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Abstract
In this paper we study the exact contours of a piecewise trilinear scalar field. We show how to represent these
contours exactly as trimmed surfaces of triangular rational cubic Bézier patches. As part of this, we introduce
an extension of the marching cubes algorithm which gives a topologically exact triangular approximation of the
contours for any case. Finally, we modify the exact contours to be globally G1 continuous without changing their
topologies. We test the algorithm on both theoretical and practical data sets.
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1. Introduction

The marching cubes (MC) algorithm [1,2] is one of the
most popular methods of producing contours (isosurfaces)
of a given volume data set. Given a scalar field on a regular
hexahedral grid, MC yields a triangular approximation of
the contour for an assumed trilinear interpolation of the
scalar field between the grid points. This is obtained by
considering the grid cells independently of each other and
computing a triangular approximation of the isosurface for
each of the cells.

The resulting triangular mesh might be too coarse or too
fine. If the mesh is too fine (i.e. the number of triangles is too
high), a variety of mesh reduction algorithms exist [3–6].

It is the purpose of this paper to deal with the opposite
problem: to obtain a finer representation of the contour if
the triangular mesh from MC is too coarse. This problem
appears

• with low resolution volume data;

• when exploring details in high resolution volume data;

• with fractal volume data.

Figure 1(a) shows an example of a volume data set (property
of Siemens Medical Systems Inc., Iselin, NJ) where MC
gives a triangular mesh which is too fine. Figure 1(b) shows

a) b) c)

Figure 1: (a) CT head consisting of423.963 triangles—a
candidate for mesh reduction algorithms. (b) Detail inside
the same CT head—the triangular mesh is too coarse.
(c) The contour of a triquadratically interpolated scalar field
may have self-intersections and complicated topologies.

a detail of the inner part of the surface shown in Figure 1(a).
Here the mesh is too coarse.

In order to improve the quality of a surface shown in
Figure 1(b), higher order interpolations between the grid
points of the scalar field may be applied. This approach may
end in new classes of surfaces containing self-intersections
and complicated topologies. Figure 1(c) gives an illustration.

Another possible solution is to consider the exact nature
of the contours of a trilinearly interpolated scalar field
and find better surface representations than a triangular
approximation produced by the MC algorithm. In [7], the
contour is approximated by a number of bicubic patches.
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Figure 2: Illustration of the main ideas of this paper. (a) Two
cells and the triangular approximation of a certain contour
consisting of two unconnected parts using MC. (b) The
exact contour represented by a number of trimmed surfaces
of rational cubic triangular patches. (c) The globally G1

modification of the contour without changing its topology.

The approximated surface is G0 continuous across the cell
boundaries. Piecewise bicubic patches are also used in [8] to
refine the results of a “contouring and connecting” approach.
In [9], the contour is approximated using patches with 4,
5 or 6 boundary curves. Hamann et al. [10] approximates
the contours by rational quadratic triangular Bézier surface
patches. This approach represents the boundary curves of
the contour on the faces of the cells exactly but yields only
G0 continuous junctions of the patches both inside a cell
and across the cell boundaries. All these approaches yield
only approximations of the exact isosurface of a piecewise
trilinear scalar field.

In this paper we describe two main ideas. First we find the
exact representation of the trilinear contour as a piecewise
parametric surface. It turns out that the contour can be
described by a number of trimmed surfaces of rational cubic
triangular patches. We show how to construct these surface
patches.

The exact contour of a piecewise trilinear scalar field
(described by rational cubic patches) is G∞ continuous
inside a cell but only G0 continuous across the cell faces.
In the second part of this paper we describe how to modify
the exact contour of a piecewise trilinear scalar field in such
a way that the result is a globally G1 approximation of the
contour. This modification does not change the topology of
the original contour. This is obtained by applying an appro-
priate reparametrization of the domain of the scalar field,
i.e. a cell. Figure 2 illustrates the main ideas of this paper.

This paper is organized in the following way: in Section 2
we study the exact contours of a trilinear scalar field. We
show how to describe them as trimmed surfaces of rational
cubic triangular Bézier patches. Section 3 introduces an

extension of the MC method which gives a topologically
exact triangular approximation of any trilinear contour. This
is a necessary precondition for the approach of Section 2.
Section 4 introduces a domain reparametrization of the
piecewise trilinear scalar field in such a way that the
resulting contours are globally G1 continuous and have the
same topology as the trilinear contours. Section 5 applies the
methods to both constructed and real data sets.

2. The Exact Contour of a Trilinear Scalar Field

A first approach on constructing the exact contour of a
trilinear scalar field can be found in [11] where it is
constructed as a subdivision surface. In this section we
introduce a parametric description of it.

