data sets courtesy of Konrad-Zuse-Institut Berlin (Germany); (images from [156]).

averaging the colors of the tangent curves through it.
The LIC concept has been extended in various ways. In order to additionally

visualize the orientation of the flow, [203] uses asymmetric filter kernels. [60],
[14] and [131] apply LIC to vector fields on surfaces. [61] and [173] use LIC for
unsteady flows, while [101] and [155] study LIC for 3D vector fields. LIC and
Spot Noise are compared in [42].

4.3.3.2 Integrate&Draw

Starting from the idea of LIC, [156] goes a step further to create scalar fields
of a 2D vector field, which enables the user to recognize the behavior of the
tangent curves. As in the FAST LIC case, a set of tangent curves has to be
found which covers all pixels at least once. Instead of using these tangent curves
to convolute an input textures, [156] simply draws each of them in a random
grey color. If more than one tangent curve passes a pixel, a weighted average
of their grey values is computed as

ḡ =
g1 + 2 g2 + ...+ n gn

1 + 2 + ...+ n

where ḡ is the final grey value of a pixel covered by n tangent curves with the
grey values g1, ..., gn. This weighted average ensures that for high numbers of
tangent curves in a pixel the average grey value does not converge to 0.5.

The application of LIC gives images where the tangent curves are clearer
visible than in the LIC case. Figure 4.32 illustrates this. [156] states that the
computation cost of Integrate&Draw is also lower than for FAST LIC.

4.3.3.3 2D curvature plots

In section 4.1.5 we introduced the curvature κ(v) of a 2D vector field v as a
derived scalar field. A logical next step is to try to use this scalar field as a
global visualization technique for vector fields.

Following [185], we want to visualize the curvature κ of a 2D vector field in
the following way: compute κ for every point of the domain and color code these
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e) f)

g) h)

i) j)

k) l)

Figure 4.33: Linear vector field with saddle point (a..d); linear vector field with
repelling focus (e..h); linear vector field with center (i..l).

values. To do this we use a continuous color coding map with the following
properties: a negative value is mapped to a green color, a positive value is
mapped to a red color. The higher the magnitude of the value the lighter the
color gets. A zero value gives black; if the value diverges to plus (minus) infinity
the red (green) color tends to white.

The pictures a-d of figure 4.33 give an example of the vector field v(x, y) =(
1
3

)
x +

(
4
1

)
y. This linear vector field has a critical point at (0, 0) - a

repelling saddle. Figure 4.33a shows its numerical tangent curve integration.
Figure 4.33b is the visualization of its curvature. Figures 4.33d and 4.33c show
the same for the perpendicular vector field v⊥. In this case, v⊥ has a repelling
saddle at (0, 0) as well.

The reason for visualizing the curvature of both v and v⊥ is shown by
considering the following visualization properties:

In the curvature visualization b) of figure 4.33 the critical point appears as
highlight. Considering (4.21), κ(v) tends to infinity only if the denominator
of κ tends to 0. This occurs only at critical points. Therefore, a highlight in
the curvature visualization always indicates a critical point in the vector field.
The reverse question arises: does every critical point produce a highlight in the
curvature visualizations? The answer is yes, if we exclude certain degenerate
points. A degenerate critical point of a vector field v is a critical point where the
directions of the vectors of v do not change in the neighborhood of the critical
point. For non-degenerate critical points, we have the following

Theorem 5 In the neighborhood of a non-degenerate critical point of a 2D
vector field v, the curvature of v or v⊥ (or both curvatures) tend to infinity.

An exact definition of a degenerate critical point and the proof of this theorem
can be found in [185]. The same theorem can be formulated in the following
way: non-degenerate critical points in a vector field v always produce highlights
in the visualization of the curvature of v or v⊥.

Considering the curvature visualizations b) and c) of figure 4.33 again, an-
other question arises: Do the curvature visualizations of v and v⊥ contain all
information about v ? The answer is given by

Theorem 6 Given are two 2D vector fields v1 and v2 which have non-constant
direction fields. If κ(v1) = κ(v2) and κ(v1

⊥) = κ(v2
⊥) then the directions of

the vectors of v1 and v2 coincide in every point.
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c) d)

e) f)

g) h)

i) j)

k) l)

Figure 4.34: Higher order saddle point (a..d); critical point with two elliptic sectors
(e..h); dipole (i..l).

See [185] for a proof. Theorem 6 has an interesting consequence: the curvatures
of v and v⊥ together contain all information about the directions of the vectors
in v. Therefore, the curvatures of v and v⊥ contain all information about the
topology of v. This statement is true for vector fields of general topology.

Pictures e-h of figure 4.33 show a linear vector field with a repelling focus.
Figure 4.33e is the numerical stream line integration, figure 4.33f is the curvature
visualization. Figures 4.33h and 4.33g show the same for the perpendicular
vector field. The repelling focus appears completely green around the highlight
in the curvature visualization and completely red in the curvature visualization
of the perpendicular vector field. Figures 4.33 i-l show the visualization of
a center. It appears completely green around the highlight in the curvature
visualization (figure 4.33j) and has 4 different areas (colored red or green) each
of 90 degrees in the perpendicular curvature visualization (figure 4.33k).

Figure 4.34 shows a collection of higher order critical points. None of these
points can be treated using the topology methods of [87] but their curvature
visualization gives a fairly good impression of them. Figures 4.34 a-d show
a saddle point with 4 pairs of tangent curves through it. In the curvature
visualization (figure 4.34b) we have eight differently colored sections around the
critical point. The perpendicular field (figure 4.34c) has eight different sections
as well. Figure 4.34 e-h shows the visualization of the vector field v(x, y) =
(y2, x2)T in the range [−1, 1] × [−1, 1]. This vector field has a critical point
with two elliptic sections in (0, 0). Observing the stream line integration (figure
4.34e), this critical point may be missed. The curvature visualization (figure
4.34f) shows it clearly as a highlight with six differently colored sections around
it. Here the visualization of the perpendicular curvature has two differently
colored areas (figure 4.34g). Figures 4.34 i-l show the visualization of a vector
field describing a dipole. Both the visualization of its curvature (figure 4.34j) and
its perpendicular curvature (figure 4.34k) show two differently colored sections
around the highlighted critical point.

A general algorithm which infers the topology of higher order critical points
from the curvature visualizations is still unknown. Nevertheless, the higher
order critical points of figure 4.34 can be clearly distinguished from the first
order critical points of figure 4.33 by their curvature visualizations.

An implementation of the curvature of 2D vector fields (as well as Integrate
& Draw) has been realized in the system CurVis. This system also uses adap-
tive image generation to provide flow visualizations to remote clients over the
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a) b)

c) d)

Figure 4.35: Linear vector field with a first order critical point of the type
(RN,RN,RN); a) curvature κ(v); b) Gaussian curvature K(v); c) Mean curvature
H(v); a) torsion τ(v); (from [205]).

internet9.
Another concept of curvature of vector fields is used [207]. There the vector

field is converted into a scaler field called level set. The local curvature of the
isosurfaces of this level set is computed and used as input of an optimization
process of the vector field.

4.3.3.4 3D curvature plots

In [205] the usage of curvature plots was extended to the visualization of 3D
vector fields. As shown in the previous section, in the 2D case the curvature of a
vector field v and the curvature of its perpendicular vector field v⊥ were useful
features for visualization. The scalar fields we consider for a 3D vector field are
the curvature κ(v) of the tangent curves, the torsion τ(v) of the tangent curves,
the Gaussian curvature K(v) of the normal surfaces, and the Mean curvature
M(v) of the normal surfaces (see section 4.1.8).

In [205] the behavior of these scalar fields around first order critical points
is studied. The results are somewhat similar to the 2D case: around first order
critical points at least one of the scalar fields κ, τ,K,H tends to infinity. Thus
the visualization of these scalar fields enables the user to visually detect critical
points. The topological classification of the 3D critical points can also be ob-
tained from these scalar fields. To visualize these 3D scalar fields, [205] extracts
a number of isosurfaces using a Marching Cubes-like algorithm on an adapted
octree structure. Depending on the shapes of the isosurfaces around a 3D crit-
ical point, its topological classification can be inferred. Figure 4.35 shows the
visualization of curvature, torsion, Gaussian curvature and Mean curvature of a
vector field around around a first order critical point of the type (RN,RN,RN)10 .

9Curvis can be accessed at
http://www.informatik.uni-rostock.de/Projekte/movi/IIS/curvisrdr.html

10This abbreviation means that in each eigenplane of the Jacobian matrix in the critical
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Figure 4.36: Linear vector field with a first order critical point of the type (AN,Sa,Sa);
a) curvature κ(v); b) Gaussian curvature K(v); c) Mean curvature H(v); a) torsion
τ(v); (from [205]).

Figure 4.36 shows the same features around a first order critical point of another
type (AN,Sa,Sa)11 .

Although [205] shows the usefulness of the visualization of the scalar fields
for detecting and classifying first order critical points, their behavior around
general 3D critical points is still unknown. This is mainly due to the fact that a
classification of general 3D critical points does not seem to exist in the context
of scientific visualization.

In [160] the curvature and torsion of a vector field is used to detect vortex
core lines.

4.4 Design of Vector Fields

Up to here, the vector fields we have considered for visualization were obtained
from measured or simulated flow data sets. This section introduces a new way
of obtaining vector fields: by design. The design of vector fields is strongly
related to the ideas of curve and surface design in the CAGD context.

In CAGD, a curve/surface is designed by interactively moving a skeleton of
control points. Out of this skeleton of control points, the resulting curve/surface
is constructed. The skeleton is supposed to contain the essential information of
the curve/surface in an intuitive way.

Transferring these ideas to the construction of vector fields, we have to find a
skeleton of a vector field which describes the essential information of the vector
field. As introduced in section 4.1.3, the topological skeleton is a good candidate
for this.

point the 2D vector field has a repelling node behavior.
11This abbreviation means that in one eigenplane of the Jacobian matrix in the critical point

the 2D vector field has an attracting node behavior, while in the two remaining eigenplanes
the 2D vector fields have saddle points.
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The construction of vector fields out of their topological skeletons has the
following applications:

• As shown in section 4.3.2.1, for sufficiently complicated vector fields of
general topology it is impossible to determine their exact topology. Hence
it is impossible to judge if a new visualization technique represents the
topology of a given vector field correctly. The topology-based construction
of vector fields gives vector fields of a known topology of any complexity.
These vector fields may serve as test data to evaluate the topological
behavior of flow visualization techniques.

• For simple vector fields, the topological skeleton can be extracted auto-
matically; based on this skeleton a new vector field can be constructed,
which may be a compressed version of the original one consisting of ex-
actly the same topology. Thus a construction of vector fields can be used
for vector field compression.

The rest of this section 4.4 is organized in the following way: section 4.4.1
introduces how to describe the topological skeleton of a vector field as a set of
control points and -polygons. Section 4.4.2 constructs a vector field out of this
set of control points. Section 4.4.3 applies this method for the compression of
vector fields.

4.4.1 Control polygons to describe the topological ske-
leton

In CAGD, the skeleton of a curve/surface is described by a set of control poly-
gons. In a similar way we want to describe the topological skeleton of a 2D
vector field as a certain set of control polygons.

Since the topology of a 2D vector field consists of critical points and separa-
trices, we have to find control polygons both for critical points and separatrices.
As introduced in section 4.1.1, a critical point is topologically classified by the
sectors of different flow behavior. These sectors are separated by separatrices.

To describe a critical point consisting of n different sectors, we use a convex
closed polygon (p0, ...,pn−1) and a point p inside this polygon. Then p denotes
the location of the critical point while the n separatrices are denoted by the n
line segments (p,p0), (p,p1), ..., (p,pn−1). Since each separatrix has either an
inflow or outflow behavior, each of the line segments (p,p0), (p,p1), ..., (p,pn−1)
has to be marked either as inflow or outflow. Then the n areas of different flow
behavior are defined by the n triangles (p,pi,p(i+1) mod n) for i = 0, ..., n − 1.
If for an area (p,pi,p(i+1) mod n) both separatrices (p,pi) and (p,p(i+1) mod n)
denote inflow (or both areas denote outflow), the triangle (p,pi,p(i+1) mod n) de-
scribes a parabolic sector. Otherwise it has to be additionally specified whether
the area should describe a hyperbolic or elliptic sector. Figure 4.37a illustrates
the control polygon for a critical point consisting of 7 areas of different flow
behavior.

Special treatment is necessary for first order critical points of an index of +1.
Considering the (γ, r) phase plane classification of critical points introduced in
section 4.1.6.2, these are all critical points with r > 1

2 . These critical points
consist of only one parabolic sector; thus the general treatment described above
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Figure 4.37: a) control polygon of a critical point consisting of 7 areas of different flow
behavior: hyperbolic, elliptic, hyperbolic, elliptic, parabolic, hyperbolic, hyperbolic;
b) control polygon of a first order critical point of index +1 with (γ, r) coordinates of(

π
4
, 9

10

)
.

fails. To describe them we use a rectangle (p0,p1,p2,p3) with ‖p1 − p0‖ =
‖p2 − p1‖ = ‖p3 − p2‖ = ‖p0 − p3‖. Then the location p of the critical
point is the center of the rectangle. In addition, for one of the vertices (for
instance p0) the flow direction vector v0 has to be specified. Then the rectangle
(p0,p1,p2,p3) shall describe a first order critical point in p with the following
(γ, r) coordinates:

γ = angle(p0 − p,v0)

r =
1
2
+

r1 r2
r12 + r22

with r1 = ‖p2 − p0‖ and r2 = ‖p3 − p1‖. The orientation of the whole rectan-
gle denotes the domain rotation component of the critical point. Figure 4.37b
illustrates the control polygon of a first order critical point with the (γ, r) co-
ordinates of

(
π
4 ,

9
10

)
.

To design separatrices, we search for a curve scheme which has to fulfill two
conditions. On the one hand we need a curve scheme of a high flexibility and
smoothness which can model even complicated shapes by smooth curves. On
the other hand we have to keep the curve scheme simple enough to construct
vector fields with exactly these curves as tangent curves.

We have chosen a piecewise G1 (tangent direction) continuous quadratic
Bézier spline curve approach. As we will see later in section 4.4.2, this class of
curves can nicely be incorporated into a piecewise linear vector field. The Bézier
polygons of the curves are the control polygons of the separatrices. Figure 4.38
illustrates an example. Note that these control polygons must not intersect any
of the control polygons of the critical points.

To illustrate the complete construction of the topological control polygon, we
construct the topological skeleton of a certain vector field of higher order topol-
ogy as shown in figure 4.39. First we construct the control polygons of 3 higher
order critical points as shown in figure 4.39a. As we can see in this figure, the
upper critical point consists of 4 hyperbolic sectors, the critical point in the
middle consists of 5 hyperbolic and one elliptic sectors, while the lower critical
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Figure 4.38: Separatrix as a piecewise G1 continuous Bézier spline curve.

point consists of 4 hyperbolic and one parabolic sectors. In the next step, three
more first order critical points of index +1 are constructed as shown in figure
4.39b. Then the separatrices are designed as piecewise G1 quadratic Bézier
spline curves, as shown in figure 4.39c. The result is a complete topological
skeleton as shown in figure 4.39d.

The example above also gives an answer to the question of what size the
control polygons for the critical points should have: they should be as large as
possible, but sufficiently small not to intersect each other and to leave enough
space to construct the separatrices in an appropriate resolution.

4.4.2 Constructing a vector field from a topological skele-
ton

In this section we describe how to convert the topological skeleton described in
section 4.4.1 into a vector field of exactly the specified topology.

The vector field we obtain will be a piecewise linear vector field. To apply
this class of vector fields, two problems have to be solved:

1. How to describe higher order critical points using piecewise linear vector
fields?

2. How to describe piecewise quadratic separatrices using piecewise linear
vector fields?

Problem 1: To solve this problem, we adapt the main idea of [194]. Given the
closed polygon (p0, ...,pn−1) and the the critical point p inside this polygon,
we construct the following initial triangulation: p is assigned with the zero
vector v = (0, 0)T ; pi is assigned with the vector vi = λi (pi − p) with λi �= 0
for i = 0, ..., n − 1. The sign of λi depends on the inflow/outflow behavior
of the separatrix (p,pi). A positive λi gives an outflow separatrix while a
negative λi gives an inflow separatrix. The magnitudes of λi can be freely
chosen at this stage of the modeling process. To avoid numerical problems, it
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Figure 4.39: Constructing a topological skeleton: a) design control polygons of general
critical points; b) design control polygons of first order critical points of index +1; c)
design control polygons of separatrices; d) the final topological skeleton.

is recommended that all λi have approximately the same magnitude. For the
following applications we have chosen λi = ±1. Then the initial triangulation to
describe the critical point is given by the triangles (p,pi,p(i+1) mod n) with the
assigned vectors (v,vi,v(i+1) mod n) for i = 0, ..., n− 1. Figure 4.40a illustrates
this initial triangulation for the example shown in figure 4.37a.

If a sector (p,pi,p(i+1) mod n) describes a hyperbolic sector, a linear interpo-
lation of the vectors (v,vi,v(i+1) mod n) inside the triangle (p,pi,p(i+1) mod n)
is applied. Figure 4.40b illustrates this for all hyperbolic sectors of the example.
Also a linear interpolation is applied for all parabolic sectors, as shown in figure
4.40c.

If the sector (p,pi,p(i+1) mod n) describes an elliptic sector, the triangle
(p,pi,p(i+1) mod n) has to be refined by inserting an auxiliary point qi with an
assigned auxiliary vector wi, and considering the two new triangles (p,pi,qi)
and (p,qi,p(i+1) mod n). Describing qi and wi by
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Figure 4.40: a) initial triangulation for the example shown in figure 4.37a; b) linear
interpolation in all hyperbolic sectors; c) linear interpolation in all parabolic sectors.

qi = αp+ β pi + γ p(i+1) mod n

wi = − (
δ vi + εv(i+1) mod n

)
with α+ β + γ = 1 and β, γ, δ, ε > 0, we formulate the following constraints for
qi,wi:

• The triangles (p,pi,qi) and (p,qi,p(i+1) mod n) must not create new sep-
aratrices by applying a linear interpolation inside them, i.e.

det( (1− t)pi + tqi − p , (1− t)vi + twi ) �= 0
det( (1− t)qi + tp(i+1) mod n − p , (1− t)wi + tv(i+1) mod n ) �= 0

for 0 < t < 1.

• The piecewise linear vector field over the two triangles (p,pi,qi) and
(p,qi,p(i+1) mod n) is curvature continuous (see (4.21))

• δ2 + ε2 → min.

These three conditions form a minimization problem with boundary conditions.
It has a unique solution for α, β, γ, δ, ε and therefore for qi and wi:

qi =
1
2

(
pi + p(i+1) mod n

)

wi =


1
2

λi

λ(i+1) mod n

(
vi + v(i+1) mod n

)
for − λi

λ(i+1) mod n
≥ 1

1
2

λ(i+1) mod n

λi

(
vi + v(i+1) mod n

)
for − λi

λ(i+1) mod n
< 1

where λi, λ(i+1) mod n are obtained from vi = λi (pi − p) and
v(i+1) mod n = λ(i+1) mod n (p(i+1) mod n − p). Figure 4.41 illustrates this.

If the critical point to be described is a first order critical point of index +1, we
construct a piecewise linear vector field out of its topological skeleton shown in
figure 4.37b in the following way: the vectors vi assigned to the control points
pi (i = 1, 2, 3) are computed by

‖vi‖ = ‖v0‖
angle(vi,pi − p) = angle(v0,p0 − p)
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Figure 4.41: Constructing an elliptic area: a) initial sector; b) location of wi relative
to vi and vi+1; c) refined triangulation after inserting qi with wi; d) application to
the example in figure 4.37a.

Figure 4.42: Modeling a first order critical point of index +1; a) topological skeleton;
b) constructed triangulation; c) resulting piecewise linear vector field.

Then a piecewise linear interpolation over the two subtriangles (p0,p1,p3) and
(p1,p2,p3) gives the desired first order critical point. Figure 4.42 illustrates
this.