Given is a trilinear scalar field

s(x, y, z) = (1 − x)(1 − y)(1 − z) c000

+ (1 − x)(1 − y) z c001

+ (1 − x) y (1 − z) c010 + (1 − x) y z c011

+ x (1 − y)(1 − z) c100 + x (1 − y) z c101

+ x y (1 − z) c110 + x y z c111 (1)

where ci jk (i, j, k ∈ {0, 1}) are the scalar values in the
vertices of the unit cube. A contour is given by specifying
a threshold r ; it consists of all points (x, y, z)T with

s(x, y, z) = r. (2)

Given is a point a = (xa, ya, za)T. If we want to compute
the intersection of a ray starting from a with the contour
defined by (1) and (2), in general we have to solve a cubic
equation. For the special case that the ray is parallel to
one of the coordinate axes, the problem simplifies to the
solution of a linear equation: let px (a) be the intersection
of the ray a + λ(1, 0, 0)T with the contour defined by (1)
and (2). Furthermore, let py(a) be the intersection of the
ray a + λ(0, 1, 0)T with the contour, and let pz(a) be the
intersection of the ray a+λ(0, 0, 1)T with the contour. Then
we obtain from (1) and (2):

px (a) =




r − c000 (1 − ya)(1 − za)

− c001 (1 − ya) za
− c010 ya (1 − za) − c011 ya za
(c100 − c000)(1 − ya)(1 − za)

+ (c101 − c001)(1 − ya) za
+ (c110 − c010) ya (1 − za)

+ (c111 − c011) ya za

, ya, za




T

py(a) =




xa,

r − c000 (1 − xa)(1 − za)

− c100 xa (1 − za)

− c001 (1 − xa) za − c101 xa za
(c010 − c000)(1 − xa)(1 − za)

+ (c110 − c100) xa (1 − za)

+ (c011 − c001)(1 − xa) za
+ (c111 − c101) xa za

, za




T
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Figure 3: (a) Projections px (a), py(a), pz(a) of a point a
onto the contour in x-, y- and z-direction. (b) Projection
pz(t) of the line segment (1 − t) a + t b onto the contour
is a rational cubic curve. (c) Configuration for computing
the control points of pz(t).

pz(a) =




xa, ya,

r − c000 (1 − xa)(1 − ya)

− c010 (1 − xa) ya
− c100 xa (1 − ya) − c110 xa ya
(c001 − c000)(1 − xa)(1 − ya)

+ (c011 − c010)(1 − xa) ya
+ (c101 − c100) xa (1 − ya)

+ (c111 − c110) xa ya




T

.

We call px (a), py(a), pz(a) the projections of a onto the
contour in x-, y- and z-direction. This means that we can
construct three points on the contour for a given point a in a
simple way. Figure 3(a) gives an illustration.

Given a point a, there is one and only one contour defined
by (1) through it. We can compute its (unnormalized) normal
vector n(a) in a by

n(a) = (sx (xa, ya, za), sy(xa, ya, za), sz(xa, ya, za))T

(3)
where sx , sy , sz are the partial derivatives of s defined in (1).

Now we construct curves on the contour by projecting
line segments onto it. Given is the line segment x(t) =
(1 − t) a + t b. Then the curves

px (t) = px (x(t)), py(t) = py(x(t)), pz(t) = pz(x(t))
(4)

are obtained by projecting each point of x(t) onto the
contour in x-, y-, or z-direction. Figure 3(b) gives an
illustration for pz(t).

It is a straightforward exercise in algebra to show that
the curves px (t), py(t), pz(t) on the contour defined by (1)
and (2) are rational cubics. The curve pz(t) can be expressed
as

pz(t) =
∑3

i=0 wi bi B3
i (t)∑3

i=0 wi B3
i (t)

(5)

where B3
i (t) are the Bernstein polynomials (see [12]) and

w0 = zn(pz(a)), w1 = 4
3 zn(pz(

a+b
2 ))

− 1
3 zn(pz(b))

w3 = zn(pz(b)), w2 = 4
3 zn(pz(

a+b
2 ))

− 1
3 zn(pz(a))

b0 = pz(a), b3 = pz(b) (6)

b1 =




(
1 − w0

3 w1

)
xb0 + w0

3 w1
xb3(

1 − w0

3 w1

)
yb0 + w0

3 w1
yb3(

1 + w3

3 w1

)
zpz(

a+b
2 )

− w3

3 w1
zb3




b2 =




w3

3 w2
xb0 +

(
1 − w3

3 w2

)
xb3

w3

3 w2
yb0 +

(
1 − w3

3 w2

)
yb3(

1 + w0

3 w2

)
zpz(

a+b
2 )

− w0

3 w2
zb0




.

Note that in (6) the weights w0, . . . , w3 are defined by the
z-coordinates of certain normal vectors of the contour. For
example, w0 is defined by the z-component of the contour
normal at pz(a). Figure 3(c) gives an illustration of the
components used in (6). The curves px (t), py(t) can be
computed as rational cubics in a similar way.

Now we extend the concept of curves on the contour to
parametric surfaces on the contour defined by (1) and (2).
Given is a triangle

x(u, v, w) = u a + v b + w c (7)

in barycentric coordinates of the vertices a, b, c, i.e. u + v +
w = 1. Then px (x(u, v, w)), py(x(u, v, w)), pz(x(u, v, w))

are the projections of x onto the contour defined by (1)
and (2). Figure 4(a) gives an illustration for pz(x).