Problem 2: In [141] it has been shown that the tangent curve of a linear vector
field is in general a certain exponential curve. In order to describe a separatrix
(i.e. a special tangent curve) as a parabola segment, we search for a useful
special configuration of the vector field where a tangent curve simplifies to a
parabola. We formulate

Theorem 7 Let a non-degenerate 2D triangle (p0,p1,p2) assigned with the 2D
vectors (v0,v1,v2) have the following properties:

v0 = λ0 (p1 − p0) (4.72)
v2 = λ2 (p2 − p1) (4.73)

v1 =
1
2
(λ2 (p1 − p0) + λ0 (p2 − p1) ) (4.74)

for certain λ0, λ2 > 0. Applying a linear interpolation of the vectors (v0,v1, v2)
inside the triangle (p0,p1,p2), the following statements for the resulting linear
vector field hold:

1. The tangent curve passing through p0 passes through p2 as well.
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Figure 4.43: Illustration of theorem 7; a) illustration of condition (4.72) - (4.74); b)
resulting vector field and parabola shaped tangent curve.

2. The tangent curve through p0 and p2 has the same shape (but not nec-
essarily the same parameterization) as the parabola defined by the Bézier
points (p0,p1,p2).

To prove theorem 7 we have to show that for every point on the parabola defined
by the Bézier points (p0,p1,p2) the tangent direction and the direction of v at
the curve location coincide. Let

x(t) =
2∑
i=0

B2
i (t) pi

be the parabola where B2
i (t) are the Bernstein polynomials (see [55]). Since∑2

i=0B
2
i (t) ≡ 1, the Bernstein polynomials can be considered as the barycentric

coordinates relative to the points pi. Thus we obtain

v(x(t)) =
2∑
i=0

B2
i (t) vi. (4.75)

Inserting (4.72) - (4.74) into (4.75) gives

v(x(t)) =
(
(1− t)λ0 + t λ2

)(
(1− t) (p1 − p0) + t (p2 − p1)

)
=

1
2

(
(1− t)λ0 + t λ2

)
ẋ(t) (4.76)

which proves the theorem. Figure 4.43 illustrates theorem 7.

Now theorem 7 can easily be used to construct a piecewise linear vector field
which describes a G1 piecewise quadratic separatrix of a given skeleton. Figure
4.44 illustrates this for the separatrix shown in figure 4.38.

Now we can formulate the algorithm to construct a piecewise linear vector field
of a given topological skeleton:

1. Construct the piecewise linear vector field inside the control polygons of
all general critical points.



120 CHAPTER 4. CAGD FOR FLOW VISUALIZATION

a)
c)b)

Figure 4.44: Constructing a piecewise linear vector field consisting of a piecewise
G1 quadratic separatrix; a) construct vectors at the junction points using (4.72) and
(4.73); b) construct vectors at intermediate points using (4.74); c) resulting piecewise
linear vector field and separatrix.

2. Construct the piecewise linear vector field inside the control polygons of
all first order critical points of index +1.

3. Construct the piecewise linear vector field describing all separatrices.

4. Specify the flow direction vector at additional interesting points and in
the corner vertices of the domain.

5. Triangulate the remaining parts of the vector field using only the already
defined vertices, and apply a piecewise linear interpolation on this tri-
angulation. To do this, we used a Delaunay triangulation. In this step
no further critical points have to be obtained. For a correct and com-
plete topological skeleton the appearance of new critical points can be
prevented by interactively introducing new auxiliary vertices and their
assigned vectors in the still uncovered areas of the vector field.

The result of this algorithm is a piecewise linear vector field of exactly the
same topology as specified in the topological skeleton. Figure 4.45 illustrates
this algorithm by constructing a piecewise linear vector field to the topological
skeleton introduced in figure 4.39. This vector field with 3 general critical points
and 3 first order critical points is constructed as piecewise linear vector field
consisting of 79 vertices and 138 triangles.

4.4.3 Simplification and compression of vector fields

In recent years the simplification and compression of vector fields have become a
popular research topic in scientific visualization. Flow data sets (and the vector
fields derived from them) are continuously growing, so that their simplification
and compression becomes significant in the visualization process.

Simplification of a vector field means finding a new vector field which keeps
the most important properties but skips the less important details. In [43] the
topology of a 2D vector field is simplified using area metrics. There the input
vector field has to consist of a simple topology (i.e. only first order critical
points and separatrices of type 1 (see section 4.1.2)). The output vector field is
a simple vector field with a reduced number of critical points. In [194] a vector
field of a rich simple topology (i.e. with a large number of critical points) is
simplified by replacing clusters of first order critical points by a higher order
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f)e)d)
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Figure 4.45: Constructing the piecewise linear vector field for the topological skeleton
of figure 4.39; a) construct piecewise linear vector field for general critical points;
b) construct piecewise linear vector field for first order critical points of index +1;
c) construct piecewise linear vector field for separatrices; d) Delaunay triangulate
remaining parts and apply piecewise linear interpolation; e) final vector field consists
of 79 vertices and 138 triangles; f) curvature plot of e).

critical point. Both approaches in [43] and [194] can be used for multiresolution
representations of vector fields. Note that a topological simplification of a vector
field does not necessarily cause a compression. For instance the simplified vector
fields in [194] may even be bigger than the originals.

To compress a vector field means finding a new vector field of smaller size
which keeps important properties of the original one. Compression algorithms
are well researched in the context of images and scalar fields. So the first
approaches to compressing vector fields focused on adapting compression tech-
niques of other data classes. In this way [86], [183] and [67] construct hierarchies
of compressed vector fields.

Although the topology of a vector field is an important feature, compression
techniques coming from these areas are usually not topology-preserving. In fact,
the compressed vector fields may have significant different topologies than the
originals.

[128] introduces the first approach to compress a vector field while preserving
its topology by applying a bottom-up clustering similar to [183]. For vector fields
with a poor topology (i.e. only a few critical points and separatrices), significant
compression rates can be achieved. Figure 4.46a shows the gradient field from
one of Franke’s data sets
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a) b)

Figure 4.46: a) test data set (4.77) on a regular 38 x 38 grid; b) compressed version
of the same topology, compression ratio 90%; (images from [128]).

s(x, y) =
3
4
e−

(9 x−2)2+(9 y−2)2

4 +
1
2
e−

(9 x−7)2+(9 y−3)2

4 (4.77)

− 1
5
e−(9 x−4)2+(9 y−7)2 +

3
4
e−

(9 x+1)2

49 − (9 y+1)2

10

in the domain [0, 1]2, sampled by a 38 x 38 grid. Figure 4.46b shows the com-
pressed vector field of the same topology; the achieved compression ratio there
was 90%.

[49] obtains a simplified representation of a scalar field (and thus of its de-
rived gradient vector field) by extracting the Morse complexes and reconstruct-
ing them by piecewise linear scalar fields.

In the remaining part of this section we want to introduce a new topology-
preserving compressing technique for 2D vector fields of a simple topology. This
technique is a direct application of the vector field design approach discussed in
this section 4.4.

Given a 2D vector field of a simple topology, its topological skeleton can be
extracted automatically (see [87]). The result of this extraction process is the
exact classification of all first order critical points, and numerically integrated
separatrices. To convert this into a set of control polygons described in section
4.4.1, the numerically integrated separatrices have to be replaced by piecewise
G1 quadratic curve segments. This may be done interactively or automatically
by placing an appropriate number of sample points on the numerically integrated
curve and declaring them as junction points of the parabola segments.

After the topological skeleton is constructed as shown in section 4.4.1, a
vector field of exactly this topology can be constructed following the approach
of section 4.4.2. The new vector field obtained this way has exactly the same
topology as the original one. It turns out that for vector fields with rather poor
topology, the new vector field is a compressed version of the original one.

To demonstrate this compression algorithm we consider the vector field
(4.77) as shown in figure 4.46a. The Integrate&Draw version and the curvature
plot of this vector field are shown in figure 4.47a and 4.47b. After automatically
extracting the topology, the first order critical points are modeled as shown
in figure 4.47c. Figure 4.47d shows how the separatrices are modeled in the
piecewise linear vector field. (Since some of the separatrices in this vector field
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Figure 4.47: a) vector field (4.77) on a 38 x 38 regular grid: 1444 grid points; b)
curvature plot of a); c) remodeling the critical points as piecewise linear vector field;
d) remodeling the separatrices as piecewise linear vector field; e) complete remodeled
piecewise linear vector field consists of 40 vertices and 68 triangles: compression ratio
95%; f) curvature plot of e).

are approximately straight lines, the triangles representing them collapse to line
segments.) Figure 4.47e shows the final piecewise linear vector field which con-
sists of 40 vertices and 68 triangles. Thus the compression ratio to the original
vector field is 95%; the visual differences between figure 4.47e and the original
in figure 4.47a are only marginal. Figure 4.47f shows the curvature plot of figure
4.47e.

Another example of a vector field with a richer topology is shown in figure
4.48. Figure 4.48a shows a fragment of the data set already shown in figure 4.27.
It consists of a regular 34 x 34 grid and has therefore 1056 grid points. Figure
4.48b shows it curvature plot. Figure 4.48c shows the construction of the critical
points as a piecewise linear vector field. Figure 4.48d shows the construction of
the separatrices. Figure 4.48e shows the complete remodeled piecewise linear
vector field consisting of 124 vertices and 226 triangles. This gives a compression
ratio of 79% in comparison to figure 4.48a. The curvature plot in figure 4.48f
both reveals the underlying triangulation and shows the effect of compression
in comparison to figure 4.48b.

The new topology-preserving compression algorithm introduced here gives high
compression rates if the original vector field has a rather poor topology. This
means only a small amount of information is necessary to describe the topology.
In fact, the compression ratios are higher than the only comparable approach in
[128]. However, for a rich topology a higher amount of information is necessary
to describe it. Hence the compression ratios are lower.
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Figure 4.48: a) fragment of the vector field shown in figure 4.27 on a 34 x 34 regular
grid: 1056 grid points; b) curvature plot of a); c) remodeling the critical points as
piecewise linear vector field; d) remodeling the separatrices as piecewise linear vector
field; e) complete remodeled piecewise linear vector field consists of 124 vertices and
226 triangles: compression ratio 79%; f) curvature plot of e).

A multiresolution version of the new compression algorithm is possible by
successively inserting auxiliary vertices and their assigned vectors before the
step of triangulating the remaining areas.



Chapter 5

CAGD for the Visualization
of Multiparameter Data

Multiparameter data is another data class on which scientific visualization fo-
cuses. In recent years a large number of visualization techniques for multipa-
rameter data have been developed which focus on different data characteristics
and aims of the analysis.

Using the data classification of [23], the data we consider here can be writ-
ten as EmS

n with m ≥ 2. Furthermore it is assumed that a certain grid in
the n-dimensional domain is present. This means that at each point of an n-
dimensional grid m scalar values are measured or computed1. We call this kind
of data m-variate data on an n-dimensional grid. The n variables defining the
underlying grid are also called independent variables while the m variables at
the grid points are called dependent variables.

A commonly used model to describe multiparameter data is a table with
n +m columns, one column for each (dependent or independent) variable. In
such a table each column has to be annotated to state if it describes either an
independent or a dependent variable. A row in the table defines an observation
case O which is simply an (m + n)-tuple of scalar values realizing the (m + n)
variables. Figure 5.1a gives an illustration.

We can see that a description of a data set as a table gives a priori an equal
treatment of independent and dependent variables. In fact, independent and
dependent variables are only distinguished by the annotations to the columns,
not by the table itself.

Given a multiparameter data set, there are two general strategies to find a
visualization. The first strategy is to abstract from dependent and independent
variables and treat them equally for the visualization. The second strategy is
to distinguish carefully between independent and dependent variables in the
visual representation. The independent variables which usually describe the
spatial or temporal context of the data are mapped to adequate attributes of
the visualization such as position or time of appearance/disappearance.

Which strategy should be preferred depends on the particular application .
For the purpose of this work (i.e. applying CAGD methods to multiparameter
data) we focus on the first strategy and treat the visualization techniques which

1If the data set is incomplete, fewer than m scalar values may be present at a grid point.
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Figure 5.1: a) description of multiparameter data as a table; b) description of multi-
dimensional data by abstracting from dependent and independent variables.

apply there. A detailed discussion of the second strategy (i.e. multiparameter
data with spatial and temporal context) can be found in [167].

Considering the table description of figure 5.1a again, an abstraction from
independent and dependent variables can simply be achieved by omitting the
dependent/independent annotations of the columns. Virtually the same effect
results if we set all annotations of the columns to ”independent”. This way the
data set of the type EmS

n is transformed to the type EP
m+n. Data of this type

EP
m+n is also called multidimensional data.
The similar effect of abstracting from independent and dependent variables

is caused by setting all annotations of the columns to ”dependent”. This way a
data set of the type EmS

n is transformed to the type EqS
0 where q is the number

of observation cases in EmS
n . Data of the type EqS

0 is called multivariate data.
For the rest of the chapter we deal with multidimensional data for which

a simplified description as a table is illustrated in figure 5.1b. Each of the n
columns2 is assigned a dependent variable which now is also called dimension
D. A row in the table is called observation case. It consists of an n-tuple of
scalars which describe a point in the n-dimensional data space.

Figure 5.2 shows the pipeline for the visualization of multidimensional data.
We recognize the three steps (filtering, mapping, rendering) of the general vi-
sualization pipeline for scientific data (see section 2.3.1). In addition, the step
of data selection plays an important role for multiparameter data. In this step
the data set to be visualized is reduced either by choosing certain dimensions
or observation cases or by applying a data selection process.

It is the purpose of this chapter to explore the applicability of CAGD meth-
ods in the visualization of multidimensional data. Since interpolation issues do
not play such an important role as for instance in flow visualization, the only
part of the visualization pipeline where we see CAGD applications is the map-

2We use the simplified notation n instead of m + n because the old m and n are not
distinguished any more.
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Figure 5.2: Visualization pipeline for multiparameter data.

ping part. In fact, there is a variety of mapping techniques which use curves and
surfaces to represent the high amount of data which is usually present. Follow-
ing [167] we can distinguish between 5 classes of visualization techniques: panel
matrices, icon based techniques, line representations, pixel based techniques and
hierarchical techniques3.

Panel matrices ([210]) pick pairs of variables and visualize the data as a
number of matrix plots of these pairs of variables. Representatives of this class
of visualization techniques are scatter plot matrices ([32]), prosection views
([175]) and hyperslices ([199]). All these techniques have in common the fact
that they use point clouds for the visualization of the 2D matrices. Hence an
application of curves and surfaces is not done for panel matrices.

Pixel based techniques ([111]) map every observation case to a certain pixel
and color code its value there. This way a high amount of data can be encoded
onto the screen. Representatives of these techniques are grouping techniques
([110]) and recursive pattern techniques ([109]). Due to the nature of pixel
based techniques, applications of curves/surfaces to them do not exist.

For the remaining classes of visualization techniques for multidimensional
data (icon based techniques, line representations, hierarchical techniques), the
application of curves/surfaces is possible. We treat each of these classes in one
of the following sections 5.1 – 5.3 in detail.

5.1 Icon Based Techniques

The idea of icon based techniques is to create a geometric object for each ob-
servation case (i.e. each line in the table describing the multidimensional data).
This object is called an icon; in it all values of an observation case are encoded

3[167] introduced this distinction particularly for multivariate data. Concerning the data
transformations described above, we can use them for multidimensional data as well.
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in the following features:

• shape of the icon

• size of the icon

• drawing attributes (color, transparency)

• location of the icon.

Observing a number of these icons, the user may detect geometric similarities
or trends in the patterns of the icons which denote inner correlations of the
multiparameter data.

A variety of different icons have been developed like stick figures ([149]),
color icons ([125]), Chernoff faces ([28]), data jacks ([85]), and shape coding
([15]).

Due to the fact that the human eye reacts rather sensitively to the shape of
a surface, surfaces are promising candidates to build icons for multidimensional
data. The ShapeVis approach in [193] was especially designed to realize this
idea. Thus we treat it in detail in the next section.

5.1.1 The ShapeVis approach

The ShapeVis approach introduced in [193] builds a curve or surface shaped icon
for each observation case of a multidimensional data set. These icons are placed
in the 2D or 3D presentation space in such a way that observation cases with
similar properties are visualized spatially close to each other. Here we consider
an observation case O (i.e. a row in the table describing the multidimensional
data) as an n-tuple (c1, ..., cn) ∈ IRn (c1, ..., cn > 0). Interpreting O as a point
in n-dimensional data space, we can formulate the task as finding a map from
the n-dimensional data space to the 2D/3D presentation space.

To find an appropriate location of an observation case in the 2D/3D presen-
tation space, the application of a common spring model is a popular approach
([145], [16], [91]). For such a common spring model, every dimension of the
n-dimensional data set is related to a fixed dimension point di ∈ IR2(IR3), (i =
1, ..., n). An observation case is related to a point p in presentation space. To
find the location of p, we consider n springs - from each dimension point di to
p. The stiffness of the springs are set to the values c1, ..., cn. Then the location
p is searched where the spring model is in balance. For fixed di we can compute
this location explicitly:

p =
∑n

i=1 ci · di∑n
i=1 ci

. (5.1)

Figure 5.3a gives an illustration for n = 4.
Using this common spring model for placing observation cases in the presen-

tation space has the following advantages, so that the technique is useful and
often applied:

• The location of p gives spatially intuitive information about the observa-
tion case O: the more O is related to the i-th dimension (i.e., the bigger
ci is), the closer moves p towards di.

• Since every observation case is visualized only as a point, a large number
of observation cases can be visualized. The result is a point cloud.
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a) b)

Figure 5.3: a) Visualizing the observation case O = (c1, ..., c4) of a four dimensional
data set. The dimension points d1, ...,d4 are fixed, p moves to the position of balance
of the spring system. b) Limitations of the common spring model: the observation
cases O1 = (1, 2, 1, 2) and O2 = (2, 1, 2, 1) collapse to one point (ambiguity). So do
the observation cases O1 and O3 = (2, 4, 2, 4) (insensitivity to coordinate scalings).

• Observation cases with similar properties are spatially close in the visual-
ization. We can search for clusters in the visualized point cloud.

Unfortunately there are limitations to this common spring model as well:

1. Ambiguity: observation cases with different coordinates c1, ..., cn may col-
lapse to one point in the visualization. This means that similar observation
cases are spatially close in the visualization, but we do not know whether
or not observation cases which are spatially close in the visualization are
similar.

2. Insensitivity to coordinate scalings: the observation cases (c1, ..., cn) and
(k · c1, ..., k · cn) with k > 0 cannot be distinguished in the visualization
because they are mapped to the same point.

Figure 5.3b illustrates these limitations.
To decrease the impact of the drawbacks 1 and 2, research has been done

on finding appropriate locations for the dimension points di. In [145] and [16]
the points di can be moved interactively. [74] solves a mass-spring system
numerically for finding suitable locations of the di. All these approaches can
limit the drawbacks 1 and 2 but do not solve them.

The ShapeVis approach which we describe here is able to solve drawbacks 1
and 2. The main idea is to assign an observation case not only with a point but
with a small closed free-form curve/surface. The location of the curve/surface
gives spatial information similar to the location of the point p in the common
spring model using (5.1). The additional size and shape information of the
curve/surface gives more intuitive knowledge about the observation case and
solves drawbacks 1 and 2. To define such a curve/surface, the common spring
model (5.1) has to be extended to an enhanced spring model.
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Figure 5.4: The enhanced spring model for an observation case O = (c1, ..., c4) of a
four dimensional data set. The observation case is described by the points p,p1, ...,p4.
The constant c is considered to be bigger than c1, ..., c4.

5.1.1.1 The enhanced spring model

As in the common spring model, we place a fixed point di ∈ IR2(IR3) for every
dimension of the data set. For a given observation case O = (c1, ..., cn), we
consider a point p in IR2(IR3). We attach n springs with the constant stiffness
c > 0 to p. The other ends of the springs are named p1, ...,pn. Now we
consider n more springs - from pi to di with the stiffness ci for i = 1, ..., n. The
points p,p1, ...,pn are free movable while the points d1, ...,dn are fixed. Then
we search for the state of balance of this spring system. Figure 5.4 gives an
illustration.

Applying this spring model, an observation case O = (c1, ..., cn) is described
by the n+1 points p,p1, ...,pn. The constant c is considered to be at least one
scale bigger than c1, ..., cn. Its influence will be discussed later on.

For given dimension points d1, ...,dn and the constant c, the location of
the points p,p1, ...,pn describing the observation case O = (c1, ..., cn) can be
computed explicitly:

p =
∑n

i=1 wi · di∑n
i=1 wi

(5.2)

with
wi =

ci
c+ ci

for i = 1, ..., n. (5.3)

Then we obtain for p1, ...,pn:

pi =
c · p+ ci · di

c+ ci
for i = 1, ..., n. (5.4)

Obviously, the locations of p,p1, ...,pn depend on the value of the constant c.
To study the impact of c, we consider the special cases of converging c to infinity
and zero:

lim
c→∞p = lim

c→∞p1 = ... = lim
c→∞pn =

∑n
i=1 ci · di∑n
i=1 ci

. (5.5)

This means that for c→ ∞ the points p,p1, ...,pn collapse to the point which
describes the observation cases in the common spring model described by (5.1).
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Therefore, the common spring model is contained as a special case in the en-
hanced spring model. For c→ 0 we obtain

lim
c→0
p =

∑n
i=1 di
n

(5.6)

lim
c→0
pi = di for i = 1, ..., n.

For c → 0, the locations of p,p1, ...,pn do not depend on the observation case
anymore. Therefore, c should be chosen rather large.

The points p,p1, ...,pn describe an observation case O = (c1, ..., cn)
uniquely. This means that from given d1, ...,dn,p,p1, ...,pn and c we can com-
pute all ci (i = 1, ..., n). To do so we only have to solve the linear system of the
equations (5.2)-(5.4) with the unknowns c1, ..., cn. This gives a unique solution
if no two of the dimension points coincide and the points p,pi,di are colinear
for i = 1, ..., n.

5.1.1.2 Obtaining closed curves/surfaces

Even if the points p,p1, ...,pn describe an observation case uniquely - for the
visualization of an observation case n+ 1 separate points are not suitable. We
therefore define a closed curve/surface which gives an intuitive imagination of
the location of p,p1, ...,pn. In the following we only describe the surface case
for a 3D visualization. The case of a closed curve in a 2D visualization can be
obtained as a special case of the surface.

Defining a surface out of the control points p,p1, ...,pn using usual ap-
proaches like Bézier- or B-Spline surfaces fails because these approaches depend
on the order of the control point sequence. For our problem, the order of the
points p1, ...,pn should not influence the surface.

We define a closed surface as a deformation of a small sphere around p:

x(λ, φ) = p+ f(λ, φ) ·
 cosφ · cosλ

cosφ · sinλ
sinφ

 (5.7)

(
0 ≤ λ < 2π ; −π

2
≤ φ ≤ π

2

)
.

In (5.7), p is a 3D point and f(λ, φ) is a certain bivariate scalar function. For
f(λ, φ) = const, (5.7) describes a sphere around p in spherical coordinates.
This sphere will be deformed by the function f(λ, φ). The special case of a 2D
visualization is contained in (5.7) by setting φ = 0.

To define f(λ, φ) we introduce the auxiliary functions

fi(λ, φ) =



(pi−p)·

 cosφ · cosλ
cosφ · sinλ

sinφ


‖pi−p‖

if (pi − p) ·
 cosφ · cosλ

cosφ · sinλ
sinφ

 > 0

0 else

(5.8)
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Figure 5.5: The auxiliary function fi(λ, φ): fi(λ, φ) = cosα if cosα > 0, else 0.

for i = 1, ..., n. Figure 5.5 illustrates (5.8).
Now we can define the deforming function f(λ, φ) by

f(λ, φ) = f0 +
n∑
i=1

‖pi − p‖ · (fi(λ, φ))sh. (5.9)

Generally, the surface x(λ, φ) shows deformations in all directions pi − p. The
bigger ‖pi−p‖ is, the stronger the deformations are. The constant sh determines
how strongly the deformation is performed in the directions close to pi − p. It
has similarities to the shiny exponent in Phong’s illumination model (see [59]):
the bigger sh is, the sharper is the deformation (highlight in Phong’s model).
The impact of sh is illustrated in figure 5.8. The constant f0 is for preserving
continuity and parameterization regularity of the surface. In fact, for f0 > 0
and sh a natural number, the surface defined by (5.7)-(5.9) is Csh−1-continuous.
Thus we should choose sh > 2 in order to obtain a C1-continuous closed surface.

Another property is the fact that the points p,p1, ...,pn are inside the closed
surface defined by (5.7)-(5.9).

We consider a first example of a 2D visualization.
Figure 5.6a shows the visualization of the observation case O = (1, 2, 1, 2).

The closed curve was visualized as the boundary of a filled area. The curve
gives us three kinds of information: location, size and shape. The location
of the whole curve gives initial information about the object. The size gives
information about how big the components of an object are generally. An
object with generally high components ci (i = 1, ..., n) produces a bigger closed
curve. The deformations of the curve show which dimensions the object is more
related to. In our example the object is more related to d2 and d4 than to d1

and d3.
A surface defined by (5.7)-(5.9) describes an observation case uniquely. This

means that from the location, size and shape of such a surface we can uniquely
infer all components c1, ..., cn of the original observation case. For showing
this, suppose sh is high. Then the surface converges to the line segments
(p,p1), ..., (p,pn) (figure 5.6b illustrates). This means that from the surface
we obtain the location of p,p1, ...,pn directly. As shown above, these points
give the object uniquely. Figure 5.7 illustrates this by showing the visualization
of the objects from figure 5.3b.
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Figure 5.6: a): Visualizing the observation case O = (1, 2, 1, 2) with sh = 10. b): The
same observation case visualized with a high sh (sh = 100). We obtain p,p1, ...,pn

directly from the curve.

5.1.1.3 Visualizing the closed curves/surfaces

To visualize a curve/surface related to an observation case O, we have to de-
termine the following parameters: c, sh, f0 and the locations of d1, ...,dn. All
these parameters are chosen globally, i.e. they are the same for every visualized
object.

The locations of the dimension points di influence the intuitiveness of the
visualization but not the uniqueness of the object description. We placed the
di equally distributed on a unit sphere.

The parameter c has influence on the size of the surface. A higher c leads
to a smaller surface. For c→ ∞, the surfaces collapse to points.

The parameter sh influences how sharp the deformations are around the
directions pi − p. The extreme case sh→ ∞ is shown in figure 5.6b.

The parameter f0 > 0 is necessary for continuity preserving of the surface.
It should be chosen rather small.

The influence of the parameters c and sh is illustrated in figure 5.8 for the
2D case.

For visualizing a higher number of objects we use the following visualization
scenario:

1. Get a global impression by visualizing all observation cases with a high pa-
rameter c. Since the observation cases are almost points, the visualization
is the same as from the common spring model. We try to detect clusters
in the visualization. Observation cases which are not spatially close (for
instance observation cases in different clusters) are not similar to each
other. For observation cases in a cluster we have to continue analyzing:

2. Zoom into a cluster and increase c. The points will appear as closed
surfaces. If two surfaces have different shape, the observation cases are
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Figure 5.7: Visualizing the observation cases a): (1,2,1,2); b): (2,1,2,1); c): (2,4,2,4).
In contrary to the common spring model shown in figure 5.3b, these observation cases
can be well distinguished. For all observation cases in this figure we have chosen
sh = 10.

not similar to each other. If two surfaces have a similar shape but different
sizes, one observation case is the scaled image of the other one. If the
surfaces are similar in shape and size, the observation cases are similar to
each other.

The only problem here is how to distinguish between observation cases that
are in the same location. In this case the surfaces may intersect and hide
each other in part or completely. A solution to this problem is to offer the
option of visualizing the surfaces transparently or in wire frame representation.
In addition, the surfaces are visualized in different colors. In this way we can
distinguish between surfaces in the same location as long as they are not exactly
identical.

5.1.1.4 Applications of ShapeVis

We applied the ShapeVis technique to two test data sets which are publicly
available on the WWW. Both data sets have been initially explored in [211].

The first data set4 contains information about 38 automobiles including
miles per gallon, weight, drive ratio, horsepower, displacement and number of
cylinders. This means that we have 38 observation cases in a 6-dimensional
data set. The dimension points d1, ...,d6 were placed in an equidistant way
on the unit sphere. Figure 5.9a gives an overview over the data set in a 3D
visualization. We used the parameters c = 15, sh = 10, f0 = 0.2. Each of
the closed surfaces was approximated by 1944 triangles. The creation of the
3D scene consisting of a number of triangles on a Silicon Graphics Indigo 2
Workstation under IRIS Explorer was computed in approximately 13 seconds.
Navigation through the scene is possible at interactive time rates.

In figure 5.9a we recognize a cluster of surfaces in the upper middle part of
the picture. For the cars lying in this cluster we can make the assumption that
they have similar properties; but we have to check it. To do this, we zoom into
this area and visualize with c = 30. Figure 5.9b shows the result. As we can see
here, the surfaces for Buick Century Special, Dodge Aspen and AMC Concord

4available at http://lib.stat.cmu.edu/DASL/Stories/ClusteringCars.html
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Figure 5.8: Visualizing the observation case (1,2,1,2) with different parameters sh
and c.

D/L are similar in location, size and shape. These cars have, therefore, similar
properties. The other 8 surfaces in figure 5.9b are also similar to each other in
location, size and shape. Thus the properties of these 8 cars are similar to each
other as well.

The second data set5 measures various quality of living parameters of US
cities. It is a 9 dimensional data set with 329 observation cases. The values for
all dimensions are normalized to [0, 1] in such a way that the higher the number
the better the city.

The 9 dimensional points were placed equally distributed on a sphere. Fig-
ure 5.10a gives an overview over the data set. Most of the objects are in one big
cluster, there are only a few outliers. Figure 5.10b shows the cluster in more
detail. Figure 5.11 shows the magnification of the five objects lower right of fig-
ure 5.10b. As we can see here, the surfaces for Springfield, St. Louis, Baltimore
and Hartford have similar shape and size. These cities therefore have similar
living conditions. The shape of the surface related to Miami-Hiale differs from
the 4 other cities. The living conditions in Miami-Hiale are therefore different in

5available at http://lib.stat.cmu.edu/datasets/places.dat
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a) b)

Figure 5.9: Visualization of the car data set (38 observation cases, 6 dimensions); a)
overview; b) zoom into the cluster.

a) b)

Figure 5.10: Visualization of the city data set; a) overview; b) zoom into the cluster.

comparison to the four other cities, even if the five closed surfaces are spatially
close to each other.

5.1.1.5 Results and improvements of ShapeVis

We have shown that ShapeVis is able to describe an observation case uniquely
as a small curve/surface. These curves/surfaces allow an intuitive visual com-
parison of different observation cases and thus allow the detection of inner cor-
relations in a multidimensional data set.

However, there are limitations to the ShapeVis approach as well. For a large
number of observation cases, many surfaces have to be visualized simultane-
ously. Since for visualization purposes each surface has to be converted to a
triangular mesh, the huge number of triangles present may not allow an interac-
tive exploration of the data. To solve this problem, [121] modifies ShapeVis by
introducing simplified surfaces which consist only of n cylinders. Figure 5.11b
illustrates the simplified ShapeVis approach for a 6-dimensional demographic
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a) b)

Figure 5.11: a) city data set - zoom of the 5 objects lower right in figure 5.10b; b)
6-dimensional demographic data set using simplified ShapeVis (image from [121]).

data set.

5.1.2 Designing appropriate icons

Obviously the success of a visualization using icons depends on the choice of an
appropriate class of icons which represent the given multidimensional data in
an optimal way. Unfortunately it is rather complicated to find an icon which
represents the data adequately. Such an icon has to satisfy the following de-
mands:

• All relevant data of an observation case should be encoded.

• There should not be redundancies in encoding the data of an observation
case6.

• Appropriate maps between the variables of the data set and the attributes
of the icon have to be found. For example, a variable with a continuous
domain should not be mapped to a binary attribute.

• The icons should be intuitive.

To find appropriate icons, an extensive research has been done which was mainly
influenced by psychology and perception theory. Numbers of experiments have
been carried out to find out to which features (shape, color,...) the human eye
responds best under certain conditions. From the results of these experiments,
rules and information can be obtained on how to design appropriate icons. It
is beyond the scope of this work to survey these areas. Instead we refer to
[201] which gives an overview on perception issues of icons. Particularly the
perception of surfaces is treated in [116]

To design appropriate icons, icon editors ([58]) have been created. The
ShapeVis example of section 5.1.1 has shown that for certain applications curves

6Sometimes redundancies are used to emphasize certain properties of the data. Especially
when the icon has more attributes than the data set has dimensions, the remaining attributes
should be encoded redundantly. However, in most cases an icon is desired which does not
have more attributes than dimensions are present.
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Figure 5.12: Parallel coordinates: the 4-dimensional point (0.5, 0.25, 1.0, 0.0) is de-
scribed by the line sequence (p1,p2), (p2,p3), (p3,p4).

and surfaces are good candidates to be included into the design of icons. How-
ever, they still seem to be rarely used for icons. Instead, more simple geometric
objects like lines, arcs, or boxes are preferred. Nevertheless, the ShapeVis ap-
proach has shown that a more frequent and systematic usage of curves/surfaces
in the design of appropriate icons can lead to better solutions for a number of
visualization problems.

5.2 Line Representations

The main idea of line representations for multidimensional data is to map a
point in n-dimensional data space (i.e. an observation case) to a sequence of
straight lines in 2D presentation space.

The most common representative of this class of visualization techniques are
parallel coordinates ([99]). To visualize a point with the coordinates (c1, ..., cn) of
the n-dimensional data space, n parallel coordinate axes
X1, ...,Xn are used. The coordinates (c1, ..., cn) are mapped onto the points
p1, ...,pn on the corresponding coordinate axes X1, ...,Xn. Then the point
(c1, ..., cn) is represented by the sequence of line segments (p1,p2), (p2,p3),...,
(pn−1,pn). This way we have a one-to-one correspondence between points in
n-dimensional space and line segments in 2D. Figure 5.12 illustrates this for
n = 4.

In recent years parallel coordinates became a standard tool in the visualiza-
tion for multidimensional data. The reasons for this are:

• Parallel coordinates is a simple technique which can easily be applied and
interpreted by a user.

• Parallel coordinates allow the visualization of a high number of dimen-
sions.

• The number of n-dimensional points which can be visualized is rather high
as well.

• correlations between adjacent dimensions (i.e. dimensions where its co-
ordinate axes in parallel coordinates are adjacent to each other) can be
detected.

• There is a strong foundation of the mathematical background of parallel
coordinates.
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erased erased

a) b)

Figure 5.13: a): Parallel coordinates for two dimensions. In b), areas between the
coordinate axes are erased. We can still see the correlations between the coordinate
axes. Thus we may place more information into the erased space.

Nowadays there is a variety of systems and applications of parallel coordinates.
An example of a visual analysis of data sets using parallel coordinates can be
found in [97]. [6] describes a system specialized in parallel coordinates. In
[30] parallel coordinates are used for cluster identification in higher dimensional
data sets. [202] uses parallel coordinates to explore higher dynamical systems.
A survey on both foundations and applications of parallel coordinates can be
found in [98].

There are limitations of the parallel coordinates technique as well:

• If the number of points in n-dimensional data space is too high, the cor-
responding line segments tend to overly and hide each other ending up in
a visual clutter; particular line segments cannot be detected.

• Correlations between non-adjacent coordinate axes can hardly be seen.

To deal with these problems, a number of approaches exist which focus on an au-
tomatic or interactive alignment and exchange of the coordinate axes ([6], [97]).
[146] uses parahistograms to additionally encode the frequency of a certain line
segment. Another approach to dealing with these problems is introduced in
section 5.2.1.

Another representative of the class of line representations are star shaped coor-
dinates. The main idea is similar to parallel coordinates but the coordinate axes
here are not placed parallel to each other but are star shaped, originating in a
common point. This way a point in n-dimensional data space is represented by
a closed line sequence consisting of n straight line segments on the 2D screen.

5.2.1 Higher order parallel coordinates

In this section we introduce an extension of parallel coordinates which makes
use of curves. We give this extension which is similar to [190] in order to
enable parallel coordinates to detect also correlations between more than two
dimensions which is one of the serious drawbacks in the common approach.
To do so we use the fact that the space between adjacent coordinate axes is
sometimes redundant. Figure 5.13 gives an example.
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Figure 5.14: a) usual parallel coordinates: one three-dimensional object is visualized
by the line segments (p1,p2), (p2,p3); b) higher order parallel coordinates: the axis
X3 is additionally inserted between X1 and X2; q1 has the same height as p3. Then
the points p1,q1,p2 define the curve which replaces the line segment p1,p2 of the
usual approach. A weight w controls the influence of q1.

We use the redundant space between two adjacent axes to insert more in-
formation. To do so, we replace the line segments between adjacent axes with
free-form curves. The reason for that is the same as the reason for applying
curves and surfaces in other areas of visualization: curves have the advantage
that the human eye reacts rather sensitively to small changes in their shapes,
thus they are promising candidates to encode more information in a small area.
The line segments used in the normal parallel coordinate approach can be in-
terpreted as polynomial curves of order one. This gives reason to name the
approach of replacing the line segments with curves ”higher order parallel coor-
dinates”.

To define the curves, we place a number of additional coordinate axes from
{X1, ...,XN} between the adjacent axes Xk,Xk+1. Then we use the points
pk,pk+1 and the corresponding points on the newly inserted additional axes as
control points of the curve. The shape of the curve is controlled by a weight w
which determines the influence of the inner control points. Figure 5.14 shows
an example.

5.2.1.1 The curve scheme

Considering figure 5.14 again, we want to specify the impact of the weight
parameter w which controls the influence of the additional control point q1.
As a first condition, for w = 0 we want the curve to be degenerate into the
line segment (p1,p2). This makes sure that the usual parallel coordinates are
a special case of higher order parallel coordinates. As a second condition we
demand that if w is increasing to a maximal amount, the curve is going to
converge to the line segments (p1,q1), (q1,p2). In this case the influence of q1

to the curve shape is maximal.
At first glance the usage of rational Bézier- or B-spline curves seems to

be a promising candidate for higher order parallel coordinates. Unfortunately,
rational curve concepts fail the second condition (w becomes maximal) if we
have more than two additional axes between two adjacent axes in the usual
parallel coordinate approach. So the curve scheme we use here has to be more
involved than a simple rational curve approach.

In the following we call the axes of the usual parallel coordinates approach
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main axes; the axes placed between the main axes are called additional axes.
Given are two adjacent main axes Xk,Xk+1 with the points pk,pk+1 for a
particular observation case. Between Xk and Xk+1 we place nk additional
axes Y1, ..., Ynk

with {Y1, ..., Ynk
} ⊆ {X1, ...,Xn}. They give the data points

q1, ...,qnk
for a particular observation case. Then we define a curve out of

pk,q1, ...,qnk
,pk+1 in the following way: we use a piecewise cubic B-spline ap-

proach with the de Boor points d0, ...,d2nk+3 over the knot sequence t0, ..., t2nk+7

(see [55]):

t0 = ... = t3 = 0

t2i+2 =


i− 1

4 if 0 ≤ w < 1

i+ w−2
4 if 1 ≤ w ≤ 2

for i = 1, ..., nk

t2i+3 =


i+ 1

4 if 0 ≤ w < 1

i+ w−1
4 if 1 ≤ w ≤ 2

for i = 1, ..., nk

t2nk+4 = ... = t2nk+7 = nk + 1. (5.10)

The de Boor point di is computed as a linear combination of certain auxiliary
points ai,bi, ci for i = 0, ..., 2nk + 3 which are defined as:

ai =
2nk + 3− i
2nk + 3

pk +
i

2nk + 3
pk+1 for i = 0, ..., 2nk + 3

b0 = pk , b1 =
3
4
pk +

1
4
q1 , b2 =

1
4
pk +

3
4
q1

(5.11)

b2i+1 =
3
4
qi +

1
4
qi+1 for i = 1, ..., nk − 1

b2i+2 =
1
4
qi +

3
4
qi+1 for i = 1, ..., nk − 1

b2nk+1 =
3
4
qnk

+
1
4
pk+1 , b2nk+2 =

1
4
qnk

+
3
4
pk+1 , b2nk+3 = pk+1

c0 = pk , c1 = pk
c2i = qi , c2i+1 = qi for i = 1, ..., nk

c2nk+2 = pk+1 , c2nk+3 = pk+1.