The surfaces px (x(u, v, w)), py(x(u, v, w)), pz(x(u, v,
w)) are rational cubics. For example, pz(x(u, v, w)) can be
described as a rational Bézier triangle

pz(x(u, v, w)) =
∑

i+ j+k=3 wi jk bi jk B3
i jk(u, v, w)∑

i+ j+k=3 wi jk B3
i jk(u, v, w)

(8)
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Figure 4: (a) pz(x(u, v, w)) is obtained by projecting every
point of x(u, v, w) = u a + v b + w c into z-direction onto
the contour defined by (1) and (2). (b) pz(x(u, v, w)) is a
rational cubic surface. (c) Two adjacent MC triangles pro-
jected in different directions: the resulting contour patches
have gaps.

where the Bézier points and their weights on the boundary
curves can be computed as in (6) above, and

w111 = w201 + w102 + w021 + w012 + w120 + w210

4

−w300 + w030 + w003

6

xb111 =
(

w012 + w021

4 w111
− w030 + w003

12 w111

)
xa

+
(

w102 + w201

4 w111
− w300 + w003

12 w111

)
xb

+
(

w120 + w210

4 w111
− w300 + w030

12 w111

)
xc

yb111 =
(

w012 + w021

4 w111
− w030 + w003

12 w111

)
ya

+
(

w102 + w201

4 w111
− w300 + w003

12 w111

)
yb

+
(

w120 + w210

4 w111
− w300 + w030

12 w111

)
yc

zb111 =
w210 zb210 + w201 zb201 + w120 zb120

+ w021 zb021 + w012 zb012 + w102 zb102
4 w111

−w300 zpz(a) + w030 zpz(b) + w003 zpz(c)

12 w111
.

Figure 4(b) gives an illustration. The surfaces px (x), py(x)

can be described in a similar way.

The basic idea of representing a contour defined by (1)
and (2) is to apply the MC algorithm and project each of
the resulting triangles onto the contour. Unfortunately, this
may produce gaps for adjacent triangles if their projection
directions differ. Figure 4(c) gives an example. To overcome
this problem, we use trimmed surfaces of the triangular
rational cubics instead of the triangular patches themselves.
This way the domain of the patches is not a triangle but
a more complex shape which is bounded by three rational
cubic curves. We use the following algorithm to compute
the surface patch over an MC triangle:

Given is the triangle (a, b, c) which is obtained from the
MC algorithm. This means that a, b, c are on the contour.

1. Determine the projection directions qab, qbc, qca ∈
{x, y, z} of the boundary curves.

2. Determine the projection direction qabc ∈ {x, y, z}
of the whole triangle.

3. Project the boundaries of the triangle (a, b, c) in the
directions defined in step 1 onto the contour. We
obtain the curves

xab(t) = pqab((1 − t) a + t b)

xbc(t) = pqbc((1 − t) b + t c)

xca(t) = pqca((1 − t) c + t a)

on the contour. The curves xab, xbc, xca are the
boundary curves of the final patch over the triangle
(a, b, c).

4. Project xab, xbc, xca in the direction qabc into
the plane defined by a, b, c. We obtain the curves
yab, ybc, yca in the plane (a, b, c) which are the
boundary curves of the domain of the final patch.

5. Compute the trimmed surface of the projected patch
pqabc(u a + v b + w c) with u + v + w = 1. The do-
main of the trimmed surface is given by the boundary
curves yab, ybc, yca.

Figure 5 illustrates an example of this algorithm.

To complete the algorithm, we have to answer two
questions:

(a) how to choose the projection directions qab, qbc, qca
and qabc;

(b) how to make sure that the cubic surfaces have all
positive (or all negative) weights, i.e. no zeros in the
denominator functions.

To (a): given the points a = (xa, ya, za)T and b =
(xb, yb, zb)T, we choose qab = x if ‖xa − xb‖ < ‖ya − yb‖
and ‖xa − xb‖ < ‖za − zb‖ and a and b are not on the
same face of the MC cell, i.e. ¬((xa = 0 and xb = 0) or
(xa = 1 and xb = 1)). If the last named condition is false,
the projection direction has to be chosen between y and z.
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Figure 5: Example of the algorithm for constructing
a triangular patch over an MC triangle (a, b, c).
(a) Determine the projection directions; here we have
chosen qab = x, qbc = y, qca = z, qabc = z. (b) Project
the boundaries of the triangle onto the contour; here we
obtain the boundary curves xab(t) = px ((1 − t) a + t b),
xbc(t) = py((1 − t)b + t c), xca(t) = pz((1 − t) c + t a)

on the contour. (c) Project xab, xbc, xca in z-direction onto
the plane defined by the triangle (a, b, c); we obtain the
planar curves yab, ybc, yca which are the boundaries of the
domain of the trimmed surface.

The projection directions qbc and qca are chosen in a similar
way.

To compute qabc, we consider the normal n =
(xn, yn, zn)T of the triangle a, b, c. We chose qabc = x if
‖xn‖ > ‖yn‖ and ‖xn‖ > ‖zn‖.

To (b): to avoid zeros in the denominator functions of the
rational patches, we have to make sure that the projections
of a MC triangle onto the contour consists of one connected
surface patch, i.e. it does not have any discontinuities.
To achieve this, we have to make sure that the triangular
approximation of the contour obtained by the MC algorithm
is topologically equivalent to the contour itself. To ensure
this for any contour on any trilinear scalar field, we have to
introduce an extension of the MC algorithm of [1] and [2].
This extension is treated in the next section.

3. Topologically Exact Marching Cubes

After the introduction of the original MC algorithm in [1] it
became evident that there are topological ambiguities in it.
One way of finding a topologically exact approximation of
the intersection curves of the contour and the faces of the
cells has been introduced in [2] and [13]. There the results

a)

b)

c)

d)

e)

Figure 6: (a and d). Two possible contours of (1) and (2)
where the MC algorithm of [1] and [2] gives the same set
of closed polygons on the faces of the cell shown in (c).
Depending on certain inner points, the topologically exact
triangulation is either (b) or (e).

of the algorithm are a number of closed polygons on the
faces of the cells which are triangulated in a certain way.
Other approaches to solve the ambiguity problems of MC
include [14–18]. All these approaches do not incorporate
inner points into the triangulation. However, for some
cases the incorporation of inner points is necessary for
constructing a topologically exact approximation of the
contour, i.e. an approximation which always has the same
topology as the original contour. Figure 6 gives an example.

It is the purpose of this section to find a set of inner points
which are sufficient to get a topologically exact triangulation
for every case. To explain the main idea we start with an
example. Given is the contour shown in Figure 7(a). The MC
algorithm of [1] and [2] gives the closed polygon shown in
Figure 7(b). We name the vertices of the polygon v1, . . . , v6.
Triangulating this polygon, the edges (v2, v6) and (v3, v5)

must not be used because the contour does not have edges
between these vertices on the upper face of the cell. Here it
makes sense to define one inner point v on the contour and
apply a triangulation shown in Figure 7(e). A good candidate
for v is the point on the contour which has a contour normal
in z-direction (see Figure 7a).

The example of Figure 7 gives the key to finding a set
of inner points which are sufficient for a topologically exact
triangulation. We consider all points of the contour which
have a normal direction either in x-, y-, or z-direction.

Given a contour defined by (1) and (2), there are at
most two points x0, x1 on the contour with a normal in
x-direction. Similarly, there are at most two points y0, y1
on the contour with a normal in y-direction, and there are
at most two points z0, z1 on the contour with a normal in
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Figure 7: (a) Contour and point v with normal in z-direction
on it. (b) Closed polygons resulting from the MC algorithm
of [1] and [2]. (d) Part of a wrong triangulation of (b).
(e) Triangulation applied here. (c) Triangulation of (e) in
3D.

z-direction. These six points can be computed as

x0 =

 xm − x p

√
d

ym + yp
√

d
zm + z p

√
d


 , x1 =


 xm + x p

√
d

ym − yp
√

d
zm − z p

√
d




y0 =

 xm + x p

√
d

ym − yp
√

d
zm + z p

√
d


 , y1 =


 xm − x p

√
d

ym + yp
√

d
zm − z p

√
d


 (9)

z0 =

 xm + x p

√
d

ym + yp
√

d
zm − z p

√
d


 , z1 =


 xm − x p

√
d

ym − yp
√

d
zm + z p

√
d




with

xm =

(c111 − c011)(r − c000) − (c110 − c010)

× (r − c001) + (c100 − c000)(r − c011)

− (c101 − c001)(r − c010)

2 ((c111 − c011)(c100 − c000)

− (c110 − c010)(c101 − c001))

ym =

(c111 − c101)(r − c000) − (c110 − c100)

× (r − c001) + (c010 − c000)(r − c101)

− (c011 − c001)(r − c100)

2 ((c111 − c101)(c010 − c000)

− (c110 − c100)(c011 − c001))

zm =

(c111 − c110)(r − c000) − (c101 − c100)

× (r − c010) + (c001 − c000)(r − c110)

− (c011 − c010)(r − c100)

2 ((c111 − c110)(c001 − c000)

− (c101 − c100)(c011 − c010))

x p = 1
2 ((c111 − c011)(c100 − c000)

− (c110 − c010)(c101 − c001))

yp = 1
2 ((c111 − c101)(c010 − c000)

− (c110 − c100)(c011 − c001))

z p = 1
2 ((c111 − c110)(c001 − c000)

− (c101 − c100)(c011 − c010))

d = a r2 + b r + c (10)

a = (−c111 + c110 + c101 − c100

−c001 + c000 + c011 − c010)2

b = 2 (c001 c110 + c011 c100 + c101 c010 + c111 c000)

· (c111 + c000 + c101 + c110

+c100 + c010 + c011 + c001)

− 4 (c000 c111 (c111 + c000) + c001 c110 (c110 + c001)

+c010 c101 (c101 + c010) + c011 c100 (c100 + c011))

− 4 (c000 c110 c101 + c000 c011 c110

+c000 c011 c101 + c110 c101 c011)

− 4 (c111 c001 c010 + c111 c100 c001

+c010 c100 c111 + c001 c010 c100)

c = − (c001 c110 + c011 c100 + c101 c010 + c111 c000)2

+ 2 (c2
111 c2

000 + c2
101 c2

010 + c2
001 c2

110 + c2
011 c2

100)

+ 4 (c000 c110 c101 c011 + c010 c100 c111 c001).