Then the de Boor points are defined as

di =
{

(1− w)ai + w bi for 0 ≤ w < 1
(2− w)bi + (w − 1) ci for 1 ≤ w ≤ 2 (5.12)

Figure 5.15 illustrates this for nk = 2.
The weight parameter w which ranges between 0 and 2 was introduced to

control the influence of the additional axes Y1, ..., Ynk
(and the corresponding
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Figure 5.15: Two additional axes Y1, Y2 are placed between the main axes Xk and
Xk+1. It is shown how the auxiliary points ai,bi, ci(i = 0, ..., 7) are derived from
pk,q1,q2,pk+1. The resulting de Boor points di are linear combinations of ai,bi, ci

using the weight parameter w.

additional points q1, ...,qnk
) on the curve. The parameter w can be moved

interactively by the user. For w = 0 the curve degenerates into the line segment
(pk,pk+1). This means that the concept of normal parallel coordinates is still
a special case of higher order parallel coordinates. In this case only correlations
of two main axes can be detected, the auxiliary axes and their correlations do
not play a role there. For w = 2, the curve turns out to be the sequence of
line segments (pk,q1), (q1,q2), ..., (qnk−1,qnk

), (qnk
,pk+1). In this case, only

correlations between the pairs of dimensions (Xk, Y1), (Y1, Y2),...,(Ynk−1, Ynk
),

(Ynk
,Xk+1) can be detected. To see correlations between all the dimensions, w

has to be moved interactively between the extreme values w = 0 and w = 2.
The choice of a particular w which best represents the correlations depends on
the data, the screen size and the experience of the user. Thus the user should be
able to interactively move the parameter to emphasize different kinds of pairwise
correlations and so explore global correlations.

Figure 5.16 illustrates the influence of w for a configuration where two ad-
ditional axes are inserted between two adjacent main axes. The test data in
this figure was constructed in such a way that an observation case has approxi-
mately inverse values in the two main axes Xk, Xk+1, Furthermore, the values
in the auxiliary axes Y1 coincides with Xk+1 while the values of Y2 coincide with
Xk. Hence this is a data set with strong correlations between the 4 dimensions
Xk, Y1, Y2,Xk+1.

5.2.1.2 Detecting correlations between more than two dimensions

Given a set of points in n-dimensional data space, the usual parallel coordinate
approach is useful for detecting correlations between two dimensions if the cor-
responding coordinate axes are located adjacent to each other. In real data,
correlations between more than two dimensions are possible. Suppose there are
correlations between the pairs of dimensions (d1, d2), (d2, d3), (d3, d1). Then a
relevant correlation between all three dimensions (d1, d2, d3) may exist or not.
In [184] the correlations between three and more dimensions are considered by
applying Shannon’s information theory ([168]). Interpreting each dimension of
the table which describes the data as a random variate, and each observation
case as the simultaneous realization of the n random variates, the joint infor-
mation between a tuple of random variates can be computed. If this value
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Figure 5.16: Two additional coordinate axes between two adjacent main axes. Higher
order parallel coordinates for different choices of w.

exceeds a certain threshold, a relevant correlation between the dimensions has
been detected. See [184] for details of this.

To test the ability of higher order parallel coordinates to deal with correla-
tions between more than two dimensions, we explore a number of 4-dimensional
test data sets. They are visualized by placing two additional axes Y1, Y2 between
the main axes Xk,Xk+1.

The test data set shown in figure 5.17a consists of equally distributed ran-
dom values on the main axis Xk. The values for the dimensions Y1, Y2 are
approximately the same as the values for X1 (except for slight perturbations).
The value of Xk+1 is approximately the inverse value of Xk (except for a slight
perturbations). Thus here is a relevant correlation between the four dimensions.
The visualization shows similar and regular patterns.

Figure 5.17b shows another quadruple of dimensions with relevant correla-
tions between each other. Here Xk and Y1 have essentially the same values
while Y2 and Xk+1 have essentially inverse values. Again, similar and regular
patterns can be recognized.

Figure 5.17c shows the correlations between the four dimensions in such a
way that Xk and Y2 have essentially the same values while Y1 and Xk+1 have
essentially inverse values. Again the visualization looks regular.

In figure 5.17d Y1 was chosen independently of the other dimensions. Al-
though there are still correlations between the three dimensions Xk, Y2,Xk+1,
the visualization looks ”wild”. No similar behavior of the curves can be detected.

Figure 5.17 gives reason for the following statement: higher order parallel
coordinates seem to provide a way of detecting and visualizing correlations be-
tween the dimensions X1, ...,Xm. We choose two of these axes as main axes
and place the remaining axes as additional axes between them. The set of
all curves between the main axes gives an impression of the correlations be-
tween X1, ...,Xm. If the curves show a similar behavior, correlations between
X1, ...,Xm can be inferred. If the curves behave independently of each other, no
symmetric pattern can be recognized in the curve plot. Then no relevant corre-
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Figure 5.17: Two additional axes Y1, Y2 are placed between the main axes Xk, Xk+1.
a)-c): correlation between all 4 dimensions. d): no correlation between all 4 dimen-
sions. Y2 was chosen independently of the other dimensions.

lation is found. In [117] further tests are done which confirm these statements.
Another example of constructed test data sets is shown in figures 5.18 and

5.19. Both test data set 1 (shown in figure 5.18) and test data set 2 (shown in
figure 5.19) consist of 70 points in an 8-dimensional data space. No differences
are visible in the visualization using usual parallel coordinates (figures 5.18a
and 5.19a). We can see correlations between adjacent dimensions: objects with
a high value in the axis Xi have to a high probability a high value in Xi+1 as
well. We cannot see whether or not there are correlations between more than
two dimensions.

Figures 5.18b and 5.19b use higher order parallel coordinates for the test data
sets 1 and 2. Between each two main axes two additional axes are inserted. In
figure 5.18b the curves between the main axes do not show a similar behavior.
Thus no correlations between quadruples of dimensions are found in test data
set 1. In figure 5.19b the curves between the main axes show a similar behavior;
we found quadruples of dimensions with correlations to each other. Here it
makes sense to look for correlations between all 8 dimensions.

Figures 5.18c and 5.19c show another application of higher order parallel
coordinates for the test data sets 1 and 2. Here we have two main axes X1,X2,
and 6 additional axes between them. Figure 5.18c shows no correlations between
them in data set 1. This is no new information after analyzing figure 5.18b; it
is only for comparison with figure 5.19c. In figure 5.19c the curves show a
similar behavior. Thus there are correlations between all 8 dimensions. All
visualizations for higher order parallel coordinates in figures 5.18 and 5.19 were
computed using the weight w = 1.
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Figure 5.18: Test data set 1 ; a) normal parallel coordinates; b) higher order parallel
coordinates, between each two main axes, two additional axes are inserted ; c) higher
order parallel coordinates; two main axes X1, X2, 6 additional axes between them.

5.2.1.3 Application scenario for higher order parallel coordinates

Given an n-dimensional data set we start out with the usual parallel coordi-
nate approach. Here the order of the axes is subject to interactive change. If
correlations between adjacent axes Xk,Xk+1 are detected, additional axes can
be inserted between Xk and Xk+1 in order to explore whether or not there are
correlations between more than two axes (including Xk and Xk+1). To do so,
the weight parameter is interactively moved between 0 and 2. We demonstrate
this on the car data set7 which was already explored in section 5.1.1 using the
ShapeVis approach.

Figure 5.20a shows the visualization using usual parallel coordinates. We can
detect correlations between the following pairs of dimensions: (MPG, Weight),
(Horsepower, Displacement), (Displacement, Cylinders). No relevant correla-
tions are found between (Weight, Driveratio), (Driveratio, Horsepower). Figure
5.20b shows the visualization using higher order parallel coordinates with one
additional axis between each pair of adjacent main axes. Correlations between
triples of dimensions can be detected for (Horsepower, Weight, Displacement),
(Displacement, Horsepower, Cylinders). No relevant correlations are found
in the triplets (MPG, Driveratio, Weight), (Weight, Horsepower, Driveratio),

7available at http://lib.stat.cmu.edu/DASL/Stories/ClusteringCars.html
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Figure 5.19: Test data set 2 ; a) normal parallel coordinates; b) higher order parallel
coordinates, between each two main axes, two additional axes are inserted ; c) higher
order parallel coordinates; two main axes X1, X2, 6 additional axes between them.

(Driveratio, Cylinders, Horsepower). The curves for these triples do not show
similar patterns.

As with the usual parallel coordinate approach, using higher order parallel
coordinates is an interactive process. The user has to find appropriate sequences
of main axes as well as the additional axes between them. To explore the
behavior of the curve the user can move the weight parameter interactively.

Obviously, the success of higher order parallel coordinates depends on the
ability of the initial usual parallel coordinates approach to detect all pairs of
dimensions with relevant correlations. This is not a trivial task and for usual
parallel coordinates is only possible by (interactively or automatically) finding
suitable arrangements and exchanges of the coordinate axes. For a higher num-
ber of dimensions this is going to be laborious. There a combination with scatter
plot matrices is possible to find all pairs of dimensions with relevant correlations
to each other.

5.2.2 Theoretical considerations for higher order parallel
coordinates

Up to here, higher order parallel coordinates have been introduced from an
perception driven standpoint. Straight line segments have been replaced by
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Figure 5.20: Car data set; a) usual parallel coordinates; b) higher order parallel
coordinates with one additional axis between each pair of adjacent main axes.

curves, and it has been observed that in this way correlations between more
than two dimensions may become visible. However, normal parallel coordinates
have a strong theoretical background. So it makes sense to ask for the theoretical
consequences of replacing lines by curves to get a deeper understanding of higher
order parallel coordinates.

We start with collecting some well-known properties of normal parallel co-
ordinates for only two dimensions. Given is a point x = (x1, x2) in 2D cartesian
coordinates. Placing the two coordinate axes X1,X2 in the cartesian coordinate
system parallel to the y-axis at the locations a1, a2, the point x in cartesian co-
ordinates can be represented in parallel coordinates by the straight line

sx(t) = (1− t)
(
a1

x1

)
+ t

(
a2

x2

)
.

Figure 5.21 gives an illustration.
Now we consider not only one point in parallel coordinates but a set of points

which are located on a straight line. The pointwise transformation of these
points into parallel coordinates gives a bundle of lines in parallel coordinates
which intersect in a common point. Thus a line in cartesian coordinates is
represented by a point in parallel coordinates; we have a point ↔ line duality
between cartesian coordinates and parallel coordinates (see [98]). Figure 5.22
gives an illustration.

Now we consider the image of a set of points in cartesian coordinates which
are located not on a straight line but on a general curve. Figure 5.23a shows
a number of points in cartesian coordinates which are located on a pair of
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Figure 5.21: Parallel coordinates: the point x in a) is represented in parallel coordi-
nates by the line sx in b).
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Figure 5.22: Point ↔ line duality; a set of points located on a line in cartesian
coordinates shown in a) is mapped to a set of lines intersecting in a common point in
parallel coordinates shown in b).

hyperbolas. Their images in parallel coordinates are shown in figure 5.23b. As
we can see there, this set of lines envelopes an ellipse. This ellipse (shown in
figure 5.23c) can be considered as the parallel coordinate image of the hyperbola
of figure 5.23a. In fact, considering the family of lines in parallel coordinates as
the envelope of a curve, it has been shown ([100]) that there is a conic ↔ conic
duality between cartesian coordinates and parallel coordinates.

Now we want to extend this duality to a general curve ↔ curve duality
between cartesian coordinates and parallel coordinates. Suppose the curve
x(t) = (x1(t), x2(t))

T in cartesian coordinates is the dual to the curve p(t) =
(p1(t), p2(t))

T in parallel coordinates. (The curve p(t) is considered to be a
point curve; its envelope (i.e. its set of tangent lines) is the set of lines in
parallel coordinates which are the dual counterparts of the points of x(t)). To
establish the correlation between x(t) and p(t), we have to show how to com-
pute x(t) from p(t) and vice versa. Given the curve p(t), the curve x(t) can be
found by intersecting the tangent lines of p(t) with the coordinate axes X1,X2,
and considering the y-coordinates of these intersection points as the coordinates
of x(t):

x(t) =

 x1(t)

x2(t)

 =

 p2(t)− ( p1(t)− a1 )
ṗ2(t)
ṗ1(t)

p2(t)− ( p1(t)− a2 )
ṗ2(t)
ṗ1(t)

 . (5.13)

Figure 5.24 illustrates this.
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Figure 5.23: Conic ↔ conic duality; a) a set of points located on a hyperbola; b)
their images in parallel coordinates envelopes an ellipse (c).

Figure 5.24: Obtaining x(t) in cartesian coordinates from p(t) in parallel coordinates.

To obtain p(t) from x(t) we use the fact that the point p(t) must be on the
line sx(t) for any point x(t) on the curve. Hence we use the approach

p(t) = (1− α(t) )
(

a1

x1(t)

)
+ α(t)

(
a2

x2(t)

)
. (5.14)

Figure 5.25 illustrates this. The only remaining problem is to find the func-
tion α(t). To do so, we compute the tangent vector of p(t) by computing the
derivative of (5.14):

ṗ(t) =
(
ṗ1(t)
ṗ2(t)

)
=

(
α̇(t) (a2 − a1)

( (1− α) ẋ1 + α ẋ2 + α̇ (x2 − x1) )(t)

)
. (5.15)

In order to obtain the unknown function α(t), we consider the curve y(t) which
is obtained by reverse-transforming p(t) given by (5.14) and (5.15) into cartesian
coordinates. This means that we insert (5.14) and (5.15) into

y(t) =

 y1(t)

y2(t)

 =

 p2(t)− (p1(t)− a1)
ṗ2(t)
ṗ1(t)

p2(t)− (p1(t)− a2)
ṗ2(t)
ṗ1(t)

 .

and obtain

y(t) =
(
y1(t)
y2(t)

)
=

(
x1(t)
x2(t)

)
+

(1− α(t)) ẋ1(t) + α(t) ẋ2(t)
α̇

( −α(t)
1− α(t)

)
.
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Figure 5.25: Obtaining p(t) in parallel coordinates from x(t) in cartesian coordinates:
the function α(t) has to be found.

Figure 5.26: Slope angles γ and ξ.

From this and y(t) = x(t) we obtain the condition

(1− α(t)) ẋ1(t) + α(t) ẋ2(t) = 0

which yields

α(t) =
ẋ1(t)

ẋ1(t)− ẋ2(t)
. (5.16)

This way (5.14) and (5.16) give the transformation from x(t) to p(t) which
shows the curve ↔ curve duality between cartesian coordinates and parallel co-
ordinates.

Having introduced how to transform a curve x(t) into a dual curve p(t), we
ask for common geometric characteristics of both curves. Let

ξ(t) = arctan
ẋ2(t)
ẋ1(t)

be the slope angle of the curve x(t), and let

γ(t) = arctan
ṗ2(t)
ṗ1(t)

be the slope angle of the dual curve p(t). Figure 5.26 illustrate ξ and γ. Then
we search for dual properties in the curvature of x(t) and p(t). To do so, we have
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Figure 5.27: a) higher order parallel coordinates: 3 additional axes X3, X4, X5

are placed between the two main axes X1, X2; shown is the 5-dimensional point
(0 , 2 , 1, 0.1 , 2.2); b) transformation of the curve in a) into cartesian coordinates;
the self-intersection in this curve corresponds to the common tangent of two parts of
the curve in a) (dashed line).

to consider ẋ(t) and ẍ(t) as well as ṗ(t) and p̈(t) by computing the derivatives
of (5.14) and (5.16). Let κx(t) be the curvature of x(t), and let κp(t) be the
curvature of p(t). Then we obtain the following correlation8:

κx(t) κp(t) =
√
2

4 (a2 − a1)2
( (1− sin 2ξ ) (1 + cos 2γ ) )

3
2 (5.17)

(5.17) shows that the curvatures of x and p behave reversed. If one curve has
a large curvature, the other one has a rather small curvature. In fact, also
the cusp ↔ inflection point duality between cartesian coordinates and parallel
coordinates (see [98]) is a byproduct of (5.17).

5.2.2.1 Application of the curve ↔ curve duality to higher order
parallel coordinates

Now we can apply the curve ↔ curve duality introduced above to higher order
parallel coordinates. In common parallel coordinates, a point in n-dimensional
cartesian space is transformed to a sequence of straight lines. To understand
higher order parallel coordinates, we have to find the objects in n-dimensional
cartesian space which transformation to parallel coordinates gives a sequence
of curves, i.e higher order parallel coordinates. Following the curve ↔ curve
duality, these objects are n-dimensional curves in cartesian coordinates.

Figure 5.27a shows a higher order parallel coordinate approach for a 5- di-
mensional point. Here we have chosen two main axes X1,X2 and 3 additional
axesX3,X4,X5 between them, the weight w (see (5.12)) was set to 1. This curve
in parallel coordinates can be transformed to cartesian coordinates by (5.13).
The resulting dual curve in cartesian coordinates is shown in figure 5.27b. The
two cusps of the curve in figure 5.27b correspond to the two inflection points
of the curve in figure 5.27a. The self-intersection of the curve in figure 5.27b

8by computing ṗ(t) and p̈(t) from (5.14) and (5.16), computing κx(t) from ẋ(t) and ẍ(t),
and computing κp(t) from ṗ(t) and p̈(t). These computations were done by a formula ma-
nipulating program.
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Figure 5.28: Influence of the weight w; a) higher order parallel coordinates; b) dual
curve of a) in cartesian coordinates.

corresponds to the dashed line in figure 5.27a which is tangent of two different
curve points.

Since the curve in higher order parallel coordinates is a piecewise C2 con-
tinuous cubic B-spline curve described by (5.10) – (5.12), (5.13) yields that its
dual curve in cartesian coordinates is a piecewise C1 continuous cubic B-spline
curve.

Now we explore the impact of the weight w (see (5.12)) in higher order par-
allel coordinates. Figure 5.28a shows the higher order parallel coordinate curves
of the same example as in figure 5.27a for 4 different choices of w, including the
special case w = 0 which describes common parallel coordinates. Figure 5.28b
shows the dual curves of figure 5.28a in cartesian coordinates. As we can see
here, w causes an approximate downscaling of the curve. In fact, for the special
case w = 0 the curve degenerates to a point.

The example in figure 5.28 gives reason for the following statement: the
higher order parallel coordinate approach (introduced in section 5.2.1) and the
ShapeVis approach (introduced in section 5.1.1) are based on a similar idea! In
fact, ShapeVis maps a point in n-dimensional cartesian space to a curve/surface
in 2D/3D cartesian space where location, size and shape of the curve/surface
determine the whole amount of present information. Higher order parallel co-
ordinates does essentially the same but maps these curves from cartesian co-
ordinates to parallel coordinates. As discussed in section 5.2.1, this has the
advantage that correlations between a certain number of dimensions can be de-
tected while ShapeVis is limited to global statements about the similarity of
observation cases.

From figure 5.28 we can also see that the weight w (see (5.12)) in higher
order parallel coordinates has the inverse impact to the value c (see (5.2)–(5.4))
in the ShapeVis approach. A high c leads to a collapsing of the Curves/surfaces
to a point in ShapeVis while a small w collapses a curve in higher order parallel
coordinates to a sequence of straight lines and thus to a point in the higher
dimensional data space.
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Figure 5.29: 5-dimensional function f(x1, x2, x3, x4, x5) in the Worlds-Within-Worlds
technique; the last 3 dimensions build the outer coordinate system, at a particular
location of this, the function f(x1, x2) is visualized in the inner coordinate system as
a height field (image from [18]).

5.3 Hierarchical Techniques

Hierarchical techniques try to find a mapping from a higher dimensional grid
to a hierarchical grid arrangement in 2D or 3D. This way both local and global
properties of a higher dimensional data set should become visible. Representa-
tives of hierarchical techniques are Dimensional Stacking ([124]) and Cone Trees
([157]).

Due to the nature of these techniques, hierarchical techniques tend to de-
mand a rather large screen space to determine the location of the higher dimen-
sional grid. Hence there is little space left to represent the data values in the
grid points; simple color techniques like encoding the data in the pixel color are
preferred to the application of curves and surfaces.

An exception to this statement is the Worlds-Within-Worlds approach de-
scribed in [18]. The idea there is to pick three coordinates of the higher di-
mensional coordinate system to built an ”outer world”. At a certain location
of this outer world (i.e. for particular values of the outer three coordinates),
a new ”inner” coordinate system consisting of three of the remaining dimen-
sions is constructed. This procedure may be repeated recursively until in the
”most inner” coordinate system the data may be represented by a curve or a
surface. Figure 5.29 gives an illustration of the visualization of a 5-dimensional
function f(x1, x2, x3, x4, x5). The first three dimensions define the outer coor-
dinate system. Hence the coordinates x3, x4, x5 define the location in 3D in
which a new coordinate system is created. In this coordinate system the 2-
dimensional function f(x1, x2) for a constant (x3, x4, x5) is simply visualized
as a height field. In addition, various interactive functionalities are offered by
Worlds-Within-Worlds systems to define the coordinate systems and to navigate
in them.

Contrary to other hierarchical techniques, Worlds-Within-Worlds focuses
only on certain subspaces of the higher dimensional data space for visualiza-
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tion. Hence the amount of data present may become small enough to enable
the application of surfaces. However, the applied surfaces are usually simply
height surfaces. Their treatment does not need further CAGD methods and
ideas.



Chapter 6

CAGD for Further Data
Classes

Considering the classification of scientific data of [23] and section 2.1, there is a
number of data classes we have not treated yet. In fact, up to now we have only
considered volume data, flow data and multiparameter data which are currently
the most popular data classes in Visualization.

It is the purpose of this chapter to give an overview on CAGD methods for
some of the remaining data classes. None of these classes is treated in detail
here, either because no systematic application of CAGD methods is done or
because a complete and exhaustive literature on this issue already exists. In the
following sections 6.1 – 6.3 we treat scattered data, tensor data, and information
visualization.

6.1 Scattered Data

The defining property of scattered data is the fact that the data values are not
located on a regular grid. On the contrary, usually no grid is given at all. So
we might have to deal with the problem that in some areas there are too many
data values (oversampling) while in other areas the distribution of the data is
rather coarse (undersampling).

Scattered data may be given in two ways:

• Given are n sample points xi = (xi, yi), (i = 1, ..., n) in the 2D euclidian
plane, and a scalar value si, (i = 1, ..., n) for each of these points. Then
we search for a scalar function s(x, y) over the 2D euclidian plane which
interpolates the scalars at the sample points, i.e. s(xi, yi) = si for (i =
1, ..., n). We call this kind of data 2D scattered data.

• Given are n sample points xi = (xi, yi, zi), (i = 1, ..., n) in the 3D eu-
clidian space. We search for a surface which interpolates these n sample
points. We call this kind of data 3D scattered data.

Each of these scattered data classes is treated in one of the following sections
6.1.1 and 6.1.2. Research has also been done on multidimensional scattered data
(see [4]) which is not treated here.

155
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6.1.1 2D scattered data

Concerning the data classification of [23], 2D scattered data can be expressed
as ES

[2] where no connectivity of the sample points in the 2D domain is as-
sumed. Interpreting the scalars si as height values over the (x, y)-domain, the
2D scattered data problem can be considered as a surface interpolation prob-
lem by searching for an interpolating height surface s(x, y). In fact, the most
complicated part of dealing with 2D scattered data is to find an appropriate
interpolation. The remaining parts of visualizing scattered data (mapping, ren-
dering – as in the usual visualization pipeline for scientific data) can be done
by standard methods for surfaces. Hence the field of dealing with 2D scattered
data is called scattered data interpolation instead scattered data visualization.

A variety of interpolation schemes for scattered data have been developed.
Since there is number of excellent and comprehensive surveys on this issue (see
[95], [62], [63]), we can restrict ourselves here to a rough classification of 2D
scattered data methods.

The methods of 2D scattered data interpolation can be classified in three
groups (see [95]):

• Shepard methods

• Radial basis functions

• Surfaces over a triangulation.

Especially for the last-named group, a variety of CAGD methods can be ap-
plied. (In fact, many of these methods have been developed for scattered data
interpolation.) After building a triangulation over the sample points in the
2D domain, a triangular surface is constructed over each of the resulting trian-
gles. By estimating derivative information in the vertices of the triangulation,
a certain smoothness of the adjacent triangular patches can be achieved. Stan-
dard approaches are the Clough-Tocher interpolant ([11], [55]) the Powell-Sabin
interpolant ([153],[55]), and Nielson’s C1 interpolant ([140]).

6.1.2 3D scattered data

Using the data classification of [23] again, 3D scattered data can be described
as EP

[3] where no connectivity of the sample points is assumed. This means
in particular that only the location of the 3D sample points matters while the
scalar values at these sample points are not considered. This class of data often
appears by 3D scanning of bodies and landscapes.

Also for this kind of scattered data a number of comprehensive surveys ex-
ist ([132], [4]). Most of the approaches here focus on constructing a piecewise
triangular interpolating surface where the vertices of the triangles are the sam-
ple points xi. If a higher degree of smoothness is desired, triangular surface
patches may be constructed using the same basic approaches as for surfaces
over triangulations for 2D scattered data. Smooth surface approaches which
were especially developed for 3D scattered data can be found in [48], [77].
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6.2 Tensor Data

In recent years the visualization of tensor data has become a growing subject
in scientific visualization. Tensors of an order n can be considered as an n-
dimensional matrix which has a certain transformation behavior. The tensors
which are most often treated in scientific visualization are symmetric second
order tensors. This type of tensor appears by describing the diffusion behavior
of objects or the affecting stress inside a solid object. Also the Jacobian deter-
minant of a 3D vector field (see section 4.1.8) can be interpreted as a second
order tensor.

A symmetric second order tensor field can be described as a map T from the
3D domain into the vector space of symmetric second order tensors:

T(x, y, z) =

 u11(x, y, z) u12(x, y, z) u13(x, y, z)
u12(x, y, z) u22(x, y, z) u23(x, y, z)
u13(x, y, z) u23(x, y, z) u33(x, y, z)

 .

It can be shown that any second order tensor (i.e. any 3 × 3 matrix) can be
broken up into a symmetric second order tensor and and a vector ([46]). For
visualization purposes, the eigenvalues λ1, λ2, λ3 of T and their corresponding
eigenvectors v1,v2,v3 are of special interest.

A number of techniques have been developed to visualize tensor fields. Since
tensor fields can be interpreted as a generalization of vector fields, most of the
visualization techniques for tensor fields are generalizations of vector field tech-
niques. Among the techniques for tensor field visualization there is a number
of techniques which uses curves and surfaces. In the following we collect these
techniques.

One popular approach to visualizing tensor fields is to place appropriate
icons at certain locations in the flow which contain the tensor information for a
particular location in the field. For this purpose, an ellipsoid ([113]) is especially
useful as an icon because it covers exactly all degrees of freedom of a symmetric
second order tensor. To do so, the three main directions of the ellipsoid are the
three eigenvectors of T while the three main radii of the ellipsoid are the three
eigenvalues of T. Figure 6.1 illustrates an example of visualizing a symmetric
second order tensor as an ellipsoid.

If a tensor field T describes the diffusion of an object, a ellipsoid as visual-
ization technique has a nice geometric interpretation: it describes the shape of
a drop of fluid set out at the current location after a short time of diffusion. In
[114] the tensor characteristics are mapped onto the color on spheres which are
directly volume rendered.

For vector fields, stream lines have been proven to be a useful visualization
tool. The counterparts for tensor field are hyperstreamlines ([46]) which are
simply the stream lines of the three eigenvector fields v1,v2,v3. Figure 6.2a
shows some minor hyperstreamlines (i.e. the streamlines of the eigenvector-field
corresponding to the smallest eigenvalue) for a stress tensor field induced by two
compressive forces. In [206] tensor lines are used instead of hyperstreamlines.
Since a diffusion process is a probabilistic phenomenon, tensor lines incorporate
a probabilistic propagation of the path. This has been shown to be especially
useful in isotropic areas, i.e. in areas where at least two of the eigenvalues of



158 CHAPTER 6. CAGD FOR FURTHER DATA CLASSES

Figure 6.1: Visualizing a symmetric second order tensor T as an ellipsoid; a) v1,v2,v3

are the eigenvectors of T while λ1, λ2, λ3 are the eigenvalues of T; b) resulting ellipsoid.

a)
b)

Figure 6.2: a) minor hyperstreamlines for a stress tensor field (image from [123]); b)
tensor lines (yellow) and hyperstreamlines (cyan) for a diffusion data set (image from
[206]).

T are close to each other. Figure 6.2b shows tensor lines (yellow) and hyper-
streamlines (cyan) for a diffusion data set.

Another method which is directly extended from vector fields is the con-
sideration of the topology of symmetric second order tensor fields. To do this
we have to determine the tensor counterparts of critical points in vector fields.
[90] and [123] show that these points are degenerate points which are defined
by the property that at least two eigenvalues of T collapse. [90] classifies these
degenerate points and introduces in this way a visualization technique for tensor
fields similar to [87] for vector fields.

In [21], tensor fields are visualized by deformation surfaces: an initial in-
terrogation surface (for example a plane segment) is deformed in response to
the stress tensor acting upon it. This way the resulting deformed surfaces give
insight into the behavior of the tensor field.

6.3 Information Visualization

In the last years information visualization has become one of the ”hot topics”
of Scientific Visualization. Currently there are even aspirations to make it a
research area of its own and to develop it independently of classical Scientific
Visualization.
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This is a remarkable tendency especially because there is no generally ac-
cepted definition of the concept ”information visualization” yet. In particular
the distinction between the ”classical” data visualization and information visu-
alization is not done consistently.

Particularly vague is the borderline between information visualization and
the visualization of multiparameter data. In fact, information visualization is
sometimes characterized as visualization of multiparameter data where the dis-
tinction between dependent and independent variables is abrogated. Instead,
only ”abstract” independent variables are considered. Following this characteri-
zation of information visualization, all approaches which we treated in chapter 5
belong to the field of information visualization. In fact, a number of techniques
for information visualization was developed for multiparameter data, and vice
versa. (For example, the ShapeVis approach of section 5.1.1 was originally
developed in the context of information visualization.)

Another characterization which is sometimes used to define the concept of
information visualization is the property that the data consists of additional
structural information which cannot be described by data models such as [23].
This structural information may be a hierarchical or another network of relations
between the data elements. A survey on information visualization can be found
in [27].

Curves and surfaces in information visualization can be used both to rep-
resent the data values and to represent the internal structures inside the data.
The representation of the data values was already discussed in chapter 5 of this
work1. Also for the structural information, curves and surfaces can be applied.
To show this, we give a few examples which do not claim to be complete.

A very popular approach in information visualization are Focus&Context tech-
niques which visualize a small part of the data in full detail while giving a rough
overview of the remaining parts. A representative of this class of techniques is
the Hyperbolic Viewer in [137]. Figure 6.3 shows a technique called Magic Eye
View ([25]) which maps hierarchical data onto the surface of a sphere. This
way the center of focus of the technique can be changed by changing the view
direction onto the sphere. Figure 6.3a shows a version of Magic Eye View where
the edges of the hierarchy on the sphere are represented as straight lines. The
meaningfulness of this visualization can be increased by representing the edges
as rational quadratic Bézier curves (which correspond to great circles on the
sphere), as shown in figure 6.3b.

Another application of surfaces in information visualization is the treatment
of Blobs ([74], [177]). Blobs are implicit surfaces which are obtained by plac-
ing higher dimensional data points into the 3D space in an appropriate way
and applying a cluster analysis there2. This way the Blobs are the isosurfaces
of a certain field function which makes sure that the clusters are completely
surrounded by the Blobs. To visualize Blobs, standard methods for extracting
implicit surfaces can be used. Figure 6.4 shows an example.

Another application of implicit surfaces in information visualization can be

1Chapter 5 treats multiparameter data but is true in the context of information visualiza-
tion as well.

2The usage of Blobs can also be considered as an approach to visualizing multidimensional
data as described in chapter 5. Since this technique was explicitly developed under the concept
of information visualization, we leave it in this section.
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a) b)

Figure 6.3: Magic Eye View for hierarchical data; the rings on the sphere represent
the levels of hierarchy; a) edges of the graph represented as straight lines; b) edges of
the graph represented as rational quadratic Bézier curves.

a) b)

Figure 6.4: Blobs; a) initial object layout; b) Blob surfaces denoting the clusters
(images from [177]).

found in [159] where the results of text analyses are visualized.
In [169] the applicability of superquadrics to information visualization is

studied. There it was shown that the number of different superquadrics which
can be distinguished by the human eye is rather limited. Hence superquadrics
are only partially useful for information visualization.



Chapter 7

Scientific Visualization for
CAGD

The CAGD design process is a complex and heterogeneous process which con-
sists of a number of different steps and involves different kinds of data. Parts of
this data have a similar structure to the data which is used in Scientific Visu-
alization. These are the parts where Scientific Visualization can be applied for
the CAGD process. Visualizing this data may give the designer information on
how to continue the design process. Based on this visualization, he or she can
decide if a redesign is necessary or if the next steps of the design process can be
started.

The different processes and kinds of data which appear in the CAGD pro-
cess were treated in the sections 2.1 and 2.3.2. We base the investigations in
this chapter on the CAGD pipeline which we introduced in section 2.3.2. In
particular we consider the present data at each step of the CAGD pipeline to
find possible applications of Scientific Visualization. The left hand side of figure
7.1 shows the CAGD pipeline of figure 2.2 again. In addition, the right hand
side of figure 7.1 classifies the present data in each part of the pipeline.

The input data at the beginning of the CAGD pipeline is either non-existing,
an informal description (hand drawing), or a set of sample points. In the last
named case, a plot of these points may give the designer an overview of the
present data set in preparation for the next design steps. However, the graphi-
cal output of the sample points is just an application of basic 2D or 3D computer
graphics; a particular knowledge about Scientific Visualization is not necessary.

In the next step of the CAGD pipeline, specify task, information is input which
does not have the structure of visualization data. In fact, most of the decisions
to be made here are binary decisions, such as the decisions about a desired in-
terpolation and approximation of the data. Hence an application of Scientific
Visualization in not appropriate there.

A similar statement holds for the next steps of the CAGD pipeline, selec-
tion of the curve/surface type, specify further requests of curves/surfaces, and
determine global degrees of freedom. All these steps collect information about
the properties of the curve/surface to be designed. Data of the kind used in
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specify task

select curve/surface type

curve/surface interrogation

specify further request
of curve/surface

determine global
degrees of freedom

move control points

curve/surface fairing

input data

curves/surfaces

}
}

}
schemes of
control points

non-visualization
data

Figure 7.1: CAGD pipeline (left) and classification of the present data (right).

Scientific Visualization is not present.

After the step determine global degrees of freedom in the CAGD pipeline, an
initial scheme of control points is present which can now be interactively moved
by the designer. Such a scheme of control points can be considered as data of
the type EP

3 (see section 2.1). Thus, in this part of the CAGD pipeline the ap-
plication of Scientific Visualization becomes possible. We treat the application
of Scientific Visualization for the step of moving the control points in section 7.1.

After finding appropriate locations of the control points, the scheme of con-
trol points is automatically converted to a curve/surface, i.e. data of the type
EV2

[1] , E
V3
[1] , or E

V3
[2] (see section 2.1). A number of techniques exist for providing

visual representations of curves/surfaces. We give a summary of them in section
7.2.

In the next step of the CAGD pipeline, curve/surface interrogation, the quality
of the designed curve/surface is analyzed. Here, a visual analysis is a natural
approach. We dedicate section 7.3 to the application of Scientific Visualization
for curve/surface interrogation.

The final step of the CAGD pipeline (curve/surface fairing), does not need
a particular treatment in terms of Scientific Visualization because it can be
seen in combination with surface interrogation methods. In fact, possible appli-
cations of visualization for surface fairing focus on curve/surface interrogation
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are treated in section 7.3.

7.1 Visualization for Schemes of Control
Points

To apply Scientific Visualization for schemes of control points, we see two ap-
proaches:

1. The structure of control points has to be specified in such a way that all
degrees of freedom can be changed interactively and in an intuitive way.

2. The scheme of control points has to be displayed on the screen.

The second point is a rather trivial application of classical computer graphics.
In fact, the scheme of control points is normally represented by a scheme of
points and straight line segments which can be directly sent to the rendering
pipeline of a graphical workstation. Further applications of knowledge which
comes from Scientific Visualization is not necessary here.

For approach 1, the structure of the control points is usually directly given
by the chosen type of curves/surfaces. For example, for Bézier- or B-spline
curves/surfaces, the present control point schemes have the property that every
degree of freedom is uniquely represented by the system of control points. In
other words: each Bézier- or de Boor point can be moved freely (and indepen-
dently of the other control points) by the designer.

If the chosen type of curve is a rational Bézier- or B-spline curve, the weights
of the control points can be described by Farin points. Farin points are a design
tool for handling the weights of rational curves in an intuitive way. In particular
there is a one-to-one correlation between the weights and the Farin points for
rational curves. This means that all weights can be controlled by the system
of Farin points, and all Farin points can be moved independently of each other.
Unfortunately, this property gets lost when considering Farin points on rational
surfaces. In order to keep Farin points a useful design tool for rational surfaces,
we propose the application of methods of Scientific Visualization in the section.
In fact, we introduce appropriate icons to give the designer the necessary tools
to design the weights of the surfaces. Before doing so, we briefly introduce Farin
points for rational Bézier curves.

Given two Bézier points bi,bi+1 and their assigned weights wi, wi+1 in affine
space, we consider the corresponding points

bi =
(
wi bi
wi

)
, bi+1 =

(
wi+1 bi+1

wi+1

)
in homogeneous coordinates in projective space. Defining the Farin point in
projective space as f i =

1
2 (bi + bi+1), its counterpart in affine space is

fi =
wi · bi + wi+1 · bi+1

wi + wi+1
. (7.1)

The location of fi on the line through bi and bi+1 determines the ratio of wi
and wi+1 uniquely and in an intuitive way. For positive weights, fi is located
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b3

b2

b0

b1
f1

f0

f2

b0,1
b3,1

b2,3b1,2a) b)

Figure 7.2: Rational Bézier curve of degree 3 with the weights w0 = 1, w1 = 2,
w2 = 3, w3 = 1; a) described by Bézier points and assigned weights, b) described by
Bézier points and Farin points.

between bi and bi+1, and ratio(bi, fi,bi+1) =
wi+1
wi

. Intuitively: the larger wi
is relative to wi+1, the closer fi moves toward bi.

Given the Bézier polygon b0, ...,bn, the assigned weights w0, ..., wn can be
described by the Farin points f0, ..., fn−1. Figure 7.2 shows an example for n = 3.
Farin points for rational Bézier curves have the following properties:

• Uniqueness: the Farin points f0, ..., fn−1 describe the weights w0, ..., wn
uniquely except for a common factor. This common factor has no influence
on the shape of the curve.

• Independence: each of the Farin points f0, ..., fn−1 can be moved freely on
the lines of the Bézier polygon. The adjacent Farin points are not affected
by moving fi.

• Intuitivity: instead of increasing or decreasing the weights a designer
moves Farin points on the Bézier polygon. He or she may find this more
intuitive.

• Extended convex hull: for positive weights, the rational Bézier curve lies
not only in the convex hull of b0, ...,bn, but also in the convex hull of
b0, f0, ..., fn−1,bn.