Depending on the value d, all these six points are either
real points on the contour, or all have imaginary values. If
they are real (i.e. if d > 0), then (9) gives that the closed
polygon (x0, y1, z0, x1, y0, z1) lies on the edges of a box,
as illustrated in Figure 8(a). Note that this polygon lies
completely on the contour. We call this closed polygon inner
ring in order to distinguish it from the closed polygons on the
cell faces obtained by the MC algorithm of [1] and [2]. We
call the closed polygons obtained there outer rings.

Now we can describe a topologically exact MC algorithm:

1. Create the closed polygons on the cell faces follow-
ing [1] and [2]. We obtain up to three closed polygons
and call them outer rings.

2. Compute the points of the inner ring by applying (9)
and (10).

3. If the inner ring is not real or if the inner ring is
completely outside the cell, then triangulate the outer
rings independently of each other; otherwise continue
with 4.

4. Check the connectivity between the inner ring and
each of the outer rings. If the inner ring and one of
the outer rings belong to the same contour segment:
triangulate the area between the inner ring and this
outer ring.

5. If only one outer ring was connected to the inner ring,
the inner ring itself has to be triangulated.

Figure 8(b– f ) illustrates this algorithm.

To check the connectivity between the inner ring and one
outer ring, we intersect the lines of the inner ring with the
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Figure 8: (a) The points (x0, y1, z0, x1, y0, z1) on the
contour which have normals either in x-, y-, or z-direction
form a closed polygon on the edges of a box—the inner ring;
this inner ring lies completely on the contour. (b–f) Illus-
tration of a topologically exact MC algorithm. (b) Create
outer rings following [1] and [2]. (c) Compute inner ring.
(d) Check connectivity between inner ring and outer rings
by intersecting the lines of the inner ring with all faces of
the cell; here the inner ring is connected to two outer rings.
(e, f) Triangulate the areas between inner ring and outer
rings.

Figure 9: (a) Exact contour over the triangulation shown in
Figures 8(e) and (f). (b) Exact contour over triangulation
in Figure 8(e). (c) Exact contour over triangulation in
Figure 8(f).

faces of the cell. If one of these intersection points lies on
the outer ring, it is connected to the inner ring. Figure 8(d)
illustrates this.

Figures 9–11 show examples of the application of the
topologically exact MC algorithm as well as the computation
of the exact contours based on these triangulations. In the
examples of Figures 9 and 11 the MC algorithm of [1]
and [2] would fail, i.e. gives topologically wrong triangular
approximations.

Supplied with a topologically exact MC algorithm, we are
able to compute the exact contour given by (1) and (2) as
shown in Section 2.

In the next section we want to describe a method to
achieve globally G1 approximations of the contour.

Figure 10: Example of a contour with one outer ring consist-
ing of 12 edges and the inner ring being completely inside
the cell. (a) Triangulation between inner ring and outer ring.
(b) Triangulation of inner ring. (c) Whole triangulation.
(d–f) Exact contours over the triangulations (a–c).

Figure 11: (a) Contour which gives two outer rings and
the inner ring completely inside the cell. (b) Outer rings.
(c) Triangulation between inner ring and one outer ring.
(d) Triangulation between inner ring and the other outer
ring. (e) Whole triangulation.

4. Globally G1 Contours

As already illustrated in Figure 2(b), the exact contour of
a piecewise trilinear scalar field is G∞ continuous inside
a cell but only G0 continuous across the cell boundaries.
These discontinuities have a significant visual effect on the
resulting contours. Hence a number of approaches to obtain
globally G1 continuous contours have been proposed.

One way of getting G1 continuous contours is the
application of higher order interpolation schemes of the
cells. In [14] a piecewise tricubic interpolation of the cells
is suggested. This way the authors obtain a globally C1

continuous scalar field (and thus G1 continuous contours).
Beside the fact that piecewise tricubic interpolation is rather
time consuming, no appropriate triangulation scheme seems
to be known for this kind of scalar field. In [19], 3D

c© The Eurographics Association and Blackwell Publishers Ltd 2002



26 H. Theisel / Exact Isosurfaces for Marching Cubes

blending functions are used to eliminate the “overshooting
effect” of the piecewise tricubic interpolation. Here too,
appropriate surface extraction algorithms are not available.
In [20], the application of higher order interpolations was
studied for 2D scalar fields. Here bicubic interpolations
of the scalar field were used. To preserve the topology of
the original scalar field, “damped partial derivatives” were
used to restrict the interpolation parameters. In general,
the application of higher order interpolation schemes may
lead to complicated contours including new topologies and
self-intersections which cannot be handled with an MC-like
algorithm. Figure 1(c) shows an example.

Another way to obtain G1 continuous contours is the
construction of a triangular surface over each triangle of the
MC triangulation applying approaches like a Clough–Tocher
interpolant [12,21] a Powell–Sabin interpolant [12,22], or
Nielson’s C1 interpolant [23]. These approaches work
entirely on the MC triangulation and neglect the underlying
trilinear scalar field. In particular, topological changes of the
contour due to new self-intersections are possible.

In this section we introduce another approach which
preserves the topology of the contours of a piecewise
trilinear scalar field but gives globally G1 contours. We
achieve this by applying an appropriate reparametrization of
the domain of the scalar field.

Given is a trilinear scalar field s(x, y, z) defined by (1)
and (2) over the domain [0, 1]3. The definition of a
monotonically increasing continuous one-to-one map

g : [0, 1]3 → [0, 1]3
(x, y, z) → (xg(x, y, z), yg(x, y, z), zg(x, y, z))

creates a new scalar field over [0, 1]3:

sg(x, y, z) = s(g−1(x, y, z)).

This new scalar field sg(x, y, z) is a reparametrization of
the scalar field s(x, y, z). If a point (x, y, z) lies on the
contour s(x, y, z) = r , the point g(x, y, z) lies on the
contour sg(x, y, z) = r . Thus the contours of sg(x, y, z) = r
can be computed in a simple way: apply the map g to all
contour points of s(x, y, z) = r . Since g is continuous
and one-to-one, the contours of s and sg have the same
topology for any r . Figure 12 gives an example for the
reparametrization g in 2D.

The idea is now to find appropriate maps g for each cell of
the piecewise trilinear scalar field which makes it globally
G1 continuous. This way all contours of the scalar field
become G1 continuous as well. We consider an 1D example
to explain how to choose the maps g. (Since in the 1D
example g simplifies to a scalar function from R to R, we
simply write g instead of g here.) Given are the scalar values
ci which define a piecewise linear 1D scalar field

s(x) = (1 − t) ci + t ci+1 with i = [x], t = x − [x].

0 1

1

0 1

1

x

y

x

y

s x,y( )

g( )x,y

s x,y s x,yg( )= ( ( ))g
-1

a) b)

Figure 12: (a) 2D bilinear scalar field over the unit square,
shown are isoparametric lines of the domain and one
contour curve. (b) Apply a regular reparametrization g(x, y)

of the domain onto itself: isoparametric lines and contour
line may change their shape but not their topology.

0 1 2 3

c0

c1

c2
c3

0 1 2 3

c0

c1

c2
c3

x

s x( )

x

s xg( )

a) b)

Figure 13: (a) The piecewise linear curve (x, s(x))T is G0

continuous. (b) The curve (g(x), s(x))T is G1 continuous,
it has the same shape (but another parameterization) as
(x, sg(x))T.

See Figure 13(a) for an illustration. The curve (x, s(x))T is
G0 continuous. We have to find a domain reparametrization
g(x) in such a way that the curve (g(x), s(x))T is G1

continuous and g(i) = i and g is continuous and one-to-one.
Figure 13(b) illustrated this.

To define g, we first have to estimate the tangent directions
of the curve (g(x), s(x))T at the junction points x = i . Let
ċi be the estimated slope of (g(x), s(x))T at x = i . Then ċi
should have the following properties:

• If (x, s(x))T is monotonically increasing both in the
intervals [i − 1, i] and [i, i + 1], ċi should be positive.
Figure 14(a) illustrates this.

• If (x, s(x))T is monotonically decreasing both in the
intervals [i − 1, i] and [i, i + 1], ċi should be negative.

• If (x, s(x))T has the same slope in the intervals [i −1, i]
and [i, i + 1], ċi should have this slope as well. (This
property ensures the linear precision of the contour,
i.e. the contour of a globally linear scalar field will
not effected by the reparametrization.) Figure 14(b)
illustrates this.

• If (x, s(x))T has a zero slope in either [i − 1, i] or
[i, i + 1], ċi should be zero. Figure 14(c) illustrates this.
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Figure 14: Estimate the slope ċi in the point x = i .
(a) ċi > 0 if (ci − ci−1) and (ci+1 − ci ) are positive.
(b) ċi = ci − ci−1 if ci − ci−1 = ci+1 − ci . (c) ċi = 0
if ci = ci−1 or ci+1 = ci . (d) ċi > 0 if (ci − ci−1) and
(ci+1 − ci ) have different sign.

• If the sign of the slopes of (x, s(x))T in the intervals
[i − 1, i] and [i, i + 1] differs, ċi should be zero.
(This avoids an overshooting effect of the curve
(g(x), s(x))T and therefore the creation of new
contours.) Figure 14(d) illustrates this.

• ċi should be continuous concerning changes of ci−1, ci ,
and ci+1.