A comprehensive introduction of rational Bézier curves and Farin points (weight
points) can be found in [54].

Considering the above-mentioned properties of Farin points for Bézier curves,
it is a natural next step to consider Farin points for rational Bézier surfaces.
Unfortunately, a straightforward extension to surfaces creates problems because
the independence property gets lost. As we will see in the next sections, Farin
points for Bézier surfaces (both triangular and tensorproduct) overdefine the
weights and therefore have dependencies to each other. In other words: moving
a particular Farin point of a Bézier surface may cause contradictions in the
system of all Farin points. A Farin point is no longer freely movable. An
important design feature gets lost.

The solutions to this problem which we want to present in the following
use ideas and concepts from the visualization of multiparameter data. As men-
tioned in section 5.1.2, for visualizing multivariate data using iconic techniques,
it is crucial to choose an appropriate icon. The problem of finding appropriate
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b0,0,4 b1,0,3 b2,0,2 b3,0,1 b4,0,0

b0,4,0

b1,3,0

b2,2,0

b3,1,0

b0,3,1

b0,2,2

b0,1,3

b1,2,1

b1,1,2 b2,1,1

upright
subtriangle

upside down
subtriangle

Figure 7.3: Bézier triangle of degree 4 consisting of 15 Bézier points; this Bézier
triangle consist of 10 ”upright” subtriangles and 6 ”upside down” subtriangles.

schemes of Farin points is an analogous problem to the problem of finding appro-
priate icons. In particular the requirement to have a one-to-one correspondence
between all degrees of freedom of the weights and the system of Farin points
has its counterpart in the requirement that a designed icon for the visualization
of multiparameter data should describe all dimensions completely and free of
contradictions. This makes it possible to apply ideas and methods of the design
of icons for multiparameter data.

Following [189], section 7.1.1 introduces subsets of Farin points for triangular
Bézier surfaces where the Farin points in these subsets are independently of
each other and cover all degrees of freedom. Section 7.1.2 does the same for
tensorproduct surfaces.

Although we formulate the approaches in the following sections 7.1.1 and
7.1.2 only for rational Bézier surfaces, they are applicable for rational B-spline
surfaces as well.

Notation: For describing basic geometric constructions in Euclidian space we
use the following pseudo-code:
l := lin(a,b): let l be the line through the points a and b.
l := par(l0,a): let l be the line parallel to the line l0 through a.
a := int(l1, l2): let a be the intersection point of the lines l1 and l2.

Furthermore we need the concept of cross ratio for 4 collinear points. We use
the definition

cr(a,b, c,d) =
ratio(a,b,d)
ratio(a, c,d)

. (7.2)

7.1.1 Farin points for Bézier triangles

A triangular Bézier surface of degree n is given by the Bézier points bi,j,k
with 0 ≤ i, j, k ≤ n and i + j + k = n. These Bézier points are arranged
in a triangular scheme as illustrated in figure 7.3 for n = 4. This scheme is
called Bézier triangle. Inside a Bézier triangle there are a number of upright
subtriangles consisting of 3 adjacent Bézier points bi,j,k, bi+1,j,k−1, bi,j−1,k−1.
Figure 7.3 illustrates an upright subtriangle.

For handling Bézier triangles, usually only the upright subtriangles are
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bi,j,k bi+1,j,k−1

bi,j+1,k−1

fi,j,k

pi,j,k

qi,j,k
ri,j,k

b0,0,2 b1,0,1 b2,0,0

b0,1,1 b1,1,0

b0,2,0

f0,0,2

q0,0,2

f0,1,1

p0,1,1

h
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Figure 7.4: a) Farin points fi,j,k, pi,j,k, qi,j,k, ri,j,k for the Bézier subtriangle bi,j,k,
bi+1,j,k−1, bi,j+1,k−1; b) Bézier triangle of degree 2. Given the Farin points f0,0,2, f0,1,1,
the Farin point f1,0,1 is not freely movable. In fact f1,0,1 must lie on lin(r1,0,1,b2,0,0).

treated (see for instance the triangular de Casteljau scheme ([54])). However, it
turns out that for the approaches we want introduce here it is also necessary to
consider ”upside down” subtriangles. Such a subtriangle is given by the three
adjacent Bézier points bi,j,k, bi+1,j,k−1, bi+1,j−1,k. An ”upside down” subtri-
angle is also illustrated in figure 7.3.

Given a Bézier triangle, the ratios of the (positive) weights of a subtriangle
can be described by one Farin point inside this subtriangle. For a subtriangle
consisting of the Bézier points bi,j,k, bi+1,j,k−1, bi,j+1,k−1 with the assigned
weights wi,j,k, wi+1,j,k−1, wi,j+1,k−1, we define the Farin point as barycentric
combination of the 3 Bézier points:

fi,j,k =
wi,j,k · bi,j,k + wi+1,j,k−1 · bi+1,j,k−1 + wi,j+1,k−1 · bi,j+1,k−1

wi,j,k + wi+1,j,k−1 + wi,j+1,k−1
. (7.3)

For positive weights, fi,j,k is inside the triangle bi,j,k, bi+1,j,k−1, bi,k+1,j−1.
Obviously, the location of fi,j,k in the triangle determines the ratio of the 3
weights uniquely. Furthermore we define the Farin points pi,j,k, qi,j,k, ri,j,k on
the edges of the triangle as determining the ratios of each two of the Bézier
points:

pi,j,k =
wi,j,k · bi,j,k + wi+1,j,k−1 · bi+1,j,k−1

wi,j,k + wi+1,j,k−1
,

qi,j,k =
wi+1,j,k−1 · bi+1,j,k−1 + wi,j+1,k−1 · bi,j+1,k−1

wi+1,j,k−1 + wi,j+1,k−1
,

ri,j,k =
wi,j,k · bi,j,k + wi,j+1,k−1 · bi,j+1,k−1

wi,j,k + wi,j+1,k−1
.

The geometric correlation between fi,j,k, pi,j,k, qi,j,k, ri,j,k is shown in figure
7.4a.
After Farin points for one subtriangle, we consider all Farin points of a Bézier
triangle, i.e. the Farin points of all upright subtriangles of the Bézier triangle.
Unfortunately, these Farin points are not independent of each other any more.
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To show this, we consider the example of a Bézier triangle of degree 2 as shown
in figure 7.4b. Suppose we know the Farin points f0,0,2 and f0,1,1. Then the
following constructions give r1,0,1:

q0,0,2 := int(lin(b1,0,1,b0,1,1), lin(b0,0,2, f0,0,2)) ,
p0,1,1 := int(lin(b0,1,1,b1,1,0), lin(b0,2,0, f0,1,1)) ,
h := int(lin(p0,1,1,b1,0,1), lin(q0,0,2,b1,1,0)) ,

r1,0,1 := int(lin(b1,0,1,b1,1,0), lin(b0,1,1,h)).

The Farin point f1,0,1 must lie on lin(r1,0,1,b2,0,0). It is not freely movable any
more. If f1,0,1 is not on lin(r1,0,1,b2,0,0), the system of the Farin points f0,0,0,
f0,1,1, f1,0,1 is not contradiction-free. f0,0,2, f0,1,1 and f1,0,1 are not independent
of each other.

To overcome this problem (and therefore make Farin points on Bézier trian-
gles usable as a design tool) there are two approaches:

1. Allow the user to move every Farin point and adjust the adjacent Farin
points simultaneously such that the system of all Farin points stays contra-
diction-free.

2. Do not offer the user all Farin points to move, but only a certain subset.
The Farin points in this subset should be independent of each other and
describe all weights of the Bézier points uniquely (except for a common
factor).

In the following we present solutions for both approaches. Approach 1 is treated
in section 7.1.1.1, section 7.1.1.2 shows solutions for approach 2.

7.1.1.1 Adjusting adjacent Farin points

Given a triangular Bézier point scheme, we consider all Farin points fi,j,k of
upright Bézier subtriangles. As we know from the example in figure 7.4b, these
Farin points are not independent of each other.

Figure 7.5 shows a number of subtriangles from a Bézier triangles. In par-
ticular, figure 7.5 shows the subtriangle b0,0,0,b1,0,−1,b0,1,−1 together with its
6 adjacent upright subtriangles1. Suppose the system of all Farin points fi,j,k
is contradiction-free. After moving f0,0,0 to ˜f0,0,0, the system of Farin points is
generally not contradiction-free any more. In order to preserve the freedom of
contradictions, we adjust the adjacent Farin points

f0,−1,1 , f1,−1,0 , f1,0,−1 , f0,1,−1 , f−1,0,1 , f−1,1,0

to the new points

˜f0,−1,1 , ˜f1,−1,0 , ˜f1,0,−1 , ˜f0,1,−1 , ˜f−1,0,1 , ˜f−1,1,0.

1Some Bézier points in figure 7.5 have negative indices which were not allowed in the
definition of Bézier triangles. This is due to the fact that we applied an index transformation
to keep them simple. This way the indices in figure 7.5 denote the relative indices to the index
(i, j, k). For instance, b1,0,−1 means the Bezier point bi+1,j,k−1.
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Figure 7.5: Moving the Farin point f0,0,0 to f̃0,0,0. In order to preserve the freedom
of contradictions, the adjacent Farin points f0,1,−1, f−1,1,0, f−1,0,1, f0,−1,1, f1,−1,0 have

to be adjusted to ˜f0,1,−1, ˜f−1,1,0, ˜f−1,0,1, ˜f0,−1,1, ˜f1,−1,0.

We know that ˜f0,1,−1 lies on lin(b0,1,−1, f0,1,−1). The similar statements for the
other Farin points can be seen in figure 7.5. Furthermore, it can be shown2 that

cr(b0,1,−1, f0,1,−1, ˜f0,1,−1,q0,1,−1) = cr(b0,1,−1, f−1,1,0, ˜f−1,1,0, r−1,1,0) ,

cr(b0,0,0, f−1,0,1, ˜f−1,0,1, r−1,0,1) = cr(b0,0,0, f0,−1,1, ˜f0,−1,1,p0,−1,1) ,

cr(b1,0,−1, f1,−1,0, ˜f1,−1,0,p1,−1,0) = cr(b1,0,−1, f1,0,−1, ˜f1,0,−1,q1,0,−1) .

All we have to do now is to determine these cross ratios. For doing this, consider
figure 7.6 which is a fragment of figure 7.5. We constructed the auxiliary point
c in the following way:

h := int(par(lin(b0,0,0,b1,0,−1), ˜f0,0,0),par(lin(b0,0,0,b0,1,−1), f0,0,0)) ,
c := int(lin(b0,0,0,h), lin(b0,1,−1, f0,0,0)) .

Then it can be shown3 that

cr(b0,1,−1, f0,0,0, c,p0,0,0) = cr(b0,1,−1, f0,1,−1, ˜f0,1,−1,q0,1,−1)

= cr(b0,1,−1, f−1,1,0, ˜f−1,1,0, r−1,1,0).

2by a direct algebraic computation using a formula manipulation program.
3by direct algebraic computation.
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Figure 7.6: Moving the Farin point f0,0,0 to f̃0,0,0 and adjusting the
adjacent Farin points. Constructing the auxiliary point c, we obtain:

cr(b0,1,−1, f−1,1,0, ˜f−1,1,0, r−1,1,0) = cr(b0,1,−1, f0,1,−1, ˜f0,1,−1,q0,1,−1) =
cr(b0,1,−1, f0,0,0, c,p0,0,0).

Therefore, the new adjusted Farin points ˜f0,1,−1 and ˜f−1,1,0 can be geometrically
constructed. Similar constructions apply for the other adjacent Farin points.

7.1.1.2 Independent Farin points for Bézier triangles

In this section we want to establish a subset of independent Farin points for
Bézier triangles which describes the weights of the Bézier points uniquely (except
for a common factor). The first solution of this was published in [3]. There
the problem was reduced to the curve problem by using not the Farin points
fi,j,k in the subtriangles but the points pi,j,k, qi,j,k, ri,j,k on the edges of the
subtriangles (see figure 7.4a). A system of these points - each of them movable
on a line segment - gave the solution. This solution was obtained by searching
a spanning tree for the control net which is interpreted as a graph.

In this section we use basic ideas of [3] but present a subset of independent
Farin points fi,j,k, i.e. these Farin points are freely movable inside a whole
subtriangle. Therefore we need fewer Farin points than in [3]. It turns out that
in order to provide such a subset of Farin points, we have to consider not only
upright subtriangles but ”upside down” subtriangles as well.

First we have to make sure that such a system of independent Farin points
exists at all. In doing this we keep in mind that a Farin point fi,j,k is movable
in 2D, and therefore its location covers 2 degrees of freedom.

The number df of degrees of freedom we have to cover in a triangular Bézier
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n 1 2 3 4 5 6 7 ...
df (n) 2 5 9 14 20 27 35 ...

even odd odd even even odd odd ...

Table 7.1: Number df (n) of degrees of freedom to be covered by Farin points in
triangular Bézier point schemes of the order n.

n=3

n=5n=4

n=6

n=2

n=1

Figure 7.7: Schemes of independent Farin points for Bézier triangles of degree 1-6,
strategy (α). Marked are all subtriangles in which the Farin point is considered. For
n = 2, 3, 6, the weights of one corner Bézier point was fixed by introducing a Farin
point on a line segment.

point scheme of the order n is:

df (n) =
(n+ 1) · (n+ 2)

2
− 1. (7.4)

This means that df (n) is the number of the Bézier points minus 1. We have
to fix the weights of all Bézier points except for a common factor. One weight
can be chosen randomly, then the other weights are fixed. Table 7.1 shows the
number df (n) of degrees of freedom for small n. If df (n) is even, we can find
a system of df (n)/2 independent Farin points. For df (n) is odd, there are 2
strategies:

(α) Find df (n)−1
2 independent Farin points and determine the weight of one

corner point of the Bézier triangle explicitly.

(β) Find df (n)−3
2 independent Farin points and determine the weights of all

3 corner points of the Bézier triangle explicitly. This strategy has the
advantage of preserving symmetry in the triangular scheme.

Figure 7.7 shows the solution for strategy (α) for small n. In this figure, all
subtriangles for which a Farin point is used are marked. For n = 2, 3, 6 we have
df (n) odd. For the special treatment of the lower left corners we introduced
Farin points on line segments which relate the weight of the corner to the average
of the weights of the other two Bézier points in the subtriangle. Figure 7.8 shows
how to get the solution for degree n+6 for a given solution for degree n. Figure
7.7 and 7.8 give the solution for strategy (α) for any degree n by induction.
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a) b)

Figure 7.8: Obtaining the system of independent Farin points for the degree n + 6
from a given solution for degree n, using strategy (α): a) for df (n) even, b) for df (n)
odd.

n = 1

n = 2 n = 3

n = 4 n = 5

n = 6

Figure 7.9: Schemes of independent Farin points for Bézier triangles of degree 1-6,
strategy (β).

Figure 7.9 and 7.10 show the solution for strategy (β) by induction.
Figure 7.11 shows an example: the system of independent Farin points for

a triangular Bézier point scheme of order 13.

Remarks:

• The systems of Farin points introduced in this section have the indepen-
dence property but not the local control property. This means that moving
one of the marked Farin points might change any other unmarked Farin
point. If the local control property of Farin points is important we have
to apply the automatic adjusting introduced in section 7.1.1.1. A system
with both the independence property and the local control property seems
not to exist.

• All schemes and constructions introduced in section 7.1.1 work both in
the domain of the Bézier triangles and in the Bézier point scheme in 3D.
This is because the Bézier point subtriangles in 3D can be considered as
affine maps of the subtriangles in the domain, and all constructions are
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Figure 7.10: Obtaining the system of independent Farin points for the degree n + 6
from a given solution for degree n, using strategy (β): a) for df (n) even, b) for df (n)
odd.

!!!
!!!
!!!a) b)

Figure 7.11: System of independent Farin points for n = 13; a) using the strategy
(α); b) using the strategy (β).

affine invariant.

7.1.2 Farin points for tensorproduct Bézier surfaces

In this section we apply the concept of Farin points to tensorproduct surfaces
which are described by a rectangular Bézier point scheme. To handle the weights
of such a scheme by Farin points, we first have to solve the problem for a
subquadrilateral. We look for a Farin point solution for a subquadrilateral both
in the domain of the surface and in 3D.

For the domain case, the Bézier points bi,j , bi+1,j , bi+1,j+1, bi,j+1 form a
rectangle, see figure 7.12a. Then we can define the points on the edges of the
rectangle which define the ratios of each two of the weights:

pi,j =
wi,j · bi,j + wi+1,j · bi+1,j

wi,j + wi+1,j
,

pi,j+1 =
wi,j+1 · bi,j+1 + wi+1,j+1 · bi+1,j+1

wi,j+1 + wi+1,j+1
,
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bi,j bi+1,j

bi+1,j+1bi,j+1

fi,j

pi,j

pi,j+1

qi+1,j

hqi,j

bi,j bi+1,j

bi+1,j+1bi,j+1

fi,j

pi,j

pi,j+1

qi+1,j

qi,j

a) b)

Figure 7.12: a) Defining the points pi,j , pi,j+1, qi,j , qi+1,j and the Farin point fi,j for
the Bézier points bi,j , bi+1,j , bi+1,j+1, bi,j+1 assigned with the weights wi,j , wi+1,j ,
wi+1,j+1, wi,j+1. b) constructing qi,j , qi+1,j and pi,j+1 from the given points fi,j and
pi,j geometrically.

qi,j =
wi,j · bi,j + wi,j+1 · bi,j+1

wi,j + wi,j+1
,

qi+1,j =
wi+1,j · bi+1,j + wi+1,j+1 · bi+1,j+1

wi+1,j + wi+1,j+1
.

Furthermore we define the Farin point

fi,j = int(lin(pi,j ,pi,j+1), lin(qi,j ,qi+1,j))

=
wi,j · bi,j + wi+1,j · bi+1,j + wi+1,j+1 · bi+1,j+1 + wi,j+1 · bi,j+1

wi,j + wi+1,j + wi+1,j+1 + wi,j+1
.

See figure 7.12a for an illustration. The Farin point fi,j has the intuitivity
property: increasing the weight of one Bézier point leads to moving fi,j towards
this Bézier point. Unfortunately, fi,j is not sufficient to define uniquely the
weight ratios in a subquadrilateral. In fact fi,j is freely movable in 2D and
therefore covers two degrees of freedom. What we have to determine are 3
degrees of freedom in a quadrilateral (the weight of one Bézier point can be
chosen randomly, then the weights of the other 3 Bézier points have to be
fixed).

Suppose the points fi,j and pi,j are given. Then the remaining points pi,j+1,
qi,j and qi+1,j can be geometrically constructed in the following way:

pi,j+1 := int(lin(pi,j , fi,j), lin(bi,j+1,bi+1,j+1)) ,
h := int(lin(fi,j ,bi+1,j+1),par(lin(bi+1,j ,bi+1,j+1),pi,j)) ,

qi,j := int(lin(bi,j ,bi,j+1),par(lin(bi,j+1,bi+1,j+1),h)) ,
qi+1,j := int(lin(qi,j , fi,j), lin(bi+1,j ,bi+1,j+1)) .

See figure 7.12b for an illustration.
For reasons of a simplified notation, we consider from now on the Bézier

point subquadrilateral b0,0, b1,0, b1,1, b0,1. The points p0,0, q1,0, p0,1, q0,0

are not independent of each other. In fact, the location of three of these points
determines the remaining one. To find a construction for this fact we consider
a property illustrated in figure 7.13b: the three lines

lin(b0,0,b1,1) , lin(p0,0,q1,0) , lin(q0,0,p0,1)
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b1,1

b0,0

b1,0

b0,1

p0,0

q0,0

q1,0

p0,1

b0,0 b1,0

b1,1
b0,1

p0,0

q1,0

p0,1

q0,0

a)
b)

Figure 7.13: Weight points on the edges of a subquadrilateral: the lines lin(b0,0,b1,1),
lin(p0,0,q1,0) and lin(q0,0,p0,1) either intersect at one point or are parallel. This is
true both in the 3D case a) and in the domain case b).

either intersect at one point or are all parallel. As illustrated in figure 7.13a,
the same property is true in 3D4.

Given the Farin point f0,0 in the rectangular domain quadrilateral, we seek
a way to determine all weight ratios. One way of doing this is to fix one of
the weight points on the edges, as shown in figure 7.12b. This approach is not
symmetric because we have to make the choice which point on the edges to fix.
In order to introduce a symmetric method, we have to design an appropriate
icon which covers all degrees of freedom. This icon will be based on the Farin
point f0,0.

Consider figure 7.14a. We assume that the weights w0,0, w1,0, w1,1, w0,1

which are assigned to the Bézier points b0,0, b0,1, b1,1, b1,0 are all positive.
This means that the point p0,0 lies between b0,0 and b1,0, similar for the other
three weight points on the edges. Now we seek all possible locations for p0,1

between b0,1 and b1,1, so that p0,0 is between b0,0 and b1,0. Obviously, this
is the grey marked area on the line b0,1, b1,1. We call this area the permitted
area.

The permitted area of an edge of the rectangle is the area where the weight
point can lie so that the weight point of the opposite edge is between the corner
points. In figure 7.14a, the permitted area of the edge b0,0, b1,0 is the whole
line segment b0,0, b1,0: no matter where p0,0 is located, the opposite point p0,1

will be between b0,1,b1,1.
The location of the permitted areas on the edges depends on the location of

f0,0. All permitted areas can be found by intersecting the four lines lin(b0,0, f0,0),
lin(b1,0, f0,0), lin(b1,1, f0,0), lin(b0,1, f0,0) with the rectangle. See figure 7.14a for
an illustration.

Now we divide the four permitted areas in the ratio t/(1 − t), as shown
in figure 7.14b (with 0 < t < 1). The resulting four points on the edges of
the rectangle can be considered as the Farin points on the edges. It turns out
that these four points have the property described in figure 7.13b. This means
that we have described the weight ratios in the quadrilateral completely by f0,0

4From this property it follows directly that the points p0,0, q1,0, p0,1, q0,0 are coplanar
(see [54]).
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b0,0 b1,0

b1,1b0,1

f0,0

b0,0 b1,0

b1,1b0,1

f0,0

t : (1− t)

t(1− t) :

t

(1− t)

. .

t

(1− t)

. .

a) b)

Figure 7.14: a) Constructing permitted areas (grey marked) on the edges of
the rectangle by intersecting the lines lin(b0,0, f0,0), lin(b1,0, f0,0), lin(b1,1, f0,0) and
lin(b0,1, f0,0) with the rectangle. b) Dividing the permitted areas in the ratio t/(1− t).
We obtain the weight points on the edges of the quadrilateral.

(u,v)

t (1− t):

Figure 7.15: Extended Farin point: freely movable icon in the rectangular domain.
The location of the lower hollow point gives f0,0. The upper hollow point determines
the parameter t.

and t. To find a geometric meaning of t, we consider figure 7.14b again. The
more t tends to 0, the closer the weight points tend to b0,1 or b1,0. The more
t tends to 1, the closer the weight points tend to b0,0 or b1,1. This means
that the parameter t is a measure which diagonal b0,0,b1,1 or b0,1,b1,0 is more
emphasized. This gives a reason to introduce extended Farin points.

An extended Farin point is a freely movable icon as shown in figure 7.15.
The location of the lower hollow point is the location of the Farin point f0,0.
The upper hollow point is freely movable on the horizontal line segment and
fixes which of the diagonals b1,0,b0,1 or b0,0,b1,1 is more emphasized. The
diagonals are symbolized by the non-horizontal lines.

An extended Farin point describes the weight ratios of the Bézier points in a
subquadrilateral uniquely and symmetrically: no particular edge or corner of the
rectangle has to be chosen. The conditions of independence and intuitivity are
also fulfilled by extended Farin points. An example of the usage of an extended
Farin point is given in figure 7.16.

Farin points in 3D: Up to here, this chapter has treated Farin points in the
rectangular domain of a quadrilateral. Now we consider 4 Bézier points b0,0,
b1,0, b1,1, b0,1 as living in the 3D space of the surfaces. The straightforward
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b0,0 b1,0

b1,1b0,1
a)

b0,0 b1,0

b1,1b0,1
b)

b0,0 b1,0

b1,1b0,1
c)

p0,0

p0,1

q0,0

q1,0

Figure 7.16: Usage of extended Farin points. a) Given is Bézier point rectangle
b0,0,b1,0,b1,1,b0,1 and the extended Farin point inside the rectangle. b) Construct
the permitted areas on the edges of the rectangle. c) Divide the permitted areas in
the same ratio as the upper hollow point divides the horizontal line segment of the
extended Farin point. The resulting four weight points p0,0,q1,0,p0,1,q0,0 define the
ratios of the weights of the four Bézier points uniquely.

b1,1

b0,0

b1,0

b0,1

b0,0 b1,0

b1,1b0,1

fe

Figure 7.17: The extended Farin point in the 2D domain is mapped onto the bilinear
interpolant of b0,0,b1,0,b1,1,b0,1 in 3D.

approach here to determine the weight ratios is to consider the barycentric
combination

f =
w0,0 · b0,0 + w1,0 · b1,0 + w1,1 · b1,1 + w0,1 · b0,1

w0,0 + w1,0 + w1,1 + w0,1
. (7.5)

For positive weights, f lies in the convex hull of b0,0, b1,0, b1,1,b0,1. In general
f is movable in 3D and thus covers the 3 degrees of freedom we have to fix. Un-
fortunately, this approach fails completely if b0,0, b1,0, b1,1, b0,1 are coplanar,
and it fails numerically if b0,0, b1,0, b1,1, b0,1 are almost coplanar. Since in
practical applications the case of almost planar subquadrilaterals is common,
we have to find another way to describe the weight ratios: we use the concept
of the extended Farin points in 2D and map this onto the bilinear interpolant
of b0,0, b1,0, b1,1, b0,1 in 3D. Figure 7.17 gives an illustration.

The extended Farin point in 3D is freely movable on the bilinear interpolant.
The location fe of the extended Farin point on the bilinear interpolant can be
computed as

fe =
ω0,0 · b0,0 + ω1,0 · b1,0 + ω1,1 · b1,1 + ω0,1 · b0,1

ω0,0 + ω1,0 + ω1,1 + ω0,1
(7.6)
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b0,0

b1,0

b1,1

b0,1
f

fe

b0,0−b1,0−b0,1+b1,1

Figure 7.18: Getting the weight ratios from an extended Farin point fe on the bilinear
interpolation: apply a projection in the twist vector direction b0,0 −b1,0 −b0,1+b1,1.
The projection of the 4 Bézier points gives a parallelogram inside which we can apply all
constructions for extended Farin points in the 2D domain. Note that the projections
of the location fe of the extended Farin point and the barycentric combination f
introduced in (7.5) are identical.

with

ω0,0 = (w0,0 + w1,0) · (w0,0 + w0,1) , ω1,0 = (w1,0 + w0,0) · (w1,0 + w1,1) ,
ω1,1 = (w1,1 + w1,0) · (w1,1 + w0,1) , ω0,1 = (w0,1 + w0,0) · (w0,1 + w1,1) .

In order to get the weight ratios out of fe, we apply a parallel projection in the
direction of the twist vector b0,0 − b1,0 − b0,1 + b1,1. Doing this the 4 Bézier
points happen to form a parallelogram with the projection of fe inside it. In
this parallelogram we can carry out all constructions introduced in this chapter
for the domain case. See figure 7.18 for an illustration.

7.1.2.1 Adjusting adjacent Farin points in rectangular Bézier
point schemes

After showing how to handle the weights in a subquadrilateral by using the
concept of extended Farin points, we now treat the case of a whole rectangular
Bézier point scheme. As in the triangular case there are two ways to keep the
system of all Farin points contradiction-free:

(a) Allow every Farin point to be movable and adjust the adjacent Farin
points.

(b) Provide a subset of Farin points which are independent of each other and
describe the weight ratios uniquely.
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Figure 7.19: Moving the Farin points f1,1, p1,1, q2,1, p1,2, q1,1 to f̃1,1, p̃1,1, q̃2,1, p̃1,2,
q̃1,1. The adjacent Farin points have to be adjusted.

This section treats approach (a); a solution for (b) is given in section 7.1.2.2.
Consider figure 7.19 for a rectangular Farin point scheme in the domain. Sup-

pose the weight ratios in the subquadrilateral b1,1, b2,1, b2,2, b1,2 are changed,
for instance using the concepts of an extended Farin point. This means that
the points f1,1, p1,1, q2,1, p1,2, q1,1 are moved to the new locations f̃1,1, p̃1,1,
q̃2,1,p̃1,2, q̃1,1. Then all Farin points which depend on at least one of the weights
w1,1, w1,2, w2,1, w2,2, have to be adjusted: f0,0, f1,0, f2,0, f2,1, f2,2, f1,2, f0,2, f0,1,
q1,0, q2,0, p2,1, p2,2, q2,2, q1,2, p0,2, p0,1. The points p0,0, p1,0, p2,0, q3,0,
q3,1, q3,2, p2,3, p1,3, p0,3, q0,2, q0,1, q0,0 remain unchanged because they do
not depend on the weights w1,1, w1,2, w2,1, w2,2.

All we have to show here is how to adjust the points f0,0, f2,0, f2,2 ,f0,2 to the
points f̃0,0, f̃2,0 ,f̃2,2 ,f̃0,2. The other adjusted points can then be geometrically
constructed using the properties described in the figures 7.12b and 7.13b.

The adjusted point f̃0,0 lies on lin(f0,0,b1,1). Similarly, f̃2,0 lies on
lin(f2,0,b2,1), f̃2,2 lies on lin(f2,2,b2,2), f̃2,0 lies on lin(f0,2,b1,2). We present
a construction for f̃2,2, the points f̃0,0, f̃2,0, f̃0,2 can be constructed in a similar
way.

Consider figure 7.20a. First we construct the auxiliary points

h1 =
w3,2 · b3,2 + w3,3 · b3,3 + w2,3 · b2,3

w3,2 + w3,3 + w2,3
,

h2 =
w1,1 · b1,1 + w2,1 · b2,1 + w1,2 · b1,2

w1,1 + w2,1 + w1,2
,
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Figure 7.20: Moving the Farin points f1,1, p1,1, q2,1, p1,2, q1,1 to f̃1,1, p̃1,1, q̃2,1,

p̃1,2, q̃1,1: constructing the adjusted Farin point f̃2,2. a) constructing the auxiliary
points h1,h2,h3; b) constructing the auxiliary points h4,h5. Then cr(b2,2, f1,1,h5,h2)

= cr(b2,2, f2,2, f̃2,2,h1). This gives the location of f̃2,2 uniquely.

h3 =
w̃1,1 · b1,1 + w̃2,1 · b2,1 + w̃1,2 · b1,2

w̃1,1 + w̃2,1 + w̃1,2
.

where w̃1,1, w̃2,1, w̃1,2 are the new weights after moving f1,1, p1,1, q2,1, p1,2, q1,1.
We obtain the constructions

h1 := int(lin(b3,2,p2,3), lin(b2,3,q3,2)) ,
h2 := int(lin(b1,2,p1,1), lin(b2,1,q1,1)) ,
h3 := int(lin(b1,2, p̃1,1), lin(b2,1, q̃1,1)) .

Then the points b2,2,f2,2,h1 are colinear. The points b2,2,f1,1,h2 and b2,2, f̃1,1,h3

are also colinear. Now consider figure 7.20b. We construct

h4 := int(par(lin(b2,2, f̃1,1), f1,1),par(lin(h2,h3), f̃1,1)) ,
h5 := int(lin(b2,2, f1,1), lin(h3,h4)) .

Then it is a straightforward exercise in algebra to show that

cr(b2,2, f1,1,h5,h2) = cr(b2,2, f2,2, f̃2,2,h1) =
w̃2,2

w2,2
.

From this fact it is a basic construction to get f̃2,2 from b2,2, f2,2, h1, f1,1, h5,
h2 (see for instance [54]). The adjusted points f̃0,2, f̃0,0, f̃2,0 can be constructed
in a similar way. Thus the problem of adjusting the adjacent Farin points
geometrically is solved.

7.1.2.2 Independent Farin points in a rectangular Bézier point
scheme

In this section we want to establish a subset of independent Farin points for
rectangular Bézier point schemes. Here we only consider Bézier patches of the
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a) b)

Figure 7.21: A system of independent Farin points for a Bézier patch of the order
n × n: a) n odd; b) n even. The system consists of of extended Farin points and
normal Farin points. In case b), the weights of two opposite Bézier points have to be
fixed by introducing two Farin points on a line segment.

Figure 7.22: Describing the weight ratios in a bicubic rational Bézier patch with 5
extended Farin points.

order n × n. The solution we want to present here consists of a number of
extended Farin points and in addition a number of ”normal” Farin points fi,j
(i.e. the barycentric combination of the four corners of the subquadrilateral).

Figure 7.21a shows the solution for a patch of the order n × n where n is
odd. We provide the quadrilateral in the middle of the patch with an extended
Farin point. The same is done with the quadrilaterals ”on the diagonals” of the
patch. For the other patches we provide every second one with a ”normal” Farin
point. In figure 7.21a the patches with a ”normal” or extended Farin point are
marked with a black closed line. An extended Farin point is marked by the icon
similar to figure 7.15, a ”normal” Farin point is marked with a hollow dot.

The solution for an even n is more complicated, see figure 7.21b. Here
we provide the patches ”on one diagonal” with an extended Farin point. The
other extended Farin points are next to the other diagonal. The rest is filled
with normal Farin points for every second patch. This way, the weights of two
opposite corner Bézier points have to be fixed explicitly. This can be done by
using two Farin points on a line, as shown in figure 7.21b.

Figure 7.22 shows that the weight ratios in a bicubic Bézier patch can be
described in terms of 5 extended Farin points. Since bicubic patches often
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occur in practical applications, this example indicates a practical relevance of
the approach presented in this section.

Remarks:

• A similar approach as introduced in [3] for the triangular case is possible
for the rectangular case. Here we have to search for a system of indepen-
dent Farin points pi,j ,qi,j on the line segments of the control net. As in
the triangular case, this approach would require more Farin points than
the solution introduced in this section.

• The solution introduced in this section is not the only one. In fact, other
systems of extended and normal Farin points are thinkable which solve
the problem as well. The distinguishing property of our scheme is the
symmetry along at least one ”diagonal” in the control net.

7.2 Visualizing Curves and Surfaces

From a certain point in the CAGD pipeline up to its end, the data we have
to deal with are parametric curves and surfaces, i.e. data of the type EV2

[1] ,

EV3
[1] , and E

V3
[2] (see section 2.1 ). This data has to be converted into a graphical

representation. To do so, a number of approaches exist which are usually treated
under the concept of curve/surface rendering. The name ”rendering” is more
common than the concept ”curve/surface visualization”. This is due to the fact
that the dimensionality both of the underlying grid and of the range of values
are that small that there are no further challenges to Scientific Visualization. In
particular, the mapping step of the curve/surface visualization is trivial because
it is a rather obvious approach to map curves to straight line segments and to
map surfaces to polygonal meshes.

In this section we give a brief overview of rendering/visualization methods
for curves/surfaces. A more detailed survey on this subject can be found in [19].

To render parametric curves, the usual approach is to compute an appropri-
ate number of sample points and to represent the curve as a set of straight line
segments between these points. These line segments can be sent to the output
pipeline of a graphical workstation. If the curves live in 3D space, care may be
taken to show their spacial behavior. In addition to standard methods of classi-
cal 3D computer graphics (such as hidden line removal algorithms), the concept
of illuminated stream lines ([213]) may be used for rendering 3D curves: instead
of straight line segments, the curve is represented by narrow cylinders which can
be rendered using illumination and shading. The 3D curves in figures 3.14 and
3.16 of this work are rendered in such a way to emphasize their spatial behavior.

To render parametric surfaces, three general approaches exist ([19]): isocurve
extraction, stepwise refinement, and raytracing. For isocurve extraction, the sur-
face rendering is put down to to curve rendering. A family of parametric curves
on the surface is chosen, and an appropriate number of representatives of them
are rendered. These families of curves may be isoparametric lines u =const
or v =const. However, the choice of an appropriate number of representatives
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Figure 7.23: Surface rendering by extracting isoparametric lines; shown is a tensor-
product B-spline-surface consisting of 3× 2 bicubic patches; (image from [55]).

has a strong influence on the result of the rendering process. In case of a local
undersampling, important information about the surface behavior gets lost. On
the other hand, local oversampling may cause aliasing effects and visual clutter.
Figure 7.23 shows an example of surface rendering by extracting a family of
isoparametric lines.

Scientific Visualization was faced with a similar problem as the choice of
an appropriate number of isoparametric curves for surface rendering. In flow
visualization, for visualizing tangent curves, an appropriate number of tangent
curves has to be selected (see section 4.3.1.1). There, a number of adaptive
tangent curve selection methods ([196], [104]) have been developed which ideas
can be applied for isoparametric line extraction on surfaces as well.

To render a surface using a stepwise refinement, the surface is approximated by
a triangular mesh. To do so, either a number of sample points on the surface is
constructed and triangulated, or the surface is stepwise refined by subdivision5.
The resulting triangular mesh can be rendered by applying standard methods
of 3D computer graphics. To do so, 3D computer graphics offers a number of
approaches (visibility computation, shading, texturing, shadow computation)
to increase the realism of the rendering. Figure 7.24 shows the rendering for a
subdivided triangular surface for a number of subdivision steps.

To render a surface using raytracing, the intersections between the surface and a
straight line have to be computed. For sufficiently complicated surfaces, this is

5Subdivision surfaces are another popular class of surfaces. Instead of a parametric de-
scription, the surface is given by an initial polygonal mesh and a number of rules to refine
this mesh by subdivision. This way a polygonal approximation of the final surface in any
resolution can be obtained. A treatment of subdivision surfaces is beyond the scope of this
work.
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a) b) c)

Figure 7.24: Surface rendering by stepwise refinement; a) triangular approximation
consisting of 4 triangles; b) 9 triangles; c) 16 triangles.

Figure 7.25: Raytracing a surface; shown is a bicubic B-spline surface consisting of
15× 10 patches.

only possible by applying numerical integration methods6. [19] studies numeri-
cal intersection methods for surfaces and straight lines. An example of rendering
a surface using raytracing is shown in figure 7.25.

7.3 Visualization for Surface Interrogation

Surface interrogation techniques have the task of evaluating the quality of a
designed surface by detecting small imperfections on it. Surface interrogation
focuses on a visual analysis of the surface behavior and is therefore a promising
candidate for applying methods of Scientific Visualization. Surveys on standard
methods of surface interrogation are in [79] and [81].

Most surface interrogation methods focus either on the treatment of charac-
teristic surfaces, or on characteristic surface curves. Examples for characteristic
surfaces are focal surfaces ([79]) and stability surfaces ([81]). These surfaces
are derived from the designed surface and reflect certain geometric properties
of it. This way the visualization of characteristic surfaces may reveal geometric
imperfections of the designed surfaces.

6For example, a bicubic polynomial patch may have up to 18 intersections with a straight
line. To show this, consider the bicubic patch
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Figure 7.26: Visualization of the two families of lines of curvature using a combination
of Integrate&Draw and curvature plot.

To analyze a designed surface using characteristic surface curves, a number
of families of these surface curves exists, such as

• contour lines ([192])

• lines of curvature ([55])

• asymptotic lines ([55])

• isophotes ([151])

• reflection lines ([115], [108]).

In [192] it has been shown that all these families of characteristic surface curves
have something in common:

• They reflect geometric properties of the designed surface.

• They react rather sensitively to small bumps and perturbations of the
surface. Hence they are promising candidates to reveal imperfection in
the surfaces.

• For sufficiently complicated surfaces (such as bicubic polynomial surfaces),
these curves cannot be described as closed parametric curves but only as
numerical solutions of a system of differential equations.