One estimation of ċi which fulfills the conditions above is

ċi =



2(ci −ci−1)(ci+1−ci )
ci+1+ci−1

if (ci − ci−1)

· (ci+1 − ci ) � 0
0 else.

(11)

Now we consider the interval [i, i + 1] with the given
values ci , ci+1 and the estimated slopes ċi , ċi+1 using (11).
Furthermore, we use a local parameter t ∈ [0, 1] for this
interval which gives s(t) = (1 − t) ci + t ci+1. Since

ċi = ṡ(0)

ġ(0)
, ċi+1 = ṡ(1)

ġ(1)

and ṡ(0) = ṡ(1) = ci+1 − ci , we obtain the following
conditions for the monotonous function g(t) in t ∈ [0, 1]:

g(0) = 0, g(1) = 1

ġ(0) = ci+1 − ci

ċi
, ġ(1) = ci+1 − ci

ċi+1
. (12)

To find an appropriate function g which fulfills (12), we have
to keep in mind that ġ(0) and ġ(1) can attain any value
between 0 and +∞. Thus g(t) cannot be described by a
polynomial function of a fixed degree. Instead we define g(t)
as a combination of 4 basis functions g1(t), g2(t), g4(t),
g5(t). These functions are illustrated in Figure 15.

The function g1(t) is obtained by reparametrizing the
parabola defined by the Bézier points b1

0 = (0, 0)T, b1
1 =

g t1( )
g t2( )

g t4( )
g t5( )

b1

0 b1

1

b1

2

b2

0 b2

1

b2

2
b2

3

b4

0

b4

1 b4

2

b5

0
b5

1

b5

2
b5

3

Figure 15: Auxiliary functions of formulas (13) for defining
g(t); the functions g1(t), g4(t) are reparametrization of
parabola segments; g2(t), g5(t) are cubic functions.

(x1
1 , 0)T, b1

2 = (1, 0.5)T. This gives g1(t) = y1(x1
−1(t))

with (x1(t), y1(t))T = ∑2
i=0 b1

i B2
i (t). Moving x1

1
between 0.5 and 1, ġ1(1) ranges between 1 and +∞.
The function g2(t) = ∑3

i=0 y2
i B3

i (t) is a cubic with

y2
0 = 0, y2

1 = 0, y2
3 = 0.5. Moving y2

2 between 1/6
and 0.5, ġ2(1) ranges between 1 and 0. Furthermore we
have ġ1(0) = ġ2(0) = 0.

While g1(t) and g2(t) are used to control the slope of g at
t = 1, the functions g4(t) and g5(t) are used to control the
slope at t = 0. The function g4(t) is a reparametrization
of the parabola (x4(t), y4(t))T = ∑2

i=0 b4
i B2

i (t) with

b4
0 = (0, 0)T, b4

1 = (x4
1 , 0.5), b4

2 = (1, 0.5)T which

gives g4(t) = y4(x4
−1(t)). Moving x4

1 between 0 and 0.5,
ġ4(0) ranges between +∞ and 1. The function g5(t) =∑3

i=0 y5
i B3

i (t) is a cubic with y5
0 = 0, y5

2 = 0.5, y5
3 = 0.5.

Moving y5
1 between 0 and 1/3, ġ5(0) ranges between 0

and 1. Furthermore we have ġ4(1) = ġ5(1) = 0.

Now we can model the function g(t) with g(0) = 0 and
g(1) = 1 and given values for ġ(0) and ġ(1) between 0 and
+∞ as a linear combination of g1(t), g2(t), g4(t), g5(t):

g1(t) = 1

8




1 − 2 ġ(1)

+
√

(1 − 2 ġ(1))2 + 4 t ġ(1) (1 − ġ(1))

(1 − ġ(1))




2

g2(t) = 3 t2 (1 − t)
(

1
2 − 1

3 ġ(1)
)

+ 1
2 t3

g3(t) =
{

g1(t) for ġ(1) > 1
g2(t) for 0 � ġ(1) � 1

g4(t) =
2 t ġ(0) (1 − ġ(0)) + (1 − 2 ġ(0))

· (1 − √
1 − 4 t ġ(0) (1 − ġ(0)))

4 (1 − ġ(0))2
(13)

g5(t) = t (1 − t)2 ġ(0) + 3
2 t2 (1 − t) + 1

2 t3
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c000 c200c100c-100

c011

c001

c010 c210c110c-110

c-101 c201c101

c211c111c-111

(x,y,z)
c0x c2xc1xc-1x

c1xc0x

Figure 16: The reparametrization xg(x, y, z) in x-direction
is computed using ċ0x and ċ1x . ċ0x is estimated by
c−1x , c0x , c1x while ċ1x is estimated by c0x , c1x , c2x .

g6(t) =
{

g4(t) for ġ(0) > 1
g5(t) for 0 � ġ(0) � 1

g(t) = g3(t) + g6(t).