The last-named property creates a number of problems for visualizing the char-
acteristic surface curves. Fortunately it turned out that all the characteristic
surface curves mentioned above can be represented as tangent curves of rather
simple7 vector fields - both in the domains of the surfaces and on the surfaces
themselves (see [192]). With this property in mind, virtually all visualization
techniques for vector fields can be used to visualize characteristic curves on sur-
faces. Figure 7.26 shows an example of visualizing the two families of lines of
curvature of the surface which was already shown in figure 7.25. Here we used a
combination of two techniques of 2D vector field visualization: Integrate&Draw
(see section 4.3.3.2) and curvature plot (see section 4.3.3.3). We can clearly
see the ”flow” behavior of the lines of curvature. The additionally color-coded
curvature information reveals the underlying patch structure of the surface.

Another example of applying flow visualization techniques to characteristic
curves on surfaces is shown in figure 7.27. Figure 7.27b shows the visualization

7simple in the sense that the vector field can easily be obtained from the surface and the
configuration of the families of characteristic surface curves.
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a) b)

Figure 7.27: A class of isophotes on a fragment of the surface of figure 7.25; b)
visualization of the geodesic curvature of the isophotes (images from [192]).

of the geodesic curvature of a class of isophotes shown in figure 7.27a. Figure
7.27b clearly reveals areas of high isophote curvature (represented by bright
colors) where a redesign of the surface is necessary. (The surface shown there
is a fragment of the surface of figure 7.25.)

The fact that characteristic curves on surfaces can be interpreted as tangent
curves of vector fields can not only be used to visualize the characteristic sur-
face curves. It can also be used to prove certain properties of the surface curves.
In [186] it was shown that there is – except for some special cases which have to
be excluded – a one-to-one correlation between the G3 continuity of a surface
and the G2 continuity of lines of curvature or the asymptotic lines on this sur-
face. Using this statement, the discontinuities in the curvature plot of the lines
of curvature in figure 7.26 show that the designed surface is not G3 continuous.

In [187] it has been shown that – except for some special cases which have
to be excluded – a Gn continuity of a surface can be deduced from a Gn−1

continuity of a class of isophotes on the surface. This means for instance that
the surface in figure 7.27 is not G3 continuous because the curvature plot of the
isophotes shown in figure 7.27b has discontinuities.
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Chapter 8

Summary and Future
Research

In this work we have investigated the correlations between the disciplines CAGD
and Scientific Visualization. Based on a historical analysis, an analysis of the
present data, and an analysis of the pipelines of both disciplines, we formulated
expectations on where it makes sense to search for applications of one disci-
pline into the other. The detailed treatment of these applications confirmed
these expectations. Moreover, following the strategy of investigating the inter-
applicability of of CAGD and Scientific Visualization, we were not only able to
systematize existing approaches, we also developed and introduced a number of
new techniques which apply ideas and methods of one discipline to the other.

Up to now, in both disciplines a large amount of research has been done. Also
the potential interapplications are so various that we had to consider some re-
strictions to keep the issue manageable in this work. In particular, in CAGD
we focused on parametric curves and surfaces. Other approaches of describing
and designing curves and surfaces, such as subdivision surfaces and implicit sur-
faces, had to be excluded here. In Scientific Visualization we focused on the the
treatment of particular visualization techniques more than on aspects of steering
the visualization. In particular, approaches of visualization control, collaborate
visualization and visualization environments could not be treated here.

For the future it seems to be an interesting task to investigate the applica-
tion of subdivision surfaces to Scientific Visualization. The idea of defining
subdivision surfaces can also be applied to describe vector- and volume data
sets. [204] gives a first example of describing vector fields by subdivision.

A further challenge is the systematic treatment of CAGD methods in dis-
ciplines which are related to Scientific Visualization. For example, in medical
imaging, there are already a number of applications of curves and surfaces.
Another candidate for a systematic application CAGD methods is visual data
mining.

Also in the issues treated in this work there are still a number of open questions
which we want to summarize in the following:

187
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• There are unsolved problems concerning a topology-preserving interpola-
tion of vector fields. In this work we have shown that a 2D vector field
of any topology can be described as a piecewise linear vector field, i.e. a
vector field of a C0 continuity. So it is a natural next question to ask for
interpolation schemes which preserve the topology of the piecewise linear
vector field but yield a global C1 (or higher) continuity.

• The concepts of distances of first order critical points of 2D vector fields
should be extended to 2D critical points of general topology.

• Although not treated in this work,there may be further applications of
Scientific Visualization in the upper parts of the CAGD pipeline. For
instance, the search for an appropriate parameterization of a B-spline
curve consisting of n cubic segments can be considered as an optimization
process in the n-dimensional space of all parameterizations. Here visual-
ization approaches of multidimensional data may be applied to support
the designer in this search.
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[213] M. Zöckler, D. Stalling, and H.C. Hege. Interactive visualization of 3d-
vector fields using illuminated stream lines. In Proc. IEEE Visualization
’96, pages 107–113, Los Alamitos, 1996. IEEE Computer Society Press.



Holger Theisel: CAGD and Scientific Visualization
Habilitationsarbeit, eingereicht im Juli 2001

Thesen

1. CAGD (Computer Aided Geometric Design) und wissenschaftliche Visual-
isierung sind zwei Disziplinen, welche starke Bezüge zur Computergraphik
haben, sich ab einer gewissen Zeit aber als eigenständige Gebiete entwick-
elt haben.

2. Beide Disziplinen haben in relativer Unabhängigkeit zueinander eine Viel-
falt von Methoden, Techniken und Anwendungen entwickelt.

3. Die Untersuchung der Anwendbarkeit von Ideen und Methoden der einen
Disziplin auf die andere stellt einen hoffnungsvollen Ansatz dar, in beiden
Disziplinen Fortschritte zu erzielen.

4. Die Untersuchung der Anwendung von Ideen und Methoden der einen
Disziplin in der anderen stellt stellt den Kerngedanken der vorliegenden
Arbeit dar.

5. Im CAGD ist nur eine geringere Anzahl von Anwendungen der wissen-
schaftlichen Visualisierung zu erwarten, da die Daten, die in CAGD vor-
liegen, nicht explizit in der Visualisierung behandelt werden.

6. Wegen der Ähnlichkeit der behandelten Daten können die meisten An-
wendungen von CAGD auf dem Teilgebiet der Strömungsvisualisierung
erwartet werden.

7. Da zu Beginn der Entwicklung der wissenschaftlichen Visualisierung das
Gebiet des CAGD bereits weitestgehend entwickelt war, ist eine grössere
Anzahl von Anwendungen von CAGD-Methoden in der Visualisierung zu
erwarten.

8. Da die meisten wichtigen Entwicklungen im CAGD zu einer Zeit gemacht
wurden, als die wissenschaftliche Visualisierung als eigenständige Disziplin
noch nicht existierte, sind weniger Anwendungen von Visualisierung im
CAGD zu erwarten.

9. Die ablaufenden Prozesse in beiden Disziplinen können in Pipelines be-
schrieben werden. Dies ist ein Standard-Ansatz für die Visualisierung, für
CAGD musste eine solche Pipeline eingeführt werden.

10. Die meisten Anwendungen der wissenschaftlichen Visualisierung im CAGD
sind in den unteren Teilen der CAGD-Pipeline zu erwarten, während
CAGD-Methoden in allen Teilen der Visualisierungspipeline Anwendung
finden.

11. Durch die Untersuchung der gegenseitigen Anwendbarkeit von CAGD und
wissenschaftlicher Visualisierung können eine Anzahl neuer Ansätze und
Techniken für beide Disziplinen gefunden werden. Diese werden in den
nachfolgenden Thesen charakterisiert.
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12. Eine Klassifikation der Isoflächen eines trilinearen Skalarfeldes nach der
Anzahl der Flächenelemente wird eingeführt.

13. Eine Isofläche eines trilinearen Skalarfeldes kann als getrimmte Fläche
von rationalen kubischen Flächenstücken exakt modelliert und visualisiert
werden.

14. Eine neue Klassifikation für kritische Punkte erster Ordnung von 2D-
Vektorfeldern wird eingeführt. Diese Klassifikation basiert auf den Kon-
zepten Rotation und Skalierung in eine Richtung des Vektorfeldes. Basie-
rend auf dieser Klassifikation kann eine Abstandsfunktion auf der Menge
aller kritischen Punkte erster Ordnung aufgebaut werden.

15. Ähnlich wie Flächen können Vektorfelder durch geeignete Systeme von
Kontrollpunkten modelliert werden. Diese Systeme von Kontrollpunkten
werden in stückweise lineare Vektorfelder überführt. Auf diese Weise kann
ein 2D-Vektorfeld beliebiger Topologie als stückweise lineares Vektorfeld
beschrieben werden.

16. Zur Visualisierung von mehrdimensionalen Daten wird die Technik Shape-
Vis eingeführt, welche die mehrdimensionalen Daten durch geeignete Frei-
formflächen Visualisiert. Hierbei wird die gesamte Information eines Daten-
satzes eindeutig in Ort, Grösse und Form dieser Flächen kodiert.

17. Die Technik der parallelen Koordinaten wird erweitert zu parallelen Ko-
ordinaten höherer Ordnung. Durch den Einsatz von Kurven anstelle von
Liniensegmenten können Korrelationen von mehr als zwei Dimensionen
erkannt werden.

18. Zur Nutzbarmachung von Farinpunkten für Bézierflächen werden mehrere
Ansätze gezeigt. Speziell für die eindeutige und intuitive Beschreibung
der Gewicht eines Subquadrilaterals für Tensoprodukt-Bézierflächen wird
eine geeignete Ikone eingeführt und diskutiert.
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selbständig und ohne fremde Hilfe verfasst wurde. Andere als die angegebe-
nen Hilfsmittel und Quellen habe ich nicht benutzt. Die den benutzten Werken
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08/94 Diplom, Universität Rostock,
Thema: Automatische Auswahl geeigneter Visualisierungs-
techniken für allgemeine wissenschaftliche Daten,
Note 1.0, mit Auszeichnung

10/94 - 09/95 Visiting Scholar an der Arizona State University,
Computer Science Department, Tempe, USA;
Zusammenarbeit mit Prof. Gerald Farin; unterstützt durch ein
Stipendium der Studienstiftung des deutschen Volkes

seit 10/95 wissenschaftlicher Assistent am Fachbereich Informatik
der Universität Rostock; Arbeit in der Gruppe Computer-
graphik von Frau Prof. Heidrun Schumann

01/96 Promotion, Universität Rostock, Thema: Vector Field
Curvature and Applications, Prädikat summa cum laude
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Appendix A

Color Images

a) b)

Figure A.1: (color version of figure 1.1): a) piecewise bicubic B-spline surface; b)
visualizing one class of lines of curvature using methods of flow visualization.

a) b)

Figure A.2: (color version of figure 1.2): a) piecewise triangular approximation of an
isosurface of a trilinear volume data set using Marching Cubes; b) computation of the
exact isosurface as trimmed piecewise rational cubic surface.
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210 APPENDIX A. COLOR IMAGES

Figure A.3: (color version of figure 3.1): 2D slices for a point of interest in the volume;
its three 2D scalar fields are visualized as height fields; the point of interest can be
moved interactively (from [143]).

a)

b)

c)

d)

e)

Figure A.4: (color version of figure 3.19): a) and d): two possible contours of (3.4)
and (3.5) where the MC algorithm of [130] and [139] gives the same set of closed
polygons on the faces of the cell shown in c); depending on certain inner points, the
exact triangulation is either b) or e).
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a)
b) c)

d)

e)

Figure A.5: (color version of figure 3.20): a) contour and point v with normal in
z−direction on it; b) closed polygons resulting from the MC algorithm of [130] and
[139]; c) part of a wrong triangulation of b); d) triangulation applied here; e) triangu-
lation of d) in 3D.

a) b)

c)
d) e)

Figure A.6: (color version of figure 3.21): Illustration of a topologically exact MC
algorithm; a) create outer rings following [130] and [139]; b) compute inner ring; c)
check connectivity between inner ring and outer rings by intersecting the lines of the
inner ring with all faces of the cell; here the inner ring is connected to two outer rings;
d), e) triangulate the areas between inner ring and outer rings.
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Figure A.7: (color version of figure 3.22): a) Exact contour over the triangulation
shown in figure 3.21d) and 3.21e); b) exact contour over triangulation in figure 3.21d);
c) exact contour over triangulation in figure 3.21e). We can clearly see that inner ring
is part of the contour.

Figure A.8: (color version of figure 3.23): Example of a contour with one outer
ring consisting of 12 edges and the inner ring being completely inside the cell; a)
triangulation between inner ring and outer ring; b) triangulation of inner ring; c)
whole triangulation; d)-f) exact contours over the triangulations a)-c).
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Figure A.9: (color version of figure 3.24): a) Contour which gives two outer rings and
the inner ring completely inside the cell; b) outer rings; c) triangulation between inner
ring and one outer ring; d) triangulation between inner ring and the other outer ring;
e) whole triangulation.

a) b) c)

Figure A.10: (color version of figure 3.25): a) CT head consisting of 423.963 triangles
- a candidate for mesh reduction algorithms; b) detail inside the same CT head - the
triangular mesh is too coarse; c) the contour of a triquadratically interpolated scalar
field may have self- intersections and complicated topologies.

a) b) c)

Figure A.11: (color version of figure 3.27): a) two cells and the triangular approxi-
mation of a certain contour using MC; b) the exact contour represented by a number
of trimmed surfaces of rational cubic triangular patches; c) the global G1 modification
of the contour without changing its topology.
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Figure A.12: (color version of figure 3.33): Scalar field s(x, y, z) = x2 + y2 + z2 ,
sampled by a 3 × 3 × 3 grid in the domain [−1, 1]3, r = 0.9; a) Marching cubes; b)
exact contours; c) globally G1 contours.

Figure A.13: (color version of figure 3.34): 5 × 5 × 5 random volume data set; a)
Marching cubes; b) exact contours; c) globally G1 contours.

Figure A.14: (color version of figure 3.35): Downsampled data set of figure 3.25a ; a)
Marching cubes; b) exact contours; c) globally G1 contours.
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a) b) c)

Figure A.15: (color version of figure 3.37): Inner detail of the data set of figure 3.25a;
a) Marching cubes; b) exact contours; c) globally G1 contours.

Figure A.16: (color version of figure 3.38): Inner detail of the data set of figure 3.25a;
a) Marching cubes; b) exact contours; c) globally G1 contours.

Figure A.17: (color version of figure 3.39): Detail of figure 3.38; a) Marching cubes;
b) exact contours; c) globally G1 contours.
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x1

x3

x2

v1

v3

v2

a) c)
b)

Figure A.18: (color version of figure 4.20): a) linear vector field inside the triangle
x1,x2,x3; b) piecewise linear vector field consisting of two domain triangles; c) curva-
ture plot of b) reveals that the tangent curves in b) are not curvature continuous.

a) b)

Figure A.19: (color version of figure 4.24): Piecewise bilinear vector field on a regular
4× 4 grid; a) Integrate and Draw; b) curvature plot.
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a) b)

Figure A.20: (color version of figure 4.25): Piecewise biquadratic vector field on a
regular 4× 4 grid; a) Integrate and Draw; b) curvature plot.

a) b)

Figure A.21: (color version of figure 4.26): Piecewise bicubic vector field on a regular
4× 4 grid; a) Integrate and Draw; b) curvature plot.

a) b) c)

Figure A.22: (color version of figure 4.28): a) stream surface; b) stream tube; c)
stream objects; (from [180]).
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Figure A.23: (color version of figure 4.30): A local probe which represents – among
other measures – the curvature of the tangent curve in the selected locations of the
vector field (from [44]).

a) b)

c) d)

e) f)

g) h)

i) j)

k) l)

Figure A.24: (color version of figure 4.33): Linear vector field with saddle point (a..d);
linear vector field with repelling focus (e..h); linear vector field with center (i..l).

a) b)

c) d)

e) f)

g) h)

i) j)

k) l)

Figure A.25: (color version of figure 4.34): Higher order saddle point (a..d); critical
point with two elliptic sectors (e..h); dipole (i..l).
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a) b)

c) d)

Figure A.26: (color version of figure 4.35): Linear vector field with a first order critical
point of the type (RN,RN,RN); a) curvature κ(v); b) Gaussian curvature K(v); c)
Mean curvature H(v); a) torsion τ(v); (from [205]).

a) b)

c) d)

Figure A.27: (color version of figure 4.36): Linear vector field with a first order
critical point of the type (AN,Sa,Sa); a) curvature κ(v); b) Gaussian curvature K(v);
c) Mean curvature H(v); a) torsion τ(v); (from [205]).
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a)

f)e)d)

c)b)

Figure A.28: (color version of figure 4.45): Constructing the piecewise linear vector
field for the topological skeleton of figure 4.39; a) construct piecewise linear vector
field for general critical points; b) construct piecewise linear vector field for first order
critical points of index +1; c) construct piecewise linear vector field for separatrices;
d) Delaunay triangulate remaining parts and apply piecewise linear interpolation; e)
final vector field consists of 79 vertices and 138 triangles; f) curvature plot of e).



a) b)

Figure A.29: (color version of figure 4.46): a) test data set (4.77) on a regular 38 x
38 grid; b) compressed version of the same topology, compression ratio 90%; (images
from [128]).

d) f)e)

c)b)a)

Figure A.30: (color version of figure 4.47): a) vector field (4.77) on a 38 x 38 regular
grid: 1444 grid points; b) curvature plot of a); c) remodeling the critical points as
piecewise linear vector field; d) remodeling the separatrices as piecewise linear vector
field; e) complete remodeled piecewise linear vector field consists of 40 vertices and 68
triangles: compression ratio 95%; f) curvature plot of e).
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a)

f)e)d)

c)b)

Figure A.31: (color version of figure 4.48): a) fragment of the vector field shown in
figure 4.27 on a 34 x 34 regular grid: 1056 grid points; b) curvature plot of a); c)
remodeling the critical points as piecewise linear vector field; d) remodeling the sepa-
ratrices as piecewise linear vector field; e) complete remodeled piecewise linear vector
field consists of 124 vertices and 226 triangles: compression ratio 79%; f) curvature
plot of e).

a) b)

Figure A.32: (color version of figure 5.9): Visualization of the car data set (38 obser-
vation cases, 6 dimensions); a) overview; b) zoom into the cluster.
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a) b)

Figure A.33: (color version of figure 5.10): Visualization of the city data set; a)
overview; b) zoom into the cluster.

a) b)

Figure A.34: (color version of figure 5.11): a) city data set - zoom of the 5 objects
lower right in figure 5.10b; b) 6-dimensional demographic data set using simplified
ShapeVis (image from [121]).

X1 X2

X1

X2

a)
b)

w=1.0,
w=0.5,
w=0.2,
w=0.05

w=1.0,
w=0.5,
w=0.2,
w=0.05

Figure A.35: (color version of figure 5.28): Influence of the weight w; a) higher order
parallel coordinates; b) dual curve of a) in cartesian coordinates.
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a)
b)

Figure A.36: (color version of figure 6.2): a) minor hyperstreamlines for a stress
tensor field (image from [123]); b) tensor lines (yellow) and hyperstreamlines (cyan)
for a diffusion data set (image from [206]).

a) b)

Figure A.37: (color version of figure 6.3): Magic Eye View for hierarchical data; the
rings on the sphere represent the levels of hierarchy; a) edges of the graph represented
as straight lines; b) edges of the graph represented as rational quadratic Bzier curves.

a) b)

Figure A.38: (color version of figure 6.4): Blobs; a) initial object layout; b) Blob
surfaces denoting the clusters (images from [177]).
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Figure A.39: (color version of figure 7.25): Raytracing a surface; shown is a bicubic
B-spline surface consisting of 15× 10 patches.

Figure A.40: (color version of figure 7.26): Visualization of the two families of lines
of curvature using a combination of Integrate&Draw and curvature plot.

a) b)

Figure A.41: (color version of figure 7.27): A class of isophotes on a fragment of
the surface of figure 7.25; b) visualization of the geodesic curvature of the isophotes
(images from [192]).
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