Note that

lim
ġ(1)=1

g1(t) = 1
2 t2, lim

ġ(1)=+∞ g1(t) = 1 − √
1 − t − 1

2 t

lim
ġ(0)=1

g4(t) = t − 1
2 t2, lim

ġ(0)=+∞ g4(t) = √
t − 1

2 t.

Now we can apply this reparametrization to the
3D cells: given is a scalar field defined by (1)
and (2) in the domain [0, 1]3. To find g(x, y, z) =
(xg(x, y, z), yg(x, y, z), zg(x, y, z)), we consider the
functions

c0x (y, z) = s(0, y, z), c1x (y, z) = s(1, y, z)

c−1x (y, z) = s(−1, y, z), c2x (y, z) = s(2, y, z)

where c−1x and c2x are computed from the scalars adjacent
to the cell considered here. The slope ċ0x (y, z) on the cell
face x = 0 in x-direction is estimated by (11) using the
values c−1x (y, z), c0x (y, z), c1x (y, z). In a similar way,
the slope ċ1x (y, z) on the cell face x = 1 in x-direction
is estimated by (11) using the values c0x (y, z), c1x (y, z),
c2x (y, z). Then xg(x, y, z) can be computed using (13) with

t = x

ġ(0) = c1x (y, z) − c0x (y, z)

ċ0x (y, z)

ġ(1) = c1x (y, z) − c0x (y, z)

ċ1x (y, z)

xg(x, y, z) = g(t).

Figure 16 gives an illustration. The reparametrization in
y- and z-direction, yg(x, y, z) and zg(x, y, z), are computed
in a similar way.

The reparametrization introduced above is applied locally
to all cells of the data volume. The global reparametrization
g(x, y, z) obtained this way gives a globally G1 scalar field
sg(x, y, z). Thus all contours of sg are G1 as well.

5. Results

We applied the algorithms to construct the exact contour
of (1) and (2) as well as its G1-modification both to
theoretical and practical data sets.

Figure 17 shows the scalar field s(x, y, z) = x2 +
y2 + z2 which is sampled by a 3 × 3 × 3 grid in the
domain [−1, 1]3. Obviously the contours of s are concentric
spheres. Figure 17(a) shows the result of the MC algorithm
for r = 0.9: the sphere is approximated by 8 triangles.
Figure 17(b) shows the exact contours of the piecewise
trilinear interpolation. Although this shape comes closer to a
sphere, we can still see discontinuities of the surface across
the faces of the cell. Figure 17(c) shows the G1 modification
of the exact contour of Figure 17(b). Note that this is not
exactly a sphere although it almost looks like it.

Figure 18 shows a 5 × 5 × 5 hexahedral grid with random
scalar values between 0 and 1 at the grid points, and r = 0.5.
Figure 18(a) shows the result of the topologically exact
MC algorithm where the triangles inside a cell are Phong
shaded. Figure 18(b) shows the exact contour of the scalar
field. We can clearly see the discontinuities of the surface
across the cell faces. These discontinuities disappear in the
G1 modification shown in Figure 18(c).

Figure 19 shows a downsampled version of the data
set of Figure 1(a). Originally consisting of 256 × 256 ×
109 grid points, this version has only a 51 × 51 × 35
grid resolution. The result of the MC algorithm shown in
Figure 19(a) consists of 93.636 triangles and shows clearly
a “staircase effect” due to the low sample rate. The exact
contour in Figure 19(b) shows hardly any visual differences
to Figure 19(a). The G1 modification of Figure 19(c) looks
smoother but still has the “staircase effects.”

Figures 20 and 21 show inner details of the data set
shown in Figure 1(a). There are only few visual differences
between the MC results (Figures 20a and 21a) and the
exact contours (Figures 20b and 21b). The G1 modifications
(Figures 20c and 21c) look significantly smoother.

Figure 22 shows a magnified detail of Figure 21. Again
the G1 contour (Figure 22c) looks smoother than the
exact contour (Figure 22b) and its MC approximation
(Figure 22a).

We conclude that in most cases the exact contour of
a piecewise trilinear scalar field gives only slight visual
improvements against the MC approximation if the MC
triangles are rendered using Phong shading. The G1 contour
gives improved visual results for low resolution volume data.
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Figure 17: Scalar field s(x, y, z) = x2 + y2 + z2, sampled by a 3 × 3 × 3 grid in the domain [−1, 1]3, r = 0.9. (a) MC.
(b) Exact contours. (c) Globally G1 contours.

Figure 18: 5 × 5 × 5 random volume data set. (a) MC. (b) Exact contours. (c) Globally G1 contours.

Figure 19: Downsampled data set of Figure 1(a). (a) MC. (b) Exact contours. (c) Globally G1 contours.
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a) b) c)

Figure 20: Inner detail of the data set of Figure 1(a). (a) MC. (b) Exact contours. (c) Globally G1 contours.

Figure 21: Inner detail of the data set of Figure 1(a); (a) MC. (b) Exact contours. (c) Globally G1 contours.

Figure 22: Detail of Figure 21. (a) MC. (b) Exact contours. (c) Globally G1 contours.
